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NON-LINEAR BOUNDARY VALUE PROBLEM OF STATICS IN THE 
THEORY OF ELASTICITY FOR MULTIPLY CONNECTED DOMAIN 

1. Statement of the problem 
Let "Ej be the three-d imens ional Euclidean space. Suppose 

t h a t Dq c E ĵ i s a domain bounded by a s u r f a c e SQ . Fu r the r , 
suppose t h a t i n s ide DQ ther'e a r e m d i s j o i n t s u r f a c e s 
S.j, S 2 , . . . , Sm , each of them being a boundary of a simply 
oonnected domain D^ ( i = 1 , 2 , . . . , m ) , where D̂  D D̂ , = 0 f o r 
j i k ( j , k = 1,2 m). Denote D. = Dv.U S,,. (k = 0 , 1 , . . . , m ) , 
+ * - m 

D+ = D 0 \ U K> S - U ¡ V 
° K k = 0 

We s h a l l cons ider the fo l lowing problem: Find a veo tor 
u(x) = [u . j (x) , u 2 ( x ) , u^(x) ] s a t i s f y i n g in D+ the system 

(1) A ( ^ - ) a ( x ) « - $ . ( x f u ( x ) ) 

and the boundary cond i t i ons 

( 2 ) [ T ( A \ n ) u ( z J ] + + f f ( z ) u + ( z ) = F k ( z ,u (z ) ) 

f o r z e Sk (k = 0 , 1 , . . , , r ; 0 « r < m), 

(3) u + (z ) = f k ( z j 

f o r z £ Sk (k = r + 1 , . . . , m ) . 
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2 J. China j 

^ (ihc)' T (l&z' n ) a r e operators of the theory of 
elasticity: the first is the Kelvin matrix, the second - the 
stress operator. The elements of these matrices are given by 
formulae 

<«> (tx) ' ̂  + ̂  + * 1 * + 

") -"1 -wi + r'lj-fc;-

where i,j = 1,2,3 and A , ¡i are Lame constants, cf̂ j - the 
Kronecker symbol, n = [n^n^n^] - a unit vector normal in 
a considered point, G"(z) is a 3\x 3 - matrix with elements 
ffj j (z). ** V 1c § (xfu are vectors with coordinates 

(x,u1,u2,u3), F^ (z,u1,u2,u3;, j = 1.2,3, respecti-
vely. 

We suppose that 
I. The surfaces S^ (k = 0,1,...,m.) satisfy the Lapunov 

conditions. One of these conditions concerning the measure of 
the angle "between the normals to S^ in the points y,z has the 
form 

(6) ^Qy'az) 4 0 lyz!°< » 

where |yz| is the Euclidean distance between y and z, C and 
a are positive constants, 0 < <x 4 1. 

II. (x,u1Pu2»u^) are real functions de.fined for x e D+, 
|us| 4 R (s = 1,2,3) satisfying the Holder-Lipschitz condi-
tions 

3 
(7) | (x,uvu2,u3) - ̂  (x,u1,u2,u3)| 6 KQ| xx|^ + k^ Z I I Us - us|. 

where Kf > 0, k, > 0, 0 < h < a < 1. 
III. are real functions defined for z e Sk (k = 

= r+1,...,m) satisfying the Holder conditions 

- 106 -



Non-linear boundary problem 3 

(8) |f* (z) - fj Cz;| 4 Kf |zz|h , 

where Kf > 0. 
IV. (z,u1»Ug.u^) are real functions defined for z e S k, 

|u | 4 R (s = 1,2,3} k = 0,1,...,r) satisfying the Holder-
-Lipschitz conditions 

(9) | Fj {Z,MvM2,U3) - F* (z,uvu2,u3)| < |zz|h + ¿ j j ug - uj) , 

k where Kp > 0. Moreover, the functions P.. are differentiable 
with respect to u_ (s = 1,2,3) in their domains and their s 
derivatives satisfy the Holder-Lipschitz conditions 

( 1 0 ) ¡Tiq Fj (2,u1,U2,U3) - T - P* (ZTAVA2TAY 

4 K p ( |zz|h + ¿ \ a g - S s|). (1 = 1,2,3), 

where Kp > 0. 
V. ff^ (z) are real functions defined on the surfaces Sk 

(k = 0,1,...,r) satisfying the Holder conditions 

(11) (z) - (z)| 4 Kff |zz|h, 

where Kg- > 0. Moreover, we suppose that the quadratic form 
^ ^ is positive definite. 

2. The Green tensor 
Let S m + 1 be the closed Lapunov surface which is the bounda-

ry of the domain Dm+-j« Suppose that all surfaces (k = 
= 0,1,....m) lie inside D a + r Let D ^ j = D m + 1 \ ^ Dfc. 
Consider the problem 

(13) u+(y) = f^iy), y £ Sjj, k = r+1,...,m+1 
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4 J.Chmaj 

In § 9.4 of the monograph [1] the existence of the Green 
tensor G(x,y; for the problem (12), (13) has been pro-
ved and its propertiGs have been investigated. In § 9.6 the 
tensor G^x,y; has been used to prove the existence and 
uniqueness of the solution of the problem (1), (2), (3) in 
the linear case i.e., when the vectors $ and P^ are indepen-
dent of the vector u. 

(r) 
In the present paper we shall use the tensor G(x,yj 

to solve the problem (1), (2), (3). For brevity we shall write 
G(x,y) instead of G^x,y; D^'])• In the sequel we denote the 
transpose of a matrix by an asterisk, e.g. G*(x,y) denotes the 
transpose of G(x,y). One can prove that G(x,y) = G*(y,x). We 
shall use the notation 

(14) G(x,y) s n) G*(x,y). 

3. The integral equations of the problem 
We seek a solution of the problem (1), (2), (3) in the 

form 

(15) u(x) = - \ i / G*(x,y)£k(y)dy + / G(x,y) f (y)dy + 
k=r+1 Sfc k=0 Sk 

+ 1 J G(x,y)# (y,u(y))dy, x £ D+. 

D+ 

Suppose that the coordinates of the vector f satisfy the 
H61der conditions on the surfaces Sk (k = 0,1,...,r). Taking 
into account the properties of the tensor G(x,y) and substi-
tuting (15) into the boundary condition (2), we obtain the 
following integral equation for the vector <p 
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Non-linear boundary problem 5 

(16) f ( z ) + ¿ f [§ (z,y) (z)G(z,y)J ?>(y)dy = 
k=0 J 

Sk 

= F k [ z , - \ Z Z f G * ( z , y ) t 1 ( y ) i y + ¿ f G(z,y)?(y)dy+ 
L l=r+1 Í 1=0 Í 

S1 S1 

' l=r+1 Sx 

* i f ( y . " ( y ) ) d y ] 
D+ 

+ n ) + f f ( z ) ] [ ¿ . Z G'(z,y)f1(y)dy -

- f G(z,y) $(y,u(y)) dy], 

r 
where z e S^. Thus we have arrived at the system (15) , 

(16) of strongly singular non-linear integral equations with 
unknown vectors u and cp. We shall prove the existence and 
uniqueness of a solution of the system (15) , (16) using the 
Banach f ixed-point theorem ( [ 4 ] , p. 37). 

4. The 'functional space 
Let X be the set of a l l systems of real functions 

U ^ u ^ x ) , U 2 ( X ) , U - J ( X ) , z ) , j «2 (z ) , z ) ] 

r 
defined and continuous for x e D+ u S, z e JJ S,_. Moreover, k=0 K 

we suppose that the functions u^(x) , ^ ( z ) ( j = 1,2,3) sat is fy 
the conditions 

(17) 1-UjÍJcJl Rr I ^ U ) ! 4 ? , | ^ ( z ) - flj(Z) I * K f |zz|hP, 

where g and K,, are posit ive constants which may be chosen 
arbitrarily and the exponent h^ is f ixed and sa t i s f i e s the 
inequality a hp < h. 
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J.Chmaj 

Let Uj_ a X a 1 ' a2* a V A * 1 = 1 , 2 # Ifl s e t X 

we define the distance by the formula 

+ max 

(18) d(U1tU2) = max sup |uj(x) - u*(x)| + max sup - [ 
j x j z 

ax H Jj^z) - , (j = 1,2,3)|, 

«here 

z.z 

The set X with the distance (18) is a complete metric space. 
In the spaoe X we introduce the operator .4 mapping the points 
U = 0ui»u2»u3» this spaoe into the points V = 
= »v2»v3» Vi accordlng to the formulae 

(20) v(x) = - I f G (x,y)fk(y)dy * f G(x,y)y(y)dy + 

V '5k 

+ f / G(x,y)$(y,u(y))dy, 
D+ 

(21) y(z) + i / [S(a,y) + ff(«)G(z,y)] = g(«)t 

where 

(22) g(z) = ̂ (z.uiz)) + n) + <T(z)] [ ¿ Z f S*(z,y)rl(y)dy 
l=r+1 >4 

- J G(z,y) $(y,u(y))dy] , 

S1 
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Non-linear boundary problem 7 

(23) u(z) = -^- f ft (z,y)f (y)dy + f (^(b,y)f(y)dy + 
l=r+1 J„ 1=0 «4 S1 S1 

+ ̂  f. Q(z,y)i (y,u(y))dy. 
V 

5. Properties of the operator ^ 
L e m m a 1* If the constant K p and the least upper 

bounds of functions fj^(x,u1 and pP^(z,u1 ,u2,u^)f 
are sufficiently small and if the constants R,^, Ky, are suffi-
ciently large, then the values of th£ operator A belong to the 
space X. 

P r o o f . Let us consider the integral equation (21). 
Equations of this type have been investigated by V.D.Kupradze 
(e.g. [1], pp.170-201). Prom his results it follows that if 
the vector g(z) satisfies the Hfllder condition, then the equa<-
tion (21) has a unique solution which is given by the formula 

(24) Viz) = B(z)g.(z) + ¿, f N(zty)g(y)dy, k=0 i k 
where B(z) is a matrix whose properties have been investigated 
in [2], N(z,y) is a matrix resolvent of the equation (21). 
In order to use formula (24) we must show that the vector g(z) 

r 
satisfies the Holder condition. Let z,z e (J Ŝ .. We have 

k=0 K 

(25) g(z) - g(z) = [^(z.utz)) - Pk(z,u(z))J + 
+ \ ± / [>(-£.n) S*(z,y) - l(-^.n) G"(2,y)J fX(y)dy l=r+1 Sj 

+ J[ff(z) -5(8)] ¿I f G^z.yJ^iyJdy + 
l=r+1 J„ 

S1 
+ Jff(z) ¿ : f [g\z,y) - 3"(Z,y)]f1(y)dy + 

* l=r+1 { S1 
+ ?/ +[ T("0' n) G ( 2»y } - t(T5» d) G(z»3r,J ^(y.«(y))dy + 
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8 J.Chmaj 

+ - ff(z)] / G(z,y) $(y,u(y) )dy + 
D* 

+ i f - G(z.y) ] i ( y . a ( y ) ) d y . 
D+ 

We Introduce the following notations 

Mf = max sup | i i ( z )| (k = r+1,... ,m{ j = 1,2*3) 
j ,kaeS k J 

M4 = max sup I $ i(x,tt1,a5,,a,)| ( j , s = 1,2,3) 
v 1 xtD+ 1 J 

Mg. = max sup J ^(z> | (k = 0 ,1 , . . . , r ; i , j = 1,2,3). 

Making use of the assumptions and taking into account the 
well-known properties of surface integrals we obtain from (25) 
the following inequalities 

(26) |gj(a) - g j ( z ) | 6 [Mp(a1+a2Kff+a3M6.+a4Kp) + 

+ Mjtaj+agKj+a^+agKp) + Kp (ag+a10^)] |zz|h, (J-1,2,3), 

where the constants depend on Lame constants. For 
brevity we write the inequalities (26) in the form 

(27) | g j ( z ) - g j ( z ) | ^ Kg |zz|h, U = 1,2,3). 

Thus the vector g ( z ) sat is f ies the Holder condition. 
Analogously as in [2] , we introduce the following nota-

tions 

Mr, = max sup |B..,(z)| (k = 0,1, . . . , r ; = 1,2,3) 
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Non-linear boundary problem 9 

Mn = max sup I f N1 ; j(z,y)dy | (k = 0 , 1 , . . . , r ; i , j = 1 , 2 , 3 ) . 
1 , 3 Z f c S k S k 

Prom formula (24) (see [3] formula (52)) we ob ta in the e s t i -
mations 

(28) | ^ ( z ) | ^ (Mb + Mn) Mg + b4Kg ( j = 1 , 2 , 3 ) , 

where Mg = + b^M^ + bgM^Mg. + b^M^ and b ^ b g j b ^ j b ^ depend 
on Lamé c o n s t a n t s . We denote Mv = (Mg + MJJ) Mg + b^Kg. 

•Prom r e s u l t s of V.D.Kupradze i t fo l lows t h a t the vec to r 
y i z ) s a t i s f i e s the Hfilder c o n d i t i o n . Namely, t ak ing in to 
aocount t he i n e q u a l i t i e s (27) and (28) , a s wel l as the es t ima-
t i o n s (36) and (38) given in [2 ] , we obta in 

(29) | l ^ ( z ) - Vj(z) | é (b5CMg+MBKg+b6Kg) | zz |hV ( j = 1 , 2 , 3 ) , 

where b^ , bg depend on Lamé c o n s t a n t s . 
liext we w r i t e the i n e q u a l i t i e s (29) in the fo l lowing form 

(30) | ^ ( z ) - V j ( z ) | é K¥ I z z l ^ , ( j = 1 , 2 , 3 ) . 

Prom the formula (20) de f in ing the veotor v(x) and from the 
i nequa l i t y (28) we obta in 

(31) | v 3 ( x ) | ^ My , ( j = 1 , 2 , 3 ) , 

where My = b?Mf + bgMv + bgM^ and by,bQ ,bg depend on Lame 
c o n s t a n t s . 

Prom (28) , (30) , (31) and the d e f i n i t i o n s (20) , (21) of 
the opera tor A we deduce t h a t the s u f f i c i e n t cond i t ion f o r 
A(U) e X i s the system of i n e q u a l i t i e s 

(32) My 4 R, , K v ,4 K ,̂. 

Prom assumptions concerning the cons tan t s M^, Mp, Kp i t 
fo l lows t h a t t he re e x i s t s () = f o r which . I t i s 
easy to see t ha t i f q i s f i x e d then the i n e q u a l i t i e s My é R, 
Kyj 4 K^ are s a t i s f i e d independently of Lamé c o n s t a n t s . 
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10 J.Chmaj 

L e m m a 2 . I f the constants Kp , are su f f i -
ciently small and the inequalities (32) are sat is f i ed , then 
the. operator Jl is contractive, i . e . there exists a positive 
constant a < 1 such that for every points U .̂Ug of the spa-
ce X we have 

(33) ¿(AdJ.,), A(U2 ) ) S a d f l l ^ D j ) . . 

P r o o f . We denote ¿(1^) = V J JU ' = 1,2), where 

V i = [ V 1 » v 2 » v 3 • 

To prove inequality (33) we consider the expressions 

|^ ( z ) - V 2 ( z )| |v j ( x ) - v2 (x)| , H[VJ(z) - ^ j ( z ) ] . 

1 O 
The veotors y> ( z ) , ip ( z ) sat isfy the integral equation (21). 
We substitute them into (21) and subtract, then we get an in-
tegral equation which is sat is f ied by the dif ference w1(z) -

p 1 

- y> ( z ) . The right-hand side of this equation is 

<34) g ( z ) = F ^ z . a ^ z ) ) - P k ( z ,u 2 ( z ) ) + - i f [ T ( r i » n ) G(z.y) + D+ 

- # ( y , u 2 ( y ) ) ] dy, 

where 

(35) u Hz) » 4 L f G"(z,y)f1(y)dy + ¿ . f Q(*.v)f\y)*ir '* 
* l=r+1 J 1=0 * 

S1 S1 

+ \ j G(z,y)$ (y .u^yj jdy, ( i = 1,2). 
D+ 

The vector g (z ) has a similar form to that defined in [3] 
(formula (67 ) ) . Henoe by (77) of [3] we can write the fol low-
ing inequalities 
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Non-linear boundary problem 11 

(36) |i.(z) - g . ( z ) f < 

<(k?[C1+C2K6+c3M0+cA-KF+C5^F^e1+e2M$+e3?o^ maX suP|U2(x) " Us (x)l* 

+ [°6KF+c7^F^e1+e2Mi+e3io^J maX 
s z 

( j , s = 1,2,3), 

where o ^ , . . . , e 9 , e ^ depend on Lame constants. For bre-
vity we write (36) in the form 

(37) I g j U ) - ^ [k#M1 max sup | u^ - Ug | + 

+ ( 0 ^ + 1 ^ 2 ) max sup - f l |]|zz|hV, ( j ,s=1,2,3) . 

The vector g ( z ) sat is f ies the Holder condition, thus the f o r -
of ip(z) and i 

ifi^iz) - ^ ( z ) 

(38) |^ (z ) -^ (z )| 4 ki[(p1+p2KF)(ME+MN)+p3M1] max sup| uJW-u^x) | + 
s x 

+ [ f y V V V ^ ^ ô V V V ] max sup l?s(z)-Ps ( z)|' (j«s=1»2»3), 

1 p 
mula (24) with y ( z ) - tp ( z ) instead of y(z) and g ( z ) in-
stead of g ( z ) holds. 

* 1 2 Now we may give estimations for w*{z) - j )4 (z ) similar 
to (81) in [3] 

where ..»p^ depend on Lamé constants. 
Similarly, using the estimations (83), (89) from [ 3 ] we 

obtain 

(39) |v1(x) - v2(x)|4 

^ ki[p6+(p1+p2KF)(MB+MN)+p3M1J max sup|ug(x) - u^(x)| + 

+P9[p4KF(MB+MN)+p (cgK̂ +KyM̂ Jmax sup |^ ( z ) ^ ( z ) | f (j,8=1,2,3), 
• - J s z 
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12 J.Chmaj 

(40) H [>](*) - ̂ (z)J ^ 

< K(jSr(p1+p2KF)(pgC+pg)+p10MBMj max sup |u^(x) - Ug(x)| + 
s x 

+ [KF(p11C+p12^+p13MB^c6KF+ÌfFM2'>] m a x sup I Ps^-fs^l» (à.s=1.2.3). s z 

where -che constants depend on Lame constants. 
We put 

(41) «= max | ki[p6+(p1+p2KF)(2MB+2MN+p8C+pg) + (2p3+p10MB )] , 

KP[P4(MB+M1J)(1+P7)+P11G+P12+C6(2P5+P13MB)] + V ^ ' V ^ ' V } • 

Suppose that the constants k^ , Kj,, Kp are such small that 
a <-.1. Then from inequalities (38), (39), (40) and from defi-
nition (18) we infer that. d(V1 ,V2) 4a. .d(U1 ,U2). This proves 
the thesis of the Lemma 2. 

6. Solution of the problem 
T h e o r e m . If the assumption I-V are satisfied and 

the constants M^, Mp, Kj,, Kp are sufficiently small, then 
there exists a unique regular vector of the form (15) satisfy-
ing in D+ the equation (1) and boundary conditions: (2) on the 
surfaces S^ (k = 0,1,...,r) and (3) on the surfaces Sk 
(k = r+1,... ,n). 

P r o o f . Prom Banach's fixed-point theorem it follows 
that if the hypotheses of Lemmas 1 and 2 hold,then the system 
of integral equations (15), (16) has in the space X a unique 
solution which we denote by u*(x), y*(x). From the representa-
tion of the solution in the from (15) and from the properties 
of Green tensor it follows that u*(x) satisfies the boundary 
conditions (-2), (3) on suitable surfaces. 

Moreover, from the properties of volume integrals (Theorem 
2 from [3]) and from the assumptions about the vector <j5(x,u(x)) 
it follows that there exist second derivatives of the vector 
u*(x) and this vector satisfies equation (1) in D+. 
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