

Zbigniew Olszak

ON TOTALLY UMBILICAL SUBMANIFOLDS
OF CARTAN-SYMMETRIC MANIFOLDS

Introduction

In [2] Miyazawa and Chuman have proved the following.

Theorem. Let us suppose that a V_m is a totally umbilical surface immersed in a Cartan - symmetric space. Then, in order that the V_m is also Cartan - symmetric, it is necessary and sufficient that the mean curvature H is a constant.

In this paper, we determine some conditions for a totally umbilical submanifold with mean curvature different from zero, imbedded in a Cartan - symmetric manifold, to be a manifold of constant curvature.

1. Preliminaries

Let V_m be an m - dimensional Riemannian manifold imbedded in an n - dimensional Riemannian manifold V_n , and let $u^\lambda = u^\lambda(w^i)$ be the parametric representation of the submanifold V_m in V_n , where (u^λ) are local coordinates in V_n and (w^i) are local coordinates in V_m . Let $B_i^\lambda = \partial_i u^\lambda$, where $\partial_i = \partial/\partial w^i$.

If $G_{\lambda\omega}$ is the fundamental tensor of the manifold V_n , then g_{ji} defined by $g_{ji} = B_j^\lambda B_i^\omega G_{\lambda\omega}$ is the first fundamental tensor of the submanifold V_m . In the sequel the Greek indices take on values $1, \dots, n$ and the Latin indices take on values $1, \dots, m$ ($m < n$).

Let N_x^λ ($x = m+1, \dots, n$) be pairwise orthogonal unit normals to V_m . Then we have the relations

$$(1) \quad G_{\lambda\omega} N_x^\lambda N_x^\omega = e_x, \quad G_{\lambda\omega} N_x^\lambda N_y^\omega = 0 \quad (x \neq y), \quad G_{\lambda\omega} N_x^\lambda B_i^\omega = 0,$$

where e_x is the indicator of the vector N_x^λ .

The Schouten's curvature tensor H_{ji}^λ of the submanifold V_m is defined by

$$(2) \quad H_{ji}^\lambda = \nabla_j B_i^\lambda,$$

where ∇_j denotes covariant differentiation with respect to the fundamental tensor g_{ji} of V_m .

If we put

$$(3) \quad H_{ji}^\lambda = \sum_x e_x H_{jix} N_x^\lambda,$$

then the second fundamental tensor H_{jix} for N_x is given by

$$(4) \quad H_{jix} = H_{ji}^\lambda N_{x\lambda},$$

where $N_{x\lambda} = N_x^\omega G_{\omega\lambda}$.

The Gauss and Codazzi equations for V_m can be written in the form

$$(5) \quad R_{lkji} = \bar{R}_{\lambda\mu\nu\omega} B_1^\lambda B_k^\mu B_j^\nu B_i^\omega + \sum_x e_x (H_{lix} H_{kjkx} - H_{ljkx} H_{kix})$$

and

$$(6) \quad \bar{R}_{\lambda\mu\nu\omega} B_1^\lambda B_k^\mu B_j^\nu N_x^\omega = \nabla_l H_{kjkx} - \nabla_k H_{ljkx} + \sum_y e_y (L_{lyx} H_{kjy} - L_{kyx} H_{ljy})$$

respectively ([1]), where L_{ixy} defined by

$$(7) \quad L_{ixy} = (\nabla_i N_x^\lambda) N_{y\lambda} \quad (= - L_{iyx})$$

is the third fundamental tensor with respect to the normals N_x^λ , and R_{lkji} , $\bar{R}_{\lambda\mu\nu\omega}$ are curvature tensors for V_m and V_n , respectively.

We have also the equations of Weingarten

$$(8) \quad \nabla_i N_x^\lambda = - H_i^r x B_r^\lambda + \sum_y e_y L_{ixy} N_y^\lambda,$$

where $H_i^j x = H_{irx} g^{rj}$.

Let C^λ be a vector field defined along V_m and orthogonal to V_m , then

$$(9) \quad C^\lambda = \sum_x e_x C_x N_x^\lambda,$$

and consequently by (8)

$$(10) \quad \nabla_i C^\lambda = \sum_x e_x (\partial_i C_x) N_x^\lambda + \sum_x e_x C_x \left(-H_i^r x B_r^\lambda + \sum_y e_y L_{ixy} N_y^\lambda \right) = \\ = - \sum_x e_x H_i^r x C_x B_r^\lambda + \sum_x e_x (\partial_i C_x + \sum_y e_y L_{iyx} C_y) N_x^\lambda.$$

Thus, if we put

$$(11) \quad ' \nabla_i C_x = (\nabla_i C^\lambda) N_{x\lambda},$$

we get from (10)

$$(12) \quad ' \nabla_i C_x = \partial_i C_x + \sum_y e_y L_{iyx} C_y.$$

If $' \nabla_i C^\lambda$ is tangent to V_m , that is, if $' \nabla_i C_x = 0$, we say that C^λ is parallel.

Lemma 1. Let us suppose that C^λ is a vector field defined along V_m and orthogonal to V_m . If C^λ is parallel, then $C_\lambda C^\lambda = \text{constant}$.

Proof. From (9) and (1) we find

$$C_\lambda C^\lambda = \sum_x e_x (C_x)^2.$$

Since $\nabla_i C_x = 0$, from (12) we get

$$\partial_i C_x = - \sum_y e_y L_{iyx} C_y.$$

Thus, by the above equations and (7), we have

$$\partial_i (C_\lambda C^\lambda) = 2 \sum_x e_x C_x \partial_i C_x = -2 \sum_x \sum_y e_x e_y C_x C_y L_{iyx} = 0,$$

as desired.

If V_m is a submanifold of codimension 1, then the third fundamental tensor vanishes, and consequently the following lemma holds good.

Lemma 2. Let us suppose that C^λ is a vector field defined along V_m and orthogonal to V_m , and that $\text{codim } V_m = 1$. Then, $C_\lambda C^\lambda = \text{constant}$ if and only if C^λ is parallel.

2. A totally umbilical submanifold

If H_{ji}^λ defined by (2) satisfies the relation

$$(13) \quad H_{ji}^\lambda = g_{ji} H^\lambda,$$

where the vector H^λ , called the mean curvature vector, is given by

$$(14) \quad H^\lambda = \frac{1}{m} g^{ji} H_{ji}^\lambda,$$

then V_m is called a totally umbilical submanifold.

We assume that the V_m is a totally umbilical submanifold.

Putting $H_x = H^\lambda N_{x\lambda}$, we obtain from (4) by (13)

$$(15) \quad H_{jix} = g_{ji} H_x,$$

and from (3) by (14)

$$(16) \quad H^\lambda = \sum_x e_x H_x N_x^\lambda.$$

Hence, using (1), we have

$$(17) \quad H_\lambda H^\lambda = \sum_x e_x (H_x)^2.$$

The mean curvature H of V_m , i.e. the scalar H such that $\eta^2 = \left| \sum_x e_x (H_x)^2 \right|$, may be then written as

$$(18) \quad H^2 = |H_\lambda H^\lambda|.$$

Substituting (15) and (17) into (5) we see that

$$(19) \quad R_{1kji} = \bar{R}_{\lambda\mu\nu\omega} B_1^\lambda B_k^\mu B_j^\nu B_i^\omega + H_\lambda H^\lambda (g_{1i} g_{kj} - g_{1j} g_{ki}),$$

and substituting (15) into (6) we see that

$$(20) \quad \bar{R}_{\lambda\mu\nu\omega} B_k^\lambda B_j^\mu B_i^\nu N_x^\omega = g_{ji} \nabla_k H_x - g_{ki} \nabla_j H_x + \sum_y e_y H_y (L_{kyx} g_{ji} - L_{jyx} g_{ki}).$$

From this, using (16), (17) and (7), we obtain

$$(21) \quad \bar{R}_{\lambda\mu\nu\omega} B_k^\lambda B_j^\mu B_i^\nu H^\omega = \frac{1}{2} \nabla_k (H_\lambda H^\lambda) g_{ji} - \frac{1}{2} \nabla_j (H_\lambda H^\lambda) g_{ki}.$$

The assumption that the mean curvature H of V_m is a constant implies that (21) may be written in the form

$$(22) \quad \bar{R}_{\lambda\mu\nu\omega} B_k^\lambda B_j^\mu B_i^\nu H^\omega = 0.$$

3. A totally umbilical submanifold of a Cartan-symmetric manifold

A Riemannian manifold is called Cartan-symmetric, if its curvature tensor $\bar{R}_{\lambda\mu\nu\omega}$ satisfies

$$(23) \quad \nabla_\epsilon \bar{R}_{\lambda\mu\nu\omega} = 0,$$

where ∇_ϵ denotes the covariant differentiation with respect to the metric.

In the sequel we suppose that the manifold V_n is Cartan-symmetric, and that the submanifold V_m of V_n is a totally umbilical submanifold, and $n > m > 2$.

We first prove

L e m m a 3. Let V_m be a totally umbilical submanifold with the mean curvature $H \neq 0$, of a Cartan-symmetric manifold V_n . Then, V_m is of constant curvature if and only if $H = \text{const.}$ and

$$(24) \quad A_{ji} = A g_{ji},$$

where

$$(25) \quad A_{ji} = \sum_x e_x ({}' \nabla_j H_x) ({}' \nabla_i H_x), \quad A = \frac{1}{m} g^{ji} A_{ji},$$

and ${}' \nabla_j$ is defined in (11).

P r o o f . Suppose that $H = \text{constant}$. In this case (22) holds. We differentiate (22) covariantly with respect to w^i and by (23), (13) we find

$$(26) \quad g_{lk} \bar{R}_{\lambda\mu\nu\omega} H^\lambda B_j^\mu B_i^\nu H^\omega + g_{lj} \bar{R}_{\lambda\mu\nu\omega} B_k^\lambda H^\mu B_i^\nu H^\omega + g_{li} \bar{R}_{\lambda\mu\nu\omega} B_k^\lambda B_j^\mu H^\nu H^\omega + \bar{R}_{\lambda\mu\nu\omega} B_k^\lambda B_j^\mu B_i^\nu \nabla_l H^\omega = 0.$$

But by putting $C^\lambda = H^\lambda$, $C_x = H_x$ (12), (15) and (17) into (10), we have

$$(27) \quad \nabla_l H^\omega = - H_\lambda H^\lambda B_l^\omega + \sum_x e_x ({}' \nabla_l H_x) N_x^\omega.$$

From (26) with the aid of (27) we obtain

$$\begin{aligned} & g_{lk} \bar{R}_{\lambda\mu\nu\omega} H^\lambda B_j^\mu B_i^\nu H^\omega - g_{lj} \bar{R}_{\mu\lambda\nu\omega} H^\mu B_k^\lambda B_i^\nu H^\omega + \\ & - H_\rho H^\rho \bar{R}_{\lambda\mu\nu\omega} B_k^\lambda B_j^\mu B_i^\nu B_l^\omega + \\ & + \sum_x e_x ({}' \nabla_l H_x) \bar{R}_{\lambda\mu\nu\omega} B_k^\lambda B_j^\mu B_i^\nu N_x^\omega = 0, \end{aligned}$$

and by (19), (20) and (12)

$$(28) -g_{lk} \bar{R}_{\lambda\mu\nu\omega} H^\lambda B_j^\mu B_i^\nu H^\omega - g_{lj} \bar{R}_{\mu\nu\lambda\omega} H^\mu B_k^\lambda B_i^\nu H^\omega +$$

$$- H_\rho H^\rho [R_{kjil} - H_\lambda H^\lambda (g_{kl} g_{ji} - g_{ki} g_{jl})] +$$

$$+ \sum e_x ({}' \nabla_l H_x) [({}' \nabla_k H_x) g_{ji} - ({}' \nabla_j H_x) g_{ki}] = 0.$$

Contracting the equation (28) with g^{lk} and using the denotations (25), we get

$$(29) \quad \bar{R}_{\lambda\mu\nu\omega} H^\lambda B_j^\mu B_i^\nu H^\omega = H_\rho H^\rho \left(\frac{1}{m-1} R_{ji} - H_\lambda H^\lambda g_{ji} \right) +$$

$$+ \frac{1}{m-1} (A_{ji} - m A g_{ji}).$$

We substitute (29) into (28) and find

$$(30) \quad - H_\rho H^\rho [R_{kjil} - \frac{1}{m-1} (g_{kl} R_{ji} - g_{jl} R_{ki})] =$$

$$= \frac{m}{m-1} A (g_{lk} g_{ji} - g_{lj} g_{ki}) - \frac{1}{m-1} (g_{kl} A_{ji} - g_{jl} A_{ki}) -$$

$$- A_{kl} g_{ji} + A_{jl} g_{ki}.$$

Let now $A_{ji} = A g_{ji}$ holds, as desired in (24), and $H = \text{const.} \neq 0$. Then, since by (18) $H_\rho H^\rho = \text{const.} \neq 0$, from (30) it follows

$$(31) \quad R_{kjil} = \frac{1}{m-1} (g_{kl} R_{ji} - g_{jl} R_{ki}).$$

We can easily verify that then V_m is a manifold of constant curvature, i.e. that the condition

$$R_{kjil} = \frac{R}{m(m-1)} (g_{kl} g_{ji} - g_{ki} g_{jl})$$

is satisfied.

Conversely, if V_m is of constant curvature, then (31) is satisfied. Moreover, V_m is then Cartan-symmetric, and by the theorem presented in the introduction the mean curvature $H = \text{constant}$. Then (30) yields

$$\frac{m}{m-1} A (g_{lk} g_{ji} - g_{lj} g_{ki}) - \frac{1}{m-1} (g_{kl} A_{ji} - g_{jl} A_{ki}) + \\ - A_{kl} g_{ji} + A_{jl} g_{ki} = 0.$$

Summing this equation with g^{ji} , we find $A_{lk} = A g_{lk}$, which completes the proof.

In the case $\text{codim } V_m = 1$, the assumption $H = \text{constant}$ implies by Lemma 2 that the condition (24) is satisfied. Thus we have

Theorem 1. Let V_m ($m = n-1$) be a totally umbilical submanifold with the mean curvature $H \neq 0$, of a Cartan-symmetric manifold V_n . Then, V_m is of constant curvature if and only if $H = \text{constant}$.

As a consequence of Lemma 3, we obtain

Theorem 2. Let V_m be a totally umbilical submanifold with the mean curvature $H \neq 0$, of a Cartan-symmetric manifold V_n . Then, if $\sum_x e_x (\nabla_j H_x) (\nabla_i H_x) = 0$ and $H = \text{const.}$, V_m is of constant curvature.

Furthermore, $\nabla_j H_x = 0$ also implies the condition (24) and by Lemma 1 it implies $H = \text{constant}$. Hence, we may formulate the following

Theorem 3. Let V_m be a totally umbilical submanifold with the mean curvature $H \neq 0$, of a Cartan-symmetric manifold V_n . Then, if the mean curvature vector H^λ is parallel, V_m is of constant curvature.

REFERENCES

- [1] L.P. Eisenhart : Riemannian geometry. Princeton 1949.
- [2] T. Miyazawa, G. Chuman : On certain subspaces of Riemannian recurrent spaces, Tensor 23 (1972) 253-260.

INSTITUTE OF MATHEMATICS AND THEORETICAL PHYSICS, TECHNICAL UNIVERSITY OF WROCŁAW

Received April 7, 1975.

