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ON THE TRANSLATION EQUATION OCCURRING 
IN THE ITERATION THEORY 

Iterations of invertible modulus or submodulus functions 
for real exponents are defined by the translation equation and 
some initial condition (cf. [1], p. 197; [2], p.272). Satisfy-
ing the translation equation is understobd in the iteration 
theory in a different way than usually. In this paper we in-
vestigate the translation equation in the sense of the itera-
tion theory. In particular, the problem of extending this 
equation is being studied. 

We shall denote by F : X — Y any function defined in X 
and taking its values in Y, by F : X-*»Y any function defined 
-in any subset of X and taking its values in Y. For a given 
function P s X-®~Y the symbol x«—- F(x) will denote the fun-
ction whose value at. x equals P(x). 

Let E be any set and f : E — - E any invertible function. 
Iterations of the function f may be defined for real exponents 
in the following way. 

D e f i n i t i o n 1 (cf. [2], p.272). A one-parameter 
family of functions x — » F(x,a) defined in some subset of E 
is called a set of iterations of the function f, whenever the 
function P: E " ( - 0 0 , 0 0 ) -e— e satisfies the following conditions: 
(a) P(x,a) is defined for arbitrary x & E and arbitrary oc > 0, 
(t>) If a < 0 and x e P(E, -a), then P(x,a) is defined, 
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2 J.Tabor 

(0) If F(P(x,a),y3) and P(x,<x+y8) are defined^ then 
F(P(x,a),/3) = P(x,a+y3), 

U ) P(x,1) = f(x) for x e E. 

It has been proved in [2] p. 276 that condition (b') in 
Definition 1 may be replaced by the following 

(b) P(x,ct) is defined for a < 0 iff x £ P(E,-a). 
We shall prove .a few theorems related to a form of fun-

ctions F satisfying conditions (a), (b), {c). At first, we 
shall quote two lemmas from note [2j. 

L e m m a 1 (cf. [2] , p.272). If P : E * < 0 , ) —- E 
satisfies the functional equation 

(1) p(p(x,a),y3) = F(x,a+yS) for x fc E, <xtft e < 0,°°) 

and for some « 0 > 0 the function x«—P(x,rf0)* is inverti-
ble, then 

F(x,0) = x for x e E. 

L e m m a 2 (cf. [2] p.276). If P : E « < 0,°°) — E 
satisfies functional equation (1) and for some aQ > 0 the 
function x«—P(x,aQ) is invertible, then the function P can 
be extended to a function P : E * (-00,00) -e— e satisfying 
conditions (a)., (b), (c). This extension is unique and for 
a < 0 it is defined by the relation 

(2) P(x,oi) = y iff P(y ,-a.) = x. 

Let F : E » < 0,«>) — E be an arbitrary function. Let 
us consider the following conditions on Ps 

(A) The function P can be extended to a function 
F : E * (-00,00) e satisfying conditions (a), (b), (c). 

(B) Por x 1 t x 2 e E, oc e < O,00) if P(x1fa) = P(x2,oi), 
then P(x^,0) = P(x2,0). 

(C) The function P can Id© represented in the form 

(3) P(x,Qi) = F* (fQ(x) ,cc) tor X t E, oce< 
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On the translation equation 3 

where the function f $ E — E satisfies the functional 
equation 

(4) f
0( fo ( x )) = fo ( x ) f o r x e E' 

the function F* : fQ(E) * < 0,°°) — f 0 ( E ) satisfies functional 
equation (1) and for arbitrary a e < 0,°°) the function 
fQ(E) 3 x •—- F* (x,a) is invertible. 

It is easy to prove (cf. also [1], p.306 Theorem 15.14) 
that the general solution of functional equation (4) can be 
written in the form 

(5) f 0 U ) 
for x e EQ 

g(x) for x e E \EQ 

where <p £ Ec C E and g : E X E 0 " * E 0 is an arbitrary fun-
ction. 

If f s E — E satisfies (4), then we obtain from (5) for 
X £ E 

(6) x e f0(E) ifi fQ(x) = x. 

We shall prove the following theorem. 
T h e o r e m 1. If F = E * < 0,°° ) —1- E satisfies 

the functional equation (1), then conditions (A), (B), (C) are 
equivalent. 

P r o o f . (A) (B). Let F : E* (-»,») E be an 
extension of P and let P satisfy conditions (a), (b), (c). 
Por x e E and oc > 0 we have: P(x,a) <6. F(E,a). Consequently, 
it follows from (b) that P\P(x,oO ,-ot) is defined. Let 
P(x^ ,oi) = P(x2,oi). Then P(x1 ,oc) = P(x2,a). Since P(f(x1 ,a), -a) 
and P(P(x2,a) ,-oc) are defined, we have F(x.j,0) = P(x^,0) = 
= P(f(x1,«),-«) = P(P(x2,a),-a) = P(x2,0) = P(x2,0). 

(B) (C). Let us assume that P : E * < 0,«>) —• E satisfies 
equation (1) and condition (B). We put 

(7) fQ(x) := F(x,0) for x fc E, 
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4 J . Tabor 

(8) F* (x joe) F(x,a) for xtf 0(E), oce<0,«>). 

We obtain from (1) 

f0(f0(X)) = F(F(X,0),0) = F(x,0) = F0(X). 

Thus fQ satisfies (4). For arbitrary x e E, cc e < 0,°°) 
we have 

F(x,a) = F(F(x,a),0) fc fQ(E), 

and hence for arbitrary x e fQ(E), -<x e ^ 0,°°), F*(x,a) 
belongs to fQ(E). For arbitrary x e. f0(E)» a»/ e < 0,«>) 
we have now 

F*(F*(x,cJ,y3) = F(F(x,a),y3) = F(x,a+/3) = F* (x,a+y3). 

We have shown that F* satisfies (1) on the set fQ(E)* < 0,°°), 
We are going to prove that the function f0(E) 3 x —— F*(x,«) 
is invertible. Let x ^ x 2 £ f0(E) and F^x^.a) = F*(x2,a.). 
Then by (8) F(x^,aJ = F(x2,a) and, in consequence of (B), 
F(x^, 0) = F(X 2 , 0 ) . Since x 1, x 2 e f

0(E)> BY applying (6) and 
(7) it follows that x^ = x2. This proves that the function 
fQ(E) 3 x—-F*(x,a) is invertible. It follows from (7), (8) 
and (1) that 

F(x,a) = F(F(x,0),a) = F*(f0(x),a!) for x e E, a e < 0 , ~ ) . 

Thus, the function F CP"1 be written in form (3). 
(C) => (A). Let J be of the form (3). The function F* 

can be extended by applying Lemma 2 to a function 
F : fQ(E) < (-00,00) -e-»- fQ(E) satisfying conditions (a), (b), 
tc). We put 

F(x,a) for a. > 0, x e E 
(9) F(x,a) := 

F(x,a) for a < 0, (x,aj e Dj;*' 
-D= denotes the domain of the function F. F 
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On the translation equation 5 

It is obvious that P satisfies condition (a). We shall 
show that P satisfies condition (b). Since F satisfies 
condition (b) we have for a < 0: 

(10) f(x,a) is defined iff x eP(f0(E), -ot)'. 

If oc < 0, then -<x > 0 and F * ( x , - o c ) = F(x, -a) for xef0(E). 
Consequently, in virtue of (3), (9), we obtain 

(11) P(f0(E),-a) = P*(f0(E),-a) = IKE,-«) = ?(Ef-a). 

It follows from (9), (10), (11) that F satisfies condi-. 
tion (b). We must verify yet that P. satisfies condition (c). 
We shall consider for this purpose the following cases: 
(i) (X » 0, p> > o, 
(ii) oc < 0, fi < o, 
(iiij oc > 0, y3 < 0, a + fi » 0 
(iv) oc > o, fi < 0 a + fi < 0 
(V) oc < o, fl > o , <x+/5 > 0 
(vi) oc < o, fi > o, cc+/3 < 0 

The verification of condition (c) in the cases (i) and 
(11) is trivial (as P and F satisfy (c)). 

Case (lii). Let ?(F(x^,jS) be defined. By the definition 
of F we have 

(12) F(x,a) = P*(x,a) for xef 0(E), oc» 0. 

In virtue of (3), (9) and (12) we obtain in the case under 
consideration 

P(P(x,a),y3)= P(F(x,«),/3) = p(p*(fQ(x) ,a),p)= 

= p(p(f0(x),a),/3; = P(f0(x).,a+y3) = F*(f0(x) ,«+/3) = 

= F(x,c*+/3) = P(x,a+^). 

Case (vi). Let F(F{x,a) and F(x,a+;S) be defined, i.e. 
let P(P(x,a) tji) and f(x,«+/3) be defined. 
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6 J.Tabor 

Since the values of the function F belong to f0(E), 
we have in virtue of (6) 

(13) f0(p(x,a)) = F(x,<x). 

Since F satisfies condition (c) and Fix.a+yS) is defined, 
we obtain by applying (3), (9), (12) and (13) 

p(pU,c*)f/3) = F(P(*,«),£) = F*(f0(F(x,<x) ) , / 3 ) = 

= F*(p(x,a),y3) = P(f(x,oi),y3) = F(x,a+/3) = P(x,a+/3). 

Thus, in this case F satisfies condition (c). The proof of 
condition (c) in the cases (iv) and (v) is similar to the 
proof in the cases (iii) and (vi), This statement completes 
the proof of Theorem 1. 

R e m a r k 1. In virtue of (3) and (12) we have for 
x £ E, ex > Os 

F(x,a) = F*(f0(x),a) = p(f0(x),tf) . 

Thus, formula (9) may be written in an equivalent form as 
follows 

(14) P(x,oc) = • 
' P(fQ(x) ,ot) for a, > 0, x e E 

p(x,a) for a < 0, (x,a) e Dp. 

T h e o r e m 2. If P : E * < O,00) — E can be extend-
ed to a function P : E x (-°°t°o) e satisfying conditions 
(a), (b), (c), then this extension is unique, and hence it is 
of form (9). 

P r o o f . Let F : E * (°,«>) e and P : E x (-«>,«>) E 
be two extensions of P and let P and F satisfy conditions 
(a), (b), (c). We have 

(15) P(x,a) = F(x,oc) = P(x,a) for x e E, <x & < 0,°°). 
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On the translation equation 7 

Since F and ? satisfy (b), we obtain from (15) for oc < 0 

F(xfoi) is defined iff x e f(E,-a) = F(E,-a), 

F(x,c*) is defined iff x é F(E,-ct) = F(E,-a). 

Thus the domains of functions F and ? are identical. Let 
us consider x e E, oí< 0 such that F(x,a) and f(x,oc) are 
defined. Then we have 

(16) f ( H x , 0 £ ) , - a ) = f ( f ( x , o í , ) ,-OÍ) = F(x , 0 ) = F(x , 0 ' ) = 

= F ( F ( X , C C ) , - C C ) = f(Í(x,c¿), -oc). 

Since the extensions F and ? satisfy condition (a), (c), 
F satisfies equation (1). 

In virtue of Theorem 1,F satisfies condition (B). Hénce, 
we obtain from (16) 

and consequently using (15) and (17) we have (fora<0, 
(x,or) £ D̂ ;) 

It follows from this equality and from ( 1 5 ) that F = F. Since 
the function of the form ( 9 ) is a suitable extension of F, we 
infer that F must be of the form (9). This completes the 
proof. 

T h e o r e m 3. If F s E x < 0,°°; — E can be repre-
sented in the form (3), where f Q : E —-E is any function, 
F* i fQ(E)* < 0,°°) —- f0(E) satisfies functional equation (1) 
and for arbitrary ate <0,«>), the function f Q ( E ) 3 x — F*(x,a) 
is invertible, then the functions f Q and F* are determined 
uniquely. 

(17) F(F(x,a),0) = F(f(x,a),0), 

= f(!(x,a),o) = I(x,a). 
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P r o o f . Let us assume that condition (3) holds. By 
applying Lemma 1 to the function F*, we obtain 

f Q ( x ) = F* ( f 0 ( x ) ,0 ) = F(x,0). 

Thus f Q ( x ) is determined uniquely. I t follows from (3) that 
F* is also determined uniquely. 

T h e o r e m 4. A function F : E * (-oo,oo)-e-.-e sat is f ies 
conditions (a ) , (b) , (c) i f and only i f F is of the form 

(18) F(x,a) = 
F ( f 0 ( x ) , a ) for cc > 0, x e E 

F(x,oc) for oc < 0, (x,<x) e Dp, 

where the function f Q : E—~E sat isf ies (4 ) , the function 
F s fQ (E) * (-oo,oo) -e-»- f o (E) sat is f ies conditions (a ) , (b ) , 
(c),.§nd for every a > 0 the function f 0 (E ) a x —-F(x,<*) is 
invertible. I f F : E * (-cotoo) E can be written in the form «. 
(18), then the functions f and F are determined uniquely. 

P r o o f . Let us assume that F : E x (-ootoo) E sa-
t i s f i e s conditions'(a), (b ) , ( c ) . Then the function P | E x < q «>) 

satisf ies condition (A), and hence, by Theorem 1, i t is of the 
form (3) . In consequence, as we have shown in the proof 
IC A) of Theorem 1 p|ex < o <») c a n ^tended to a 

function F of the form (9) , where the function 
F : fQ (E) * ( - «yJ) - °~ f 0 (E ) sat isf ies conditions (a ) , (b ) , ( c ) . 
Moreover,from (12) i t follows that tne function 
f ( E ) 3 x * — - F(x,oi), <x>0, is invertible. But formula (18) 
is equivalent to formula (9) (see Remark 1). Thus F is of the 
form (18) and consequently, in virtue of Theorem 2, F is of 
the form (18) (as F = F). 

Now let us assume that the function F is of the form (18). 
Then, putting: F*(x,a) := F(x,cx) for x e f Q ( E ) , a > 0 we 
see that the function Fig „ < 0 ®o) c a n be written in form (3 ) . 
Vie have shownin the proof (C =>A ) of Theorem 1 that the 
function F of the form (9) sat is f ies condition (a ) , (b ) , ( c ) . 
3ut formula (9) is equivalent to formula (18) (see Remark 1). 
Thus the function F satisf ies conditions (a ) , (b ) , ( c ) . 
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On the translation equation 9 

The proof of the uniqueness of the representation of the 
function F in the form (18) is similar to that of Theorem 3. 
This statement completes the proof. 

It is immediately seen that irt the above considerations 
the sets (-«>,oo) and <0,«>) may be replaced respectively by 
an arbitrary subgroup G of the additive group of real num-
bers and by the set G+ of non-negative elements of G. 
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