

Jerzy Chmaj

NON-LINEAR BOUNDARY VALUE PROBLEM OF STATICS IN THE THEORY OF ELASTICITY FOR MULTIPLY CONNECTED DOMAIN

1. Statement of the problem

Let E_3 be the three-dimensional Euclidean space. Suppose that $D_0 \subset E_3$ is a domain bounded by a surface S_0 . Further, suppose that inside D_0 there are m disjoint surfaces S_1, S_2, \dots, S_m , each of them being a boundary of a simply connected domain D_i ($i = 1, 2, \dots, m$), where $D_j \cap D_k = \emptyset$ for $j \neq k$ ($j, k = 1, 2, \dots, m$). Denote $\bar{D}_k = D_k \cup S_k$ ($k = 0, 1, \dots, m$), $D^+ = D_0 \setminus \bigcup_{k=0}^m \bar{D}_k$, $S = \bigcup_{k=0}^m S_k$.

We shall consider the following problem: Find a vector $u(x) = [u_1(x), u_2(x), u_3(x)]$ satisfying in D^+ the system

$$(1) \quad A \left(\frac{\partial}{\partial x} \right) u(x) = -\Phi(x, u(x))$$

and the boundary conditions

$$(2) \quad \left[T \left(\frac{\partial}{\partial z}, n \right) u(z) \right]^+ + \delta(z) u^+(z) = F^k(z, u(z))$$

for $z \in S_k$ ($k = 0, 1, \dots, r$; $0 \leq r < m$),

$$(3) \quad u^+(z) = f^k(z)$$

for $z \in S_k$ ($k = r + 1, \dots, m$).

$A\left(\frac{\partial}{\partial x}\right)$, $T\left(\frac{\partial}{\partial z}\right)$, n are matrix operators of the theory of elasticity: the first is the Kelvin matrix, the second - the stress operator. The elements of these matrices are given by formulae

$$(4) \quad A_{ij}\left(\frac{\partial}{\partial x}\right) = \mu \delta_{ij} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} \right) + (\lambda + \mu) \frac{\partial^2}{\partial x_i \partial x_j},$$

$$(5) \quad T_{ij}\left(\frac{\partial}{\partial z}\right) = \lambda n_i \frac{\partial}{\partial z_j} + \mu n_j \frac{\partial}{\partial z_i} + \mu \delta_{ij} \frac{\partial}{\partial n},$$

where $i, j = 1, 2, 3$ and λ, μ are Lame constants, δ_{ij} - the Kronecker symbol, $n = [n_1, n_2, n_3]$ - a unit vector normal in a considered point, $\sigma(z)$ is a 3×3 - matrix with elements $\sigma_{ij}(z)$.

$\phi(x, u)$, $F^k(z, u)$, $f^k(z)$ are vectors with coordinates $\phi_j(x, u_1, u_2, u_3)$, $F_j^k(z, u_1, u_2, u_3)$, $f_j^k(z)$, $j = 1, 2, 3$, respectively.

We suppose that

I. The surfaces S_k ($k = 0, 1, \dots, m$) satisfy the Lapunov conditions. One of these conditions concerning the measure of the angle between the normals to S_k in the points y, z has the form

$$(6) \quad (n_y, n_z) \leq C |yz|^\alpha,$$

where $|yz|$ is the Euclidean distance between y and z , C and α are positive constants, $0 < \alpha \leq 1$.

II. $\phi_j(x, u_1, u_2, u_3)$ are real functions defined for $x \in D^+$, $|u_s| \leq R$ ($s = 1, 2, 3$) satisfying the Hölder-Lipschitz conditions

$$(7) \quad |\phi_j(x, u_1, u_2, u_3) - \phi_j(\tilde{x}, \tilde{u}_1, \tilde{u}_2, \tilde{u}_3)| \leq k_\phi |x\tilde{x}|^h + k_\phi \sum_{s=1}^3 |u_s - \tilde{u}_s|,$$

where $k_\phi > 0$, $k_\phi > 0$, $0 < h < \alpha \leq 1$.

III. $f_j^k(z)$ are real functions defined for $z \in S_k$ ($k = r+1, \dots, m$) satisfying the Hölder conditions

$$(8) \quad |f_j^k(z) - f_j^k(\tilde{z})| \leq K_f |z\tilde{z}|^h,$$

where $K_f > 0$.

IV. $F_j^k(z, u_1, u_2, u_3)$ are real functions defined for $z \in S_k$, $|u_s| \leq R$ ($s = 1, 2, 3$; $k = 0, 1, \dots, r$) satisfying the Hölder-Lipschitz conditions

$$(9) \quad |F_j^k(z, u_1, u_2, u_3) - F_j^k(\tilde{z}, \tilde{u}_1, \tilde{u}_2, \tilde{u}_3)| \leq K_F \left(|z\tilde{z}|^h + \sum_{s=1}^3 |u_s - \tilde{u}_s| \right),$$

where $K_F > 0$. Moreover, the functions F_j^k are differentiable with respect to u_s ($s = 1, 2, 3$) in their domains and their derivatives satisfy the Hölder-Lipschitz conditions

$$(10) \quad \left| \frac{\partial}{\partial u_1} F_j^k(z, u_1, u_2, u_3) - \frac{\partial}{\partial u_1} F_j^k(\tilde{z}, \tilde{u}_1, \tilde{u}_2, \tilde{u}_3) \right| \leq \tilde{K}_F \left(|z\tilde{z}|^h + \sum_{s=1}^3 |u_s - \tilde{u}_s| \right). \quad (l = 1, 2, 3),$$

where $\tilde{K}_F > 0$.

V. $\delta_{ij}(z)$ are real functions defined on the surfaces S_k ($k = 0, 1, \dots, r$) satisfying the Hölder conditions

$$(11) \quad |\delta_{ij}(z) - \delta_{ij}(\tilde{z})| \leq K_\delta |z\tilde{z}|^h,$$

where $K_\delta > 0$. Moreover, we suppose that the quadratic form $\sum \delta_{ij}(z) \xi_i \xi_j$ is positive definite.

2. The Green tensor

Let S_{m+1} be the closed Lapunov surface which is the boundary of the domain D_{m+1} . Suppose that all surfaces S_k ($k = 0, 1, \dots, m$) lie inside D_{m+1} . Let $D_{m+1}^{(r)} = D_{m+1} \setminus \bigcup_{k=r+1}^m \bar{D}_k$.

Consider the problem

$$(12) \quad A \left(\frac{\partial}{\partial x} \right) u(x) = 0, \quad x \in D_{m+1}^{(r)}$$

$$(13) \quad u^k(y) = f_j^k(y), \quad y \in S_k, \quad k = r+1, \dots, m+1$$

In § 9.4 of the monograph [1] the existence of the Green tensor $G(x,y; D_{m+1}^{(r)})$ for the problem (12), (13) has been proved and its properties have been investigated. In § 9.6 the tensor $G(x,y; D_{m+1}^{(r)})$ has been used to prove the existence and uniqueness of the solution of the problem (1), (2), (3) in the linear case i.e., when the vectors ϕ and F^k are independent of the vector u .

In the present paper we shall use the tensor $G(x,y; D_{m+1}^{(r)})$ to solve the problem (1), (2), (3). For brevity we shall write $G(x,y)$ instead of $G(x,y; D_{m+1}^{(r)})$. In the sequel we denote the transpose of a matrix by an asterisk, e.g. $G^*(x,y)$ denotes the transpose of $G(x,y)$. One can prove that $G(x,y) = G^*(y,x)$. We shall use the notation

$$(14) \quad \tilde{G}(x,y) = T\left(\frac{\partial}{\partial y}, n\right) G^*(x,y).$$

3. The integral equations of the problem

We seek a solution of the problem (1), (2), (3) in the form

$$(15) \quad u(x) = -\frac{1}{2} \sum_{k=r+1}^m \int_{S_k} G^*(x,y) f^k(y) dy + \sum_{k=0}^r \int_{S_k} G(x,y) \varphi(y) dy + \\ + \frac{1}{2} \int_{D^+} G(x,y) \phi(y, u(y)) dy, \quad x \in D^+.$$

Suppose that the coordinates of the vector φ satisfy the Hölder conditions on the surfaces S_k ($k = 0, 1, \dots, r$). Taking into account the properties of the tensor $G(x,y)$ and substituting (15) into the boundary condition (2), we obtain the following integral equation for the vector φ

$$\begin{aligned}
 (16) \quad \varphi(z) + \sum_{k=0}^r \int_{S_k} [\tilde{G}(z,y) + \sigma(z)G(z,y)] \varphi(y) dy = \\
 = F^k \left[z, -\frac{1}{2} \sum_{l=r+1}^m \int_{S_l} \tilde{G}^*(z,y) f^l(y) dy + \sum_{l=0}^r \int_{S_l} G(z,y) \varphi(y) dy + \right. \\
 \left. + \frac{1}{2} \int_{D^+} G(z,y) \phi(y, u(y)) dy \right] + \\
 + \frac{1}{2} \left[T\left(\frac{\partial}{\partial z}, n\right) + \sigma(z) \right] \left[\sum_{l=r+1}^m \int_{S_l} \tilde{G}^*(z,y) f^l(y) dy - \right. \\
 \left. - \int_{D^+} G(z,y) \phi(y, u(y)) dy \right],
 \end{aligned}$$

where $z \in \bigcup_{k=0}^r S_k$. Thus we have arrived at the system (15), (16) of strongly singular non-linear integral equations with unknown vectors u and φ . We shall prove the existence and uniqueness of a solution of the system (15), (16) using the Banach fixed-point theorem ([4], p. 37).

4. The functional space

Let X be the set of all systems of real functions

$$U = [u_1(x), u_2(x), u_3(x), \varphi_1(z), \varphi_2(z), \varphi_3(z)]$$

defined and continuous for $x \in D^+ \cup S$, $z \in \bigcup_{k=0}^r S_k$. Moreover, we suppose that the functions $u_j(x)$, $\varphi_j(z)$ ($j = 1, 2, 3$) satisfy the conditions

$$(17) \quad |u_j(x)| \leq R, \quad |\varphi_j(z)| \leq \varrho, \quad |\varphi_j(z) - \varphi_j(\tilde{z})| \leq K_\varphi |z\tilde{z}|^{h_\varphi},$$

where ϱ and K_φ are positive constants which may be chosen arbitrarily and the exponent h_φ is fixed and satisfies the inequality $0 < h_\varphi < h$.

Let $U_i = [u_1^i, u_2^i, u_3^i, \varphi_1^i, \varphi_2^i, \varphi_3^i]$, $i = 1, 2$. In the set X we define the distance by the formula

$$(18) \quad d(U_1, U_2) = \max_j \sup_x |u_j^1(x) - u_j^2(x)| + \max_j \sup_z |\varphi_j^1(z) - \varphi_j^2(z)| + \\ + \max_j H \left[|\varphi_j^1(z) - \varphi_j^2(z)| \right], \quad (j = 1, 2, 3),$$

where

$$(19) \quad H[\varphi_j(z)] = \sup_{z, \tilde{z}} \frac{|\varphi_j(z) - \varphi_j(\tilde{z})|}{|z - \tilde{z}|^h \varphi}.$$

The set X with the distance (18) is a complete metric space. In the space X we introduce the operator A mapping the points $U = [u_1, u_2, u_3, \varphi_1, \varphi_2, \varphi_3]$ of this space into the points $V = [v_1, v_2, v_3, \psi_1, \psi_2, \psi_3]$ according to the formulae

$$(20) \quad v(x) = -\frac{1}{2} \sum_{k=r+1}^m \int_{S_k} \tilde{G}^*(x, y) f^k(y) dy + \sum_{k=0}^r \int_{S_k} G(x, y) \psi(y) dy + \\ + \frac{1}{2} \int_{D^+} G(x, y) \tilde{\varphi}(y, u(y)) dy,$$

$$(21) \quad \psi(z) + \sum_{k=0}^r \int_{S_k} [\tilde{G}(z, y) + \sigma(z) G(z, y)] \psi(y) dy = g(z),$$

where

$$(22) \quad g(z) = F^k(z, \bar{u}(z)) + \frac{1}{2} \left[T \left(\frac{\partial}{\partial z}, n \right) + \sigma(z) \right] \left[\sum_{l=r+1}^m \int_{S_l} \tilde{G}^*(z, y) f^l(y) dy - \right. \\ \left. - \int_{D^+} G(z, y) \tilde{\varphi}(y, u(y)) dy \right],$$

$$(23) \quad \bar{u}(z) = -\frac{1}{2} \sum_{l=r+1}^m \int_{S_1} \tilde{G}^*(z, y) f^l(y) dy + \sum_{l=0}^r \int_{S_1} g(z, y) \varphi(y) dy + \\ + \frac{1}{2} \int_{D^+} G(z, y) \phi(y, u(y)) dy.$$

5. Properties of the operator \mathcal{A}

Lemma 1. If the constant K_p and the least upper bounds of functions $|\phi_j(x, u_1, u_2, u_3)|$ and $|F_j^k(z, u_1, u_2, u_3)|$ are sufficiently small and if the constants R, ϱ, K_φ are sufficiently large, then the values of the operator \mathcal{A} belong to the space X .

Proof. Let us consider the integral equation (21). Equations of this type have been investigated by V.D.Kupradze (e.g. [1], pp. 170-201). From his results it follows that if the vector $g(z)$ satisfies the Hölder condition, then the equation (21) has a unique solution which is given by the formula

$$(24) \quad \psi(z) = B(z)g(z) + \sum_{k=0}^r \int_{S_k} N(z, y)g(y)dy,$$

where $B(z)$ is a matrix whose properties have been investigated in [2], $N(z, y)$ is a matrix resolvent of the equation (21).

In order to use formula (24) we must show that the vector $g(z)$ satisfies the Hölder condition. Let $\tilde{z}, z \in \bigcup_{k=0}^r S_k$. We have

$$(25) \quad g(z) - g(\tilde{z}) = [F^k(z, \bar{u}(z)) - F^k(\tilde{z}, \bar{u}(\tilde{z}))] + \\ + \frac{1}{2} \sum_{l=r+1}^m \int_{S_1} [T\left(\frac{\partial}{\partial z}, n\right) \tilde{G}^*(z, y) - T\left(\frac{\partial}{\partial \tilde{z}}, n\right) \tilde{G}^*(\tilde{z}, y)] f^l(y) dy + \\ + \frac{1}{2} [\delta(z) - \delta(\tilde{z})] \sum_{l=r+1}^m \int_{S_1} \tilde{G}^*(z, y) f^l(y) dy + \\ + \frac{1}{2} \delta(\tilde{z}) \sum_{l=r+1}^m \int_{S_1} [\tilde{G}^*(z, y) - \tilde{G}^*(\tilde{z}, y)] f^l(y) dy + \\ + \frac{1}{2} \int_{D^+} [T\left(\frac{\partial}{\partial \tilde{z}}, n\right) G(\tilde{z}, y) - T\left(\frac{\partial}{\partial z}, n\right) G(z, y)] \phi(y, u(y)) dy +$$

$$+ \frac{1}{2} \left[\delta(\tilde{z}) - \delta(z) \right] \int_{D^+} G(\tilde{z}, y) \phi(y, u(y)) dy + \\ + \frac{1}{2} \delta(z) \int_{D^+} \left[G(\tilde{z}, y) - G(z, y) \right] \phi(y, u(y)) dy.$$

We introduce the following notations

$$M_F = \max_{j,k} \sup_{z \in S_k} |f_j^k(z)| \quad (k = r+1, \dots, m; j = 1, 2, 3)$$

$$M_\phi = \max_j \sup_{\substack{x \in D^+ \\ |u_s| \leq R}} |\phi_j(x, u_1, u_2, u_3)| \quad (j, s = 1, 2, 3)$$

$$M_\delta = \max_{i,j} \sup_{z \in S_k} |\delta_{ij}(z)| \quad (k = 0, 1, \dots, r; i, j = 1, 2, 3).$$

Making use of the assumptions and taking into account the well-known properties of surface integrals we obtain from (25) the following inequalities

$$(26) \quad |g_j(z) - g_j(\tilde{z})| \leq [M_F(a_1 + a_2 K_\delta + a_3 M_\delta + a_4 K_F) + \\ + M_\phi(a_5 + a_6 K_\delta + a_7 M_\delta + a_8 K_F) + K_F(a_9 + a_{10} \varrho)] |z\tilde{z}|^h, \quad (j=1,2,3),$$

where the constants a_1, \dots, a_{10} depend on Lame constants. For brevity we write the inequalities (26) in the form

$$(27) \quad |g_j(z) - g_j(\tilde{z})| \leq K_g |z\tilde{z}|^h, \quad (j = 1, 2, 3).$$

Thus the vector $g(z)$ satisfies the Hölder condition.

Analogously as in [2], we introduce the following notations

$$M_B = \max_{i,j} \sup_{z \in S_k} |B_{ij}(z)| \quad (k = 0, 1, \dots, r; i, j = 1, 2, 3)$$

$$M_N = \max_{i,j} \sup_{z \in S_k} \left| \int_{S_k} N_{ij}(z,y) dy \right| \quad (k = 0, 1, \dots, r; i, j = 1, 2, 3).$$

From formula (24) (see [3] formula (52)) we obtain the estimations

$$(28) \quad |\psi_j(z)| \leq (M_B + M_N) M_g + b_4 K_g, \quad (j = 1, 2, 3),$$

where $M_g = M_F + b_1 M_f + b_2 M_f M_\phi + b_3 M_\phi$ and b_1, b_2, b_3, b_4 depend on Lamé constants. We denote $M_\psi = (M_B + M_N) M_g + b_4 K_g$.

From results of V.D.Kupradze it follows that the vector $\psi(z)$ satisfies the Hölder condition. Namely, taking into account the inequalities (27) and (28), as well as the estimations (36) and (38) given in [2], we obtain

$$(29) \quad |\psi_j(z) - \psi_j(\tilde{z})| \leq (b_5 C M_g + M_B K_g + b_6 K_g) |z - \tilde{z}|^{h_\varphi} \quad (j = 1, 2, 3),$$

where b_5, b_6 depend on Lamé constants.

Next we write the inequalities (29) in the following form

$$(30) \quad |\psi_j(z) - \psi_j(\tilde{z})| \leq K_\psi |z - \tilde{z}|^{h_\varphi}, \quad (j = 1, 2, 3).$$

From the formula (20) defining the vector $v(x)$ and from the inequality (28) we obtain

$$(31) \quad |v_j(x)| \leq M_v, \quad (j = 1, 2, 3),$$

where $M_v = b_7 M_f + b_8 M_\psi + b_9 M_\phi$ and b_7, b_8, b_9 depend on Lamé constants.

From (28), (30), (31) and the definitions (20), (21) of the operator \mathcal{A} we deduce that the sufficient condition for $\mathcal{A}(U) \in X$ is the system of inequalities

$$(32) \quad M_v \leq R, \quad M_\psi \leq \rho, \quad K_\psi \leq K_\varphi.$$

From assumptions concerning the constants M_ϕ, M_F, K_F it follows that there exists $\rho = \rho_0$ for which $M_\psi \leq \rho$. It is easy to see that if ρ is fixed then the inequalities $M_v \leq R, K_\psi \leq K_\varphi$ are satisfied independently of Lamé constants.

L e m m a 2. If the constants k_ϕ, K_F, \tilde{K}_F are sufficiently small and the inequalities (32) are satisfied, then the operator \mathcal{A} is contractive, i.e. there exists a positive constant $\alpha < 1$ such that for every points U_1, U_2 of the space X we have

$$(33) \quad d(A(U_1), A(U_2)) \leq \alpha d(U_1, U_2).$$

P r o o f. We denote $A(U_i) = V_i$, ($i = 1, 2$), where

$$V_i = [v_1^i, v_2^i, v_3^i, \psi_1^i, \psi_2^i, \psi_3^i].$$

To prove inequality (33) we consider the expressions

$$|\psi_j^1(z) - \psi_j^2(z)|, \quad |v_j^1(x) - v_j^2(x)|, \quad H[\psi_j^1(z) - \psi_j^2(z)].$$

The vectors $\psi^1(z), \psi^2(z)$ satisfy the integral equation (21). We substitute them into (21) and subtract, then we get an integral equation which is satisfied by the difference $\psi^1(z) - \psi^2(z)$. The right-hand side of this equation is

$$(34) \quad \bar{g}(z) = F^k(z, \bar{u}^1(z)) - F^k(z, \bar{u}^2(z)) +$$

$$- \frac{1}{2} \int_{D^+} \left[T\left(\frac{\partial}{\partial z}, n\right) + \delta(z) \right] G(z, y) \left[\bar{\phi}(y, u^1(y)) + \right.$$

$$\left. - \bar{\phi}(y, u^2(y)) \right] dy,$$

where

$$(35) \quad \bar{u}^i(z) = - \frac{1}{2} \sum_{l=r+1}^m \int_{S_1} \tilde{G}^*(z, y) f^l(y) dy + \sum_{l=0}^r \int_{S_1} G(z, y) \varphi^l(y) dy +$$

$$+ \frac{1}{2} \int_{D^+} G(z, y) \bar{\phi}(y, u^i(y)) dy, \quad (i = 1, 2).$$

The vector $\bar{g}(z)$ has a similar form to that defined in [3] (formula (67)). Hence by (77) of [3] we can write the following inequalities

$$(36) \quad |\bar{g}_j(z) - \bar{g}_j(\tilde{z})| \leq$$

$$\leq \left\{ k_\varphi [c_1 + c_2 K_F + c_3 M_\varphi + c_4 K_F + c_5 \tilde{K}_F (e_1 + e_2 M_\varphi + e_3 \theta_0) \max_s \sup_x |u_s^1(x) - u_s^2(x)| + \right.$$

$$+ [c_6 K_F + c_7 \tilde{K}_F (e_1 + e_2 M_\varphi + e_3 \theta_0)] \max_s \sup_z |\varphi_s^1(z) - \varphi_s^2(z)| \} |z\tilde{z}|^{h\varphi},$$

$$(j, s = 1, 2, 3),$$

where $c_1, \dots, c_7, e_1, e_2, e_3$ depend on Lamé constants. For brevity we write (36) in the form

$$(37) \quad |\bar{g}_j(z) - \bar{g}_j(\tilde{z})| \leq [k_\varphi M_1 \max_s \sup |u_s^1 - u_s^2| +$$

$$+ (c_6 K_F + \tilde{K}_F M_2) \max_s \sup_s |\varphi_s^1 - \varphi_s^2|] |z\tilde{z}|^{h\varphi}, \quad (j, s = 1, 2, 3).$$

The vector $\bar{g}(z)$ satisfies the Hölder condition, thus the formula (24) with $\psi^1(z) - \psi^2(z)$ instead of $\psi(z)$ and $\bar{g}(z)$ instead of $g(z)$ holds.

Now we may give estimations for $|\psi_j^1(z) - \psi_j^2(z)|$ similar to (81) in [3]

$$(38) \quad |\psi_j^1(z) - \psi_j^2(z)| \leq k_\varphi [(p_1 + p_2 K_F)(M_B + M_N) + p_3 M_1] \max_s \sup_x |u_s^1(x) - u_s^2(x)| +$$

$$+ [p_4 K_F (M_B + M_N) + p_5 (c_6 K_F + \tilde{K}_F M_2)] \max_s \sup_z |\varphi_s^1(z) - \varphi_s^2(z)|, \quad (j, s = 1, 2, 3),$$

where p_1, \dots, p_5 depend on Lamé constants.

Similarly, using the estimations (83), (89) from [3] we obtain

$$(39) \quad |v_j^1(x) - v_j^2(x)| \leq$$

$$\leq k_\varphi [p_6 + (p_1 + p_2 K_F)(M_B + M_N) + p_3 M_1] \max_s \sup_x |u_s^1(x) - u_s^2(x)| +$$

$$+ p_7 [p_4 K_F (M_B + M_N) + p_5 (c_6 K_F + \tilde{K}_F M_2)] \max_s \sup_z |\varphi_s^1(z) - \varphi_s^2(z)|, \quad (j, s = 1, 2, 3),$$

$$(40) \quad H \left[\psi_j^1(z) - \psi_j^2(z) \right] \leq$$

$$\leq K_{\phi} \left[(p_1 + p_2 K_F) (p_8 C + p_9) + p_{10} M_B M_1 \right] \max_s \sup_x |u_s^1(x) - u_s^2(x)| +$$

$$+ \left[K_F (p_{11} C + p_{12}) + p_{13} M_B (c_6 K_F + \tilde{K}_F M_2) \right] \max_s \sup_z | \varphi_s^1(z) - \varphi_s^2(z) |, \quad (j, s = 1, 2, 3),$$

where the constants p_6, \dots, p_{13} depend on Lamé constants.

We put

$$(41) \quad \alpha = \max \left\{ k_{\phi} \left[p_6 + (p_1 + p_2 K_F) (2M_B + 2M_N + p_8 C + p_9) + M_1 (2p_3 + p_{10} M_B) \right], \right.$$

$$\left. K_F \left[p_4 (M_B + M_N) (1 + p_7) + p_{11} C + p_{12} + c_6 (2p_5 + p_{13} M_B) \right] + \tilde{K}_F M_2 (2p_5 + p_{13} M_B) \right\}.$$

Suppose that the constants k_{ϕ} , K_F , \tilde{K}_F are such small that $\alpha < 1$. Then from inequalities (38), (39), (40) and from definition (18) we infer that $d(V_1, V_2) \leq \alpha \cdot d(U_1, U_2)$. This proves the thesis of the Lemma 2.

6. Solution of the problem

Theorem. If the assumption I-V are satisfied and the constants M_{ϕ} , M_F , k_{ϕ} , K_F , \tilde{K}_F are sufficiently small, then there exists a unique regular vector of the form (15) satisfying in D^+ the equation (1) and boundary conditions: (2) on the surfaces S_k ($k = 0, 1, \dots, r$) and (3) on the surfaces S_k ($k = r+1, \dots, n$).

Proof. From Banach's fixed-point theorem it follows that if the hypotheses of Lemmas 1 and 2 hold, then the system of integral equations (15), (16) has in the space X a unique solution which we denote by $u^*(x)$, $\varphi^*(x)$. From the representation of the solution in the form (15) and from the properties of Green tensor it follows that $u^*(x)$ satisfies the boundary conditions (2), (3) on suitable surfaces.

Moreover, from the properties of volume integrals (Theorem 2 from [3]) and from the assumptions about the vector $\phi(x, u(x))$ it follows that there exist second derivatives of the vector $u^*(x)$ and this vector satisfies equation (1) in D^+ .

REFERENCES

- [1] В. Д. Купрадзе, Т. Т. Гегелиа, М. О. Башелейшили, Т. В. Бурчуладзе: Трехмерные задачи математической теории упругости. Тбилиси 1968.
- [2] J. Chmaj: One some non-linear system of singular integral equations in the theory of elasticity, Demonstratio Math. 1 (1969) 193-207.
- [3] J. Chmaj: Investigation of the non-linear boundary value problem in the theory of elasticity, Demonstratio Math. 3 (1971) 29-53.
- [4] L.A. Lusternik, W.L. Sobolew: Elementy analizy funkcjonalnej. Warszawa 1959.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received April 24, 1975.

