

Jacek Wojtowicz

STABILITY OF THE FOUR-POINT FINITE DIFFERENCE SCHEME
FOR LINEAR PARABOLIC EQUATIONS WITH FIRST DERIVATIVES
AND WITH VARIABLE COEFFICIENTS

This paper presents a sufficient condition of stability of the four-point finite difference scheme for the equation

$$(1) \quad \frac{\partial u}{\partial t} = \sum_{p=1}^n a_p(x_1, \dots, x_n, t) \frac{\partial^2 u}{\partial x_p^2} + \sum_{p=1}^n b_p(x_1, \dots, x_n, t) \frac{\partial u}{\partial x_p} + c(x_1, \dots, x_n, t)u + d(x_1, \dots, x_n, t)$$

with initial condition

$$(2) \quad u(x_1, \dots, x_n, 0) = f_1(x_1, \dots, x_n) \quad \text{for } (x_1, \dots, x_n) \in \omega_x$$

and boundary condition

$$(3) \quad u(x_1, \dots, x_n, t) = f_2(x_1, \dots, x_n, t) \quad \text{for } (x_1, \dots, x_n) \in \Gamma, \quad t \in \omega_t.$$

The cube ω_x is given by inequalities

$$\xi_p \leq x_p \leq \zeta_p, \quad p = 1, 2, \dots, n, \quad (\xi_p, \zeta_p \text{ being constant}),$$

Γ is the boundary of ω_x and $\omega_t = \langle 0, T \rangle$ (T being a positive number).

Assume that

1° the coefficients are continuous on the set $\omega = \omega_x \times \omega_t$, and that

$$(4) \quad a_p(x_1, \dots, x_n, t) > 0, \text{ for } p = 1, 2, \dots, n, \text{ on } \omega$$

$$(5) \quad c(x_1, \dots, x_n, t) < 0 \text{ on } \omega.$$

2° The functions f_1 and f_2 are continuous on ω_x and $\Gamma \times \omega_t$ resp.

Let us introduce in the set ω a rectangular grid consisting of lines intersecting each x_p axis at points distant by a grid-step $l_p = \alpha_p h$, $p = 1, 2, \dots, n$, and denote by k the step on the time axis t , where $l_p = \frac{3_p - \xi_p}{m_p}$ and numbers m_p are integer. For convenience let us define a constant

$$(6) \quad 6 = \frac{k}{h^2}.$$

The mesh-points of this grid are given as

$$\begin{aligned} x_{\underline{i}s} &= (x_{10} + i_1 l_1, x_{20} + i_2 l_2, \dots, x_{n0} + i_n l_n, s k) = \\ &= (x_{1i_1}, x_{2i_2}, \dots, x_{ni_n}, t_s), \end{aligned}$$

where the elements of $\underline{i} = [i_1, i_2, \dots, i_p, \dots, i_n]$ are integers defined by $i_p \in [0, m_p]$ and the integer $s \in [0, m_s]$, where $m_s \cdot k = T$. The following notation seems very convenient

$$a_p(x_{\underline{i}s}) = a_{i_1, \dots, i_n, s}^p, \quad b_p(x_{\underline{i}s}) = b_{i_1, \dots, i_n, s}^p, \quad (p = 1, \dots, n),$$

$$c(x_{\underline{i}s}) = c_{i_1, \dots, i_n, s}, \quad d(x_{\underline{i}s}) = d_{i_1, \dots, i_n, s}, \quad u(x_{\underline{i}s}) = u_{i_1, \dots, i_n, s}.$$

The approximations of the derivatives are obvious

$$(7) \quad \frac{\partial u(x_{\underline{i}s})}{\partial x_p} = \frac{u_{i_1, \dots, i_p+1, \dots, i_n, s} - u_{i_1, \dots, i_p-1, \dots, i_n, s}}{2 l_p} + R_{1p} h^2,$$

$$(8) \quad \frac{\partial^2 u(x_{\underline{i}s})}{\partial x_p^2} =$$

$$= \frac{u_{i_1, \dots, i_p+1, \dots, i_n, s} - 2u_{i_1, \dots, i_p, \dots, i_n, s} + u_{i_1, \dots, i_p-1, \dots, i_n, s}}{l_p^2} + R_{2p} h^2$$

$$(9) \quad \frac{\partial u(X_{i_1, \dots, i_n, s})}{\partial t} = \frac{u_{i_1, \dots, i_n, s+1} - u_{i_1, \dots, i_n, s}}{k} + R_3 k.$$

The values R_1, R_2, R_3 are the rest-terms.

We substitute (7), (8) and (9) into the equation (1), we neglect the rest-terms and we obtain the finite difference equation. This finite difference equation has the form

$$(10) \quad u_{i_1, \dots, i_n, s+1} = 1 - 6 \left(\sum_{p=1}^n 2 \frac{1}{\alpha_p^2} a_{i_1, \dots, i_n, s}^p - h^2 c_{i_1, \dots, i_n, s} \right) + \\ + 6 \sum_{p=1}^n u_{i_1, \dots, i_p+1, \dots, i_n, s} \left(\frac{1}{\alpha_p^2} a_{i_1, \dots, i_n, s}^p + \frac{h}{2\alpha_p} b_{i_1, \dots, i_n, s}^p \right) + \\ + 6 \sum_{p=1}^n u_{i_1, \dots, i_p-1, \dots, i_n, s} \left(\frac{1}{\alpha_p^2} a_{i_1, \dots, i_n, s}^p - \frac{h}{2\alpha_p} b_{i_1, \dots, i_n, s}^p \right) + \\ + 6 h^2 d_{i_1, \dots, i_n, s}.$$

Denote by $u_{i_1, \dots, i_n, s}$ a solution of the problem (10), (2), (3) and by $v_{i_1, \dots, i_n, s}$ a solution of the problem (10), (2'), (3) where (2') is the following initial condition

$$(2') \quad v(x_1, \dots, x_n, 0) = f_1(x_1, \dots, x_n) + \\ + \varphi(x_1, \dots, x_n) \text{ for } (x_1, \dots, x_n) \in \omega_x,$$

where the function φ is continuous. The difference

$$(11) \quad \varepsilon_{i_1, \dots, i_n, s} = v_{i_1, \dots, i_n, s} - u_{i_1, \dots, i_n, s}$$

satisfies the equation (10) in which we neglect the expression $h^2 d_{i_1, \dots, i_n, s}$. If the point $X_{i_1, \dots, i_n, s}$ belongs to the boundary Γ , then $\varepsilon_{i_1, \dots, i_n, s} = 0$. The initial condition has the form

$$\varepsilon_{i_1, \dots, i_n, 0} = \varphi(x_{1i_1}, \dots, x_{ni_n}).$$

It is easy to see that the expression $\varepsilon_{i_1, \dots, i_n, s}$ is the error of the solution of the problem (10), (2), (3). The solution is stable if always is fulfilled the condition

$$(12) \quad |\varepsilon_{i_1, \dots, i_n, s+1}| \leq |\varepsilon_{i_1, \dots, i_n, s}|.$$

Denote $\varepsilon^s = \max_i |\varepsilon_{i_1, \dots, i_n, s}|$. Then the following estimate holds

$$(13) \quad |\varepsilon_{i_1, \dots, i_n, s}| \leq \varepsilon^s E_{i_1, \dots, i_n, s},$$

where

$$(14) \quad E_{i_1, \dots, i_n, s} = \left| 1 - 6 \left(2 \sum_{p=1}^n \frac{1}{\alpha_p^2} a_{i_1, \dots, i_n, s}^p - h^2 c_{i_1, \dots, i_n, s} \right) \right| +$$

$$+ 6 \sum_{p=1}^n \left| \frac{1}{\alpha_p^2} a_{i_1, \dots, i_n, s}^p + \frac{h}{2\alpha_p} b_{i_1, \dots, i_n, s}^p \right| +$$

$$+ 6 \sum_{p=1}^n \left| \frac{1}{\alpha_p^2} a_{i_1, \dots, i_n, s}^p - \frac{h}{2\alpha_p} b_{i_1, \dots, i_n, s}^p \right|.$$

The above definition of ε^s implies that there exists such a vector of indexes $[i_1, \dots, i_n]$ that

$$\varepsilon^{s+1} = |\varepsilon_{i_1, \dots, i_n, s+1}|.$$

If $E^s = \max_i E_{i_1, \dots, i_n, s}$, then

$$(15) \quad \varepsilon^{s+1} \leq \varepsilon^s E^s \text{ for all integer } s.$$

It is easy to see that if the following inequalities hold

$$(16) \quad 1 \geq 1 - 6 \left(\sum_{p=1}^n \frac{2}{\alpha_p^2} a_{i_1, \dots, i_n, s}^p - h^2 c_{i_1, \dots, i_n, s} \right) \geq 0,$$

$$(17) \quad \frac{1}{\alpha_p^2} a_{i_1, \dots, i_n, s}^p \pm \frac{h}{2\alpha_p} b_{i_1, \dots, i_n, s}^p \geq 0, \quad p = 1, 2, \dots, n,$$

then the following condition is satisfied

$$(18) \quad E^s = 1 + h^2 c_{i_1, \dots, i_n, s} \leq 1.$$

Hence the condition of stability is

$$(19) \quad \varepsilon^{s+1} \leq \varepsilon^s \text{ for all integer } s.$$

Introduce the symbols $B_p = \max |b_p(x_1, \dots, x_n, t)|$, $\bar{a}_p = \min |a_p(x_1, \dots, x_n, t)|$.

It is always possible to choose a sufficiently small grid-step l_p to fulfil the inequalities

$$(20) \quad \bar{a}_p - \frac{1}{2} B_p l_p \geq 0, \quad p = 1, 2, \dots, n,$$

which result from (17). Hence the condition for the length of grid-step is

$$(21) \quad l_p \leq \frac{2\bar{a}_p}{B_p},$$

of course this condition can be used, when $B_p \neq 0$.

If $B_p = 0$, then $b_p(x_1, \dots, x_n, t) = 0$, and the step l_p can be chosen arbitrarily. If $h = \min_{p=1, \dots, n} l_p = l_r$, then $\alpha_p = \frac{l_p}{l_r}$.

From the inequality (16), we can immediately obtain the condition

$$(22) \quad \delta \leq \frac{1}{\sum_{p=1}^n \frac{1}{\alpha_p^2} A_p + h^2 C},$$

where $A_p = \max_{\omega} a_p(x_1, \dots, x_n, t)$, $C = \max_{\omega} [-c(x_1, \dots, x_n, t)]$.

The above considerations complete the proof of the following theorem.

Theorem. If the coefficients a_p , b_p , d and c of the equation (1) are continuous and fulfil the conditions (4), (5) and if the assumptions 1° and 2° are fulfilled and the steps l_p satisfy the condition (21), and the coefficient δ satisfies the condition (22), then the solution of the problem (10), (2), (3) is stable.

БИБЛИОГРАФИЯ

- [1] В.Б. А н д р е е в: Об устойчивости по начальным данным разностных схем для параболических уравнений, *Z. Vycisl. Mat. Fiz.* 11, 6 (1971) 1462-1475.
- [2] D. A g r o n s o n: On the stability of certain finite difference approximations to parabolic system of differential equations, *Numer. Math.* 5, 2 (1963) 113-137.
- [3] Ю.Е. Б о я р и н ц е в: О сходимости разностных схем для уравнений с переменными коэффициентами, *Trudy Mat. Inst. Steklov.* 74 (1966) 16-37.
- [4] Е.Г. Д ь я к о н о в: Разностные схемы второго порядка точности с расщепляющимся оператором для многомерных параболических уравнений с переменными коэффициентами, *Сб. Вычисл. методы и программирование*, Изд. МГУ вып. 3 (1965) 163-190.
- [5] А.А. С а м а р с к и й, А.В. Г у л и н: Устойчивость разностных схем. Москва 1973.

CENTRE OF COMPUTATION, POLISH ACADEMY OF SCIENCES

Received January 15, 1975.