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ON THE TRANSLATION EQUATION OCCURRING
IN THE ITERATION THEORY

Iterations of invertible modulus or submodulus functions
for real exponents are defined by the translation equation and
some initial condition (cf. [1], p. 197; [2], p.272). Satisfy-
ing the translation equation is understood in the iteration
theory in a different way than usually. In this paper we in-
vestigate the translation equation in the sense of the itera-
tion theory. In particular, the problem of extending this
equation is being studied.

We shall denote by P : X—Y any function defined in X
and taking its values in Y, by P : X--Y any function defined
-in any subset of X and taking its values in Y. For a given
function F : X-=~Y the symbol x+— PF(x) will denote the fun-
ction whose value at x equals F(x).

Let_E be any set and £ ¢ E—F any invertible function,
Iterations of the function f may be defined for real exponents
in the following way.

Definition 1 (ef. [2], p.272). A one-parameter
family of functions x — P(x,x) defined in some subset of E
is called a set of iterations of the function f, whenever the
function F: E x (=e0yc0) o= E satisfies the following conditions:
(a) P(x,a) is defined for arbitrary x ¢ E and arbitrary o >0,
(b) If «<0 and x e P(E, -o), then F(x,a) is defined,
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2 J .Tabor

(¢) 1f P(F(xya),B) and F(x,«+B) are defined; then
F'(F(x'“),ﬁ) = F(x’a+/3),
(4) P(x,1) = £(x) for x e E.

It has been proved in [2] p. 276 that condition (b”) in
Definition 1 may be replaced by the following

(b) P(x,x) is defined for o« < 0 1ff x e F(E,-o).

We shall prove a few theorems related to a form of fun-
ctions F satisfy¥ng conditions (a), (b), lc). At first, we
shall quote two lemmas from note -[2].

Lemma 1 (ef. [2], p.272)s If F : Ex <0, )—E
satisfies the functional eguation

(1) F(F(x,a),8) = F(x,a+p) for x e E, o,B ¢ < 0,9

and for some o, > O the function x-——F(x,doY is inverti-
ble, then

P(x,0) =x for x e E.

Lemma 2 (ef. [2] p.276), If F ¢+ E x < Q,00) — E
satisfies funotional equation (1) and for some @y > 0 the
function x-—~F(x,cx°) is invertible, then the function F can
be extended to a funetton F : B x (~w,0) -e+~ E satisfying
conditions (a), (b), (c¢). This extension is unique and for
o« <0 it is defined by the relation

(2) F(x,a) =y Lff F(y,-w) = x.

Let P : E x £ 0,0) —~E be an arbitrary function. Let
us consider the following conditions on F:

(A) The function F can be -extended to a function
F : E x(-cm) o~ E satisfying conditions {a), (b), (c).

(B) For X4y X, € E, a e < 0,) if F(x1,a) = F(xz,oc),
then F(x1,0) = F(x,,0).

(C) The function F can be represented in the form

(3) F{x,a) = F*(fo(x),oc) for x e E, axe «<0,0,
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On the translation equation 3

where the function fo ¢t E—E satisfies the functional
equation

(4) fo(fo(x)) = £, (x) for xe6&E,

the function F* : £ (E) » < 0,0) —f (E) satisfies functional
equation (1) and for arbitrary a« e < 0,°) the function
£, (E) 3 x — F*(x,x) 1is invertible.

It is easy to prove (¢f. also [1], p.306 Theorem 15.14)
that the general solution of functional equation (4) can be
written in the form

X for X € Eo
(5) £,(x) =
g{x) for x e E \E,

where ¢ # Eo C E and g E\\Eo—* E0 is an arbitrary fun-
ction. '

If f, : E—~E satisfies (4), then we obtain from (5) for
x €8

(6) X € fo(E) ifs fo(x) =x.

We shall prove the following theorem.

Theorem 1 If P =E x < 0y ) — E satisfies
the functional equation (1), then conditions (4), (B), (C) are.
equivalent.

Proof. (4) = (B). Let F : Ex (~w,0) =—=E be an
extension of F and let ¥ satisfy conditions (a), (b), (c).
For x ¢ E and o >0 we have: Flx,x) « F(E,a). Consequently,
it follows from (b) that F F(x,a),-a) is defined. Let
F(x,,) = F(x,,0). Then ﬁ(x1,a) = F(x,,a). Since ﬁ(ﬁ(x1,m),—a)
and ﬁ(ﬁ(xg,a),-m) are defined, we have F(x1,0) = ﬁ(x1,0) =
= ﬁ(f(x1,a),-a) = ﬁ(ﬁ(xz,a),-a) = ﬁ(xz,o) = F(x,,0),

(B) = (C). Let us assume that F : E = < 0,00) — E satisfies
equation (1) and condition (B). We put

(7 f (x) := F(x,0) for x e E,
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(8) F' (xyx) 1= F(x,a) for xef (E), oe<0,%),
We obtain from (1)
£,(£,(x)) = F(F(x,0),0) = F(x,0) = £ (x).

Thus f, satisfies (4). For arbitrary x e E, oe < 0,%0)
we have

P(x,x) = F(F(x,a),0) e £ (E),

and hence for arbitrary x e f;)(E), we < 0,0, F(x,x)
belongs to fo(E). For arbitrary x e f (E), a,f e < 0,)
we have now

F*(F*(x,a)./.’») = F(F(x,q),ﬁ) = F(x,a+/§) = F(x,a+f).

We have shown that F* satisfies (1) on the set fo(E) x < Q,00),
We are going to prove that the function fO(E) 3 x— F'(x,a)

is invertible. Let x,, X, € f (E) and F*(x1,a) = F*(xg,cx).
Then by (8) F(x1,o¢) = F(xz,a) and, in consequence of (B),
F(x1,0) = F(x,,0). Since X4y Xy € £,(E), by applying (6) and
(7) it follows that X, = X,. This proves that the function
£,(E) 3 x ~ F*(x,a) is invertible. It follows from (7), (8)
and (1) that

P(x,a) = P(F(x,0),x) = F*(fo(x),a) for x € E, ae <0,°),

Thus, the function F ce» be written in form (3).
(c) = (4). Let ¥ be of the form (3). The function F*
can be extended by applying Lemma 2 to a function
F: fo(E) x (=coy0) e~ f (E) satisfying conditions (a), (b),
{c). We put
F(x,a) for o > 0, x € E
(9) Flx,a) = \
Fx,e) for o« < 0, (x,a) € DPT*’

® Dy denotes the domain of the function F.

- 122 -



On the translation equation 5

It is obvious that ¥ satisfies condition (a). We shall
show that F satisfies condition (b). Since F satisfies
condition (b) we have for o < O:

(10) F(x,o) 1is defined iff x e F(f (E), -of.

If o <0, then -a>0 and F'(x,-a) = F(x, -«) for xef (E)
Consequently, in virtue of (3), (9), we obtain

(11) F(£,(E),-a) = P*(£ (E),~ax) = F(B,-a) = F(E,-a).

It follows from (9), (10), (11) that F satisfies condi-,
tion (b). We must verify yet that F satisfies condition (¢).
We shall consider for this purpose the following cases:

(1)

o 2 0, B 20,
(ii) o < 0, A <0,
(iii) o« 20, B <0, a+p>0,
(iv) a« 20, A<0 a+B <0,
(v) <0, pB20, a«+p 30,
(vi) « <0, B20, a+B< 0,

The verification of condition (c) in the cases (i) and
(1i) is trivial (as F and F satisfy (c)).

Case (iii)., Let F(F(xm,B) be defined. By the definition
of F we have

(12) Flx,x) = F'(x,0) for x e £,(E), o3>0,
In virtue of (3), (9) and (12) we obtain in the case under

consideration

F(F(xya),8) = F(F(x,a),8) = F(F'(£,(x),),8)=

- F(F(2£,(x), ) 6) = Bl (xhcr ) = (2, (x) ) =
= F(x,a+f8) = F(x,a+p).

Case (vi)., Let F(¥(x,a),B) and F(x,a+B8) be defined, i.e.
let F(F(x,x),8) and F(x,a+s) be defined.
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6 J.Tabor

Since the values of the function F belong to fo(E),
we have in virtue of (6)

(13) fo(f‘(x,a)) = F(x,a).

Since F satisfies condition (¢) and F(x,x+p) is defined,
we obtain by applying (3), (9), (12) and (13)

F(F(x,0),8) = F(F(xya),p) = F'(£o(Flx,a) ) ,8) =
= F(F(x,a),5)

f(F(x,a),ﬂ) = Flx,a+p) = Flz,a+s).

Thus, in this case F satisfies condition (¢). The proof of
condition (¢) in the cases (iv) and (v) is similar to the
proof in the cases (iii) and (vi). This statement completes
the proof of Theorem 1,

Remark 1. In virtue of (3) and (12) we have for
xe E,a 20:

F(x,n) = F*(fo(x),a) = ﬁ(fo(x),a> .

Thus, formula (9) may be written in an equivalent form as
foilows

F(fo(x),a) for « 20, X ¢€6BE
(14) ﬁ(\x,a) =
Flx,a) for o < 0, (x,x)e Dg.

Theorem 2. If F: Ex < 0,0)—E can be extend-
ed to a function F: B x (-~ww)e=E satisfying conditions
(a), (b), (c), then this extension is unique, and hence it is
of form (9).

Proof. Let Fi:Ex (~wg)-e-E and F: Ex (=e0,00) o= E
be two extensions of F and let F and F satisfy conditions
(a), (b), (c). We have

(15)  F(x,a) = P(x,x) = F(x,) for xe E, e < 0,9),
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a~

Since F and F satisfy (b), we obtain from (15) for « <O
F(x,o) 1is defined iff x e F(E,-a) = P(E,-a),
F(x,o) 1is defined iff x e F(E,-a) = F(E,-a).

Thus the domains of functions ¥ and ¥ are identical. Let
us consider x € E, & <0 such that F(x,o) and F(x,x) are
defined., Then we have

(16) P(F(x,0), -a) - F(F(x,a) =) = F(x,0) = F(x,0) =

= F(F(x,0),-«) F(ﬁ(x,a), ~00)+

Since the extensions F and F satisfy condition (a), (¢),
F satisfies equation (1).

In virtue of Theorem 1,F satisfies condition (B). Hénce,
we obtain from (16)

(17) P(F(x,a),0) = F(F(x,a),0),

and consequently using (15) and (17) we have (for a <O,
(x,a) € D)

F(x,o) f(ﬁ(x,a},o) F(ﬁ(x,a),o) = F(ﬁ(x,a),o) =

Flx,a).

F(F(x,),0)

It follows from this equality and from (15) that F = F. Since
the function of the form (9) is a suitable extension of F, we
infer that F must be of the form (9). This completes the
proof.

Theorem 3, If F : Ex £ 0,9)— E can be repre~
sented in the form (3), where fo : E—E 1is any function,
F* ¢ fo(E)x £ Q,00) — fo(E) satisfies functional equation (1)
and for arbitrary « e < 0,°), the function fo(E) 3xe— F*(x,a)
is invertible, then the functions fo and F* are determined
uniquely.
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Proof. Let us assume that condition (3) holds. By
applying Lemma 1 to the function F*, we obtain

f (x) = F*(fo(x),o)

o F(x,0).

Thus fo(x) is determined uniquely. It follows from (3) that
FP* is also determined uniquely.,

Theorem 4. 4 function F : E » (~co,)-e~E satisfies
conditions (a), (b), (¢) if and only if F 1is of the form

Pt (x),) for a » 0, xe€E
(18) F(x,a) = .
F(xyo) for o < 0, (x,a) € Dg,

where ths function f  : E—~E satisfies (4), the function
F: £ (E) ~ (=eoye0) o=t (E) satisfies conditions (a), (b),
(c), and for every o >0 the function f_(E) 3 x—PF(x,a) 1is
invertible, If F : E x (~w,c0)®=E can be written in the form
(183, then the functions fo and 7 are determined uniguely.
Proof. Let us assume that F : E x (~e,0) e+ E sa-

tisfies conditions '(a), (t), (¢). Then the function Flgu< o o)
-

satisfies condition {(A), and hernce, by Theorem 1, it is of the
form (3). In consequence, as we have shown in the proof
(C = 4) of Theorem 1 FIEX < 0,0) O©an be extended to a

?

function F of the fomm (9), where the function
F: fo(E)x (=c0,0d) +>f0(E) satisfies conditions (a), (b), (c).
Moreover,from (12) it follows that the function
£ (B) > x ~— F(x,a), a>0, 1is invertible. But formula (18)
is equivalent to formula (9) (see Remark 1). Thus F is of the
form (18) and consequently, in virtue of Theorem 2, P is of
the form (18) (as F = F). '
Now let us assume that the function F is of the form (18),
Then, putting: F'(x,a) := F(x,x) for =x efo(E),oc>0 we
see that the function FIE x < 0,09 Can be written in form (3).
Ve have shown .in the proof (C => A) of Theorem 1 that the
function F of the form (9) satisfies condition (é), (v), (c).
But formula (9) is equivalent to formula (18) (see Remark 1).
Thus the function F satisfies conditions (a), (b), (c).
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The proof of the uniqueness of the representation of the
function P in the form (18) is.similar to that of Theorem 3.
This statement completes the proof.

I% is immediately seen that ii* the above considerations
the gets (-w,00) and <0,0) may be replaced respectively by
an arbiltrary subgroup G of the additive group of real num~
bers and by the set ¢t of non-negative elements of G.
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