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ON THE CONVERGENCE OF AN ITERATIVE SEQUENCE
TO THE SOLUTION OF A SYSTEM OF ORDINARY
DIFFERENTIAL EQUATIONS WITH DEVIATED ARGUMENTS

In the theory of optimal control, very frequently there
appears the problem of solving a system of ordinary differen-
tial equations of second order with deviated arguments. This
problem is of great importance for many branches of this theo-
ry. Therefore it has been dealt with by many authors. A large
number of references can be found e.g. in [3] and [8]. This
paper is a generalizatlon of [4]. We consider a system of
ordinary differential equations of second order with deviated
arguments (1), similarly to the way it was done in [5], but
with one difference, Namely, our boundary value conditions are
different from those of [5] where authors supposed that ini-
tial functions were given. Here, together with equation (1) we
shall consider a linear two point boundary value condition.

A similar condition was considered in [2] p. 50. In this note
initial functions, which authors of paper [5] supposed to be
given, are constructed in order that the solution of system

(1) fulfil condition (4). We shall prove existence and unique-
ness of the solution of problem (1), (4) in certain interval
provided that this interval is small. This task is more general
than that from paper [1], where the arguments were not devia-
ted. This, however, does not yield better results.

Consider the system of ordinary differential‘equations of
second order with deviated arguments
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2- . J.Kalinowski

x"(t) = f(t,x(w1(t)),.;,,x(wk(t)),x'(w1(t)),...,x'(wk(t));

x“(w1(t)),...,x"(wk(t))) ,

where xeR", teD = [a1,a2], -0 <a; < a,< 00, and
f = (f1,...,fm) is mapping of the type

(2) £ : D xpIME g0,
The real functions w, (L = 1,2400+4k) of the form
(3) W, ¢+ D—D

are continuous in interval D.

Let J denote thé identity function in D, i.e. J(t) = %o
The function f appearing in equation (1) may be treated as an
operation mapplng the set of funotions differentiable twice
and defined in interval D into the set of continuous functions
defined in the same interval,

Considering (1) as an equation of two functions, we have

X7 = f(j,x(w1),...,x(wk), x(w1),...,X’(wk), X"(w1),...;x"(wk».

The function on the right-hand side of the above equation is
the image of the function x under the operation f, We shall
denote it simply by f{x], while the value of this function
at a point t will be denoted by f[x](t).

In the whole paper, the symbols |:| and Il - |l will denote the
absolute value and a certain norm in the space Rm, respective~
ly. For a continuous- function x,defined in D,value of which
lie in Rm, we introduce the norm

M=l := max [=x($)].
’ teD
Let t;€D (£ = 1,2) and ty < t,. We shall seek solutions
of the system (1) in interval D in the class of continuous
functions with derivatives up to second order. Each of these
solutions should satisfy the condit;ons
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Differential equations with deviated arguments 3

cxox(t1) + a1x’ (t.‘) +'a2x"(t1) T,

-ﬁox(tz).+ ﬁ1x’(t2) + ﬂzx"(tz) Ts

where ay, By eR, (]j = 0,1,2), (%), = (83), = (%4), Tif-Rm’
for i = 1,2. Moreover, assume that

%o ' %9
(5) A= £ 0.
ﬂo, ﬂo(tz - t1) + /51

Relation (5) is true e.g. for the Cauchy condition and for
the two-point boundary condition of the first kind.

Now, we \shall prove some lemmas.

Lemma 1., Let the functions wy (L = 1,2,40e,k) of
the type (3) be continuous -and letthe function f be of type (2)
and uniformly Lipschitz '

"f(t,z.‘,-oo,zk,g.l,-oo,'Z:k)%.]’oo-)%k)‘ +

- f(t,z1,...,Zk,§1,...,Ek,i1,_Q..,§k)ll$

(6)

3 : x = L -
‘i% Py |2y - 24 ,+ E By || 2y - 2] + 1Z=1: By | Zir' A

with non-hegativ constants Py ﬁi, Bi (L = 1,2,e009k)e Then
the following inequality holds

(7) ez - ef=]ll < Qxqoxy],

where the function Q is defined as follows

(8) Qxquxp] = pllxy - x| + 5llx - x|l + Bllxy - =3ls
where
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4 : J.Kalinowski

where
k

| k
= Z Py» p = Z 51’ p = Z 510
i=1

i=1 i=1
Proof., Since the function f is uniformly Lipschitz,
we- have
k

I£[x,] - f[xz__]l" <4 max [Z pyflxq(w; () =~ xg(wi(u))” +

i=1

k
+Z i"x wi(u)) - X, i(u))” +Zpi”x W, (u))
i=1

- X5 (wi(u))”] .

Further, making use of the definition of the norm, we obtain
k

max [Zpinx u)) - xz(wi(u))" + Z{ f’i”x%(wi(u)) +
1

ue v 1=1

k
- X, (w (u))“ 4-:5: pl"x (w; (w)) - x”(w (u)) ”] < :E: Pimx1(wi)+

i=1

k
- x2(wi)||| + ; |||x (wy) - x5 (wy )I” + Zpimx (wg) +

EACH]|

Using relation (3) for functions wy, i = 1,2,ses,k and defi-
nition (7), we get

k k
2 pyllxytny) = mplo)ll + 2py llxyiong) - wytmpll s
. .
+ Z]'Bi"l xy (wy) - x'é‘(wi)m £ Q[x,],xz]',
1= !
which completes thq proof of the lemma,
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- Differential equations with deviated arguments 5

Lemma 2. Under the assumption of Lemma 1, the fol-
lowing inequality is valid ‘

"ffp f { ](u) - f[xz](u.)}du ds".'...dsp_T” <qP Q[x1,x2],

P = 1,2,eeey Wwhere d denotes the lenght of interval D.
Proof, Using p times the elementary inequality fer

the norm of an integral we obtain the assertion from Lemma 1.
Lemma 3, Let

t s :
(9) z; (%) =f[f £[x,] (u)du}_ds + Alx,] (t-54) + B[x;], i=1,2,
t,] t1
be functions defined for te D, where the continuous functions
wi, 1=1,2,00.,k, fulfil relation (3), the function f is
continuous with respect to the system of variables (t 124905y
zk,z1,...,zk,z1,...,zk), the constant vectors A[xi] , B[xi]
belong to R® and the functions X4, X, are continuous together
with their derivatives up to second order in the interval D.
In order that functions Zi i=1,2, fulfil boundary value
condition (4) with assumption (5), it is necessary that vectors
A[xi] ’ B[xi] s, 1=1,2, be defined by formulae

(1) Alx;) = A{atg(rp = Bptlxy] (85)) = Bo(my = wp?[x;](51)) +

'“oﬂof <f f[x](u)du)ds - 00 1j2 f[xi](u)du];

1 '1

1
(11) B[xi]‘ %{ﬁo(tz -t (x4 - a,f[x,] (%, )) +

+ p (r1 -ozzf[xi](t1)) - a1(r2 - ﬁzf[xiJ(tz)) +

+ o /31‘[ %] (u)du + o¢1,30f (f f[xi](u)du)ds-},
for 1 = 1,2, K |
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6 J.Kalinowski

Proof, Differentiating both sides of the equation
(9) with respect to variable t, we obtain

t
(12) zy (%) =f £[x;] (w)du + A[x;]), 1 =1,2,
%
and
(13) ‘ zi(t) = £[x;](¢), 1= 1,2,

Inserting (9), (12) and (13) to (4) we get a system of equa~
tions with unknown vectors A[x,] and B[xﬂ » the solution of
which ie expressed by formulae (10) and (11). Assumption (5)
is necessary for the existence of a unique sclution to the
mentioned system. This completes the proof of the lemma,

Lemma 4. Under the assumptions of Lemma 3, the
following inequality holds

(14) alx,) - alx]| < ¢y Q[xq,x5],

where A[xi] is defined by formula (10) for uniformly Lips-
chitz function f and the constant C, ig defined by the formula

2
(5) ey = ] leossl + 1=g80l + lghol e + laganfa).

Proof. Using (10) and properties of the norm we
obtain the inequality

lalx,] - A[x)]] < .%.{ lé‘oﬂ2| I £xq] (8) = £[xp] ()| +

t2 5
*1Bg op| |f £[xq) (89) = £[x) (8] + [appy] || f {f(f[xﬂ () +
| - ‘ 81"
- £[x,)] (u)) du} ds” + | @gey] ” ‘f; (f[xq] (w) - £[x,) (u)) du .

1
Now, the propertlies of the function "max" and Lemma 2 for ca-
ses p = 1 and p = 2 yield the assertion.
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Differential equations with deviated arguments 7

Lemma 5. Let the assumptions of Lemma 3 be fulfilled
and let the function f satisfy the Lipschitz condition (6).
Then the followlng inequality holds

(16) IB[x]J = 3Bx;]ll € ¢, Q[xq,sx,],

where the constant C2 i1s defined by the formula

\17) €, = T%T{'ﬁo"‘z"i + | Biagl + |ogfy| + [euBy|d® + »l“1ﬂ1ld}°

In the proof one uses definition (12) and procaeds simi-
lsrly to the proof of Lemma 4.

Lemma 6. Let the function f fulfil the Lipschitz
condition (6) and let the assumptions of Lemma 3 be fulfilled.
Then the following inequality holds '

(18) lzq - 2zl < Cq Q[x1,x2],
where
(19) Cy=d° + C,d + C

Proof.,. Using (9) and the properties of norm we have

flzq(t) = 2,(£)] | h(;{fﬂf[xﬂ (u) - f[_{z] (w)]] du}ds +

+ afxd - a0 ||t -ty +1B[x] - B[x,]] » te D

wow, in view of Lemmas 4 and 5 together with Lemma 2 in
case b = 2, we obtain the assertion.

ILemma T . Under the assumptions of Lemma 6 the
following inequality holds

(20) "lZH = Zé"l < G Q[x1,x2],
where
(21) Cy =d+Cqe
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8 Je.Kalinowski

Proof . Using (12) and the properties of norm we
obtain

: t
fz(t) - 2y (t)]] < t/1”f[x1](u) - f[x,] (u) | du +
t 1 ’

+ [ ALz - A [x]]

t €D, and now Lemma 2 in case p = 1 gives the assertion.
The last of this series of lemmas is the following.
Lemma 8. Under the assumption of Lemma 6 the fol-
lowing inequality is wvalid

(22) 2y = 250l € Q[xqyx5].

In the proof one makes use of definitions (13) and (8)
and the properties of norm.

Now, we pass to the main theorem of this paper, The problem
(1), (4) will be solved with the help of the method of succe-
ssive approximations. The constructive proof of this theorem
makes it possible to apply this method to solving the problem
numerically with the use of computers,

Theorenmn ‘1. Let the continuous functions Wi
i=1,2,0ee,k, t €& D, be of form (3) and let the function f
of the type (2) fulfil Lipschitz condition (6) with non-nega~-
tiv constants Pj» Ei’ 5i’ i= 1,2,.;.,k, which satisfy the
inequality

{23) g <1,

where

g = 03 P+ C4 P+ D .

Then under the assumption (5),in the interval D there exists
a unique solution of the equation (1) determined by the bounda~-
ry value condition (4). This solution and its derivative is
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Differential equations with deviated arguments ‘9

a uniform limit of the functional sequence {xn} defined by
formulae (24) - (28). The rate of this convergence is determi~-
ned as follows

n
=, -l < €54
(24) lx, -l < Cga

' » " '
W=z = "Il < Cp a7

where Cyy 1 = 5,6,7, are constant.

Proof. To prove our assertion, we shall define
three functional sequences (25), (28) and (29) together with
two vector sequences (26)-.and (27). We shall prove that the
functlonal seduences are uniformly convergent and that vector
sequences are convergent with respect to each coordinate to-
wards sultable coordinates of limit vectors A and B, Let
Xg ¢ D —FR" be an arbitrary functien ef the class 02. Let us
form the sequence of functions {xn} defined in interval D
by the formula

t 8
(25) x,(8) = [ [ £[x, ](wauds + A[x, ] (b = t;) + B[x ]
t,] t,]
for n = 1,2,... In order that all the functions (25) fulfil
condition (4) by Lemma 3 it -is necessary to define vectors
A[xn_1], B[xn_1] by the following formulae

8o q] = Ao (7 - Bflxyoq (85)) +

t2 s
(26) - Bo(rq - a2f[xn_1](t1)) + aoqu ( j” f[xn_1](u)du)ds +
t t

t 1 1

- %g%y f =, 4] (“)d“} ’

2
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10 Je.Kalinowski

B[x,-1] = %I{ﬁo(tz - t1)(¢1 'dzf[xn-1](t1)) +
+ (T = oot [y q](89)) = aq(xp - Bpf[xy 4] (85)) +

| %2 | t, s
+ o¢1ﬁ1£ £[x,_ (] (w)du + &,y {({ £[x, 4] (u)du)ds],
1 1 %

for n ="1,2,,es Then

t

(28) x,(t) = f £[x, 4] (w)du + A[x,_,], t €D
b

and

(29) x(t) = f[x,_1(t), t e D,

. fOI' n = 1’2’oog
The functions (25) fulfil the assumptions of Lemma 6. The-
refore we obtain

(30) M=y = %o qll < C3 Q[x,_q0x, )]s 0= 1,2,0..,
where the constant Cq is defined by the formula (19) and the

furction Q by formula (8). Similarly the functions (28) satis-
fy assumptions of Lemma 7, whence

(31) fxp = ®poall € €4 Q= _qox 5]s 1= 1,2,000,

where C4 is defined by (21). Formula (29) together with Lemma 8
gives

(32)° Mz - =i 4l < Q[x,_q0%, 5]y 0= 1,2,...
Putting .

Xy = lxg = x5 4l
(33) %, = =, = x4l |

iﬁ = ”|xg - xg_1”| for n = 1,2,e00
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Differential equations with deviated arguments 1

and making use of definition (8) we have

S

o

in-\ 03 P X4+ C3 P xh_1‘+ 03 Xp-1*
(34) X, < C,p &, _,+Cp DX _,+CyB X 4,
Xﬁ < PEjqt PXpq+ 3 *p-1

for n = 1,256
Let us form the new number-valued seguences {xn}, {xh } and
{xa} by the formulae

~ x - = = =,
X, = 03 P X4+ 03 PXj 4+ 03 DX _q»
=, - x - = = Xn
(35) = Oy P X g+ Cp DXy g+ 0y b X g
Xp = PXpq v DX g+ Py

for n = 1,2,¢0s, Where §1 = Xqy §H =%, X =% . It fol-
lows from (34) and (35) that

) < ~ x
0 Xy £ X

(36) 0 €£X < %,

for 1 = 1,2,40e

We want to obtain convergence to zero for the recurrence
sequence (35). A sufficient condition for this sequence to be
convergent to zero is (see [5] p. 208 formula (8.3.6)) that
eigenvalues 11, Ay and AB of the matrix

-03 Py 03 P 03’5
(37) 04 D, C4 P 04 5
Py D, P
fulfil the ineguality
(38) 2yl <1y 1=1,2,3.
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12 J.Kalinowski

Solving the characteristic equation for the matrix (37) we
obtainm

(39) Ay =2 =0, A3=C3p+C,p+ De
Using (19) and (21) we have
(40) Ay = (a2 + Cc,d+Cy) p+ (d+ Cq) B+ Be

Condition (23) guarantees the fulfilment of inequality (38).
Continuing this argumentation (comp. [5] p. 208) we infer that
the series

-] O o0
> ii’ > X, and Z X
i=1

are convergent,and after applying inequality (37) and the com=
parative criterion for convergence we conclude that the series

[~ [-v.} (-]

(41) > %, > % and > X
i=1 i=1 i=1

are also convergent. Applying the comparative criterion once

more and using (33) we obtain the convergence of the norm .

gseries

Z“;]]xn(t) -x (8] , 2” x () - x_ ()] and
n= n=

f‘;" x () = x4 (8]

in D. Hence, by the Weierstrass criterion, we obtain uniform
convergence .of the series

o0

- oQ
Z [xn - xn-1-]’ é'[xh - h_1] and ; [xi’l - x;’l_,i

n=1

in this interval, It follows from this that the series
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oo )
Xy + &%T;an - xn-‘l-l =X

is uniformly convergent in interval D. By virtue of this sta~
tement the sequence _{xn} is uniformly convergent and there-
fore the function ’

X = lim x,

iy~ 00

is continuous in D.
Vectors (26) and (27) satisfy the assumptiions of Lemmas 4
and 5, Thus, the following inequalities hold

”A[xn] = A[xn_1]|| < c1 Q[xn’xn-ﬂ

and
"B[xn] - B[xn-‘l] I < C Q[xn'xxtﬂ] ¢

From the definition (8) we get

I A[x] - A[x, 4]l < C (p X, + DX+ P )

=]
MY .

| B[x,] - B[xn_ﬂ1| 4,02 (p %, + n * P X0,
and the convergenoe of coordinates of the vector sequences
A(x,] and B[x ], n = 1,2,e.., to the suitable coordinates of
some limit- vectors A and B follows from the convergence of
series (41), Sinoce all the functionall sequences with terms
appearing in equation (25) are uniformly convergent in D, we
may pass with limit under the integral sign in equations (25)
- (29). Then we obtain

t, s
(42) x(%) = gf{ b f[x](u)du}ds + A(t - t4) +B, teD,

where vectors 4, Be¢R™ are defined by formulae

A= %—{ao(rz _pzf[x](tz)) - /50(;1 -oq:z_f[x](t1)) +

(43) t, 8 ts
= agfo fa( f £]x] (u)du)ds - an0y f f[x](u)dn}b_,
t1 ty

o

1

at
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X1 Aoty = 80 (xy = ap 2L61(5) +

o]
"

(44)  + oc1(r1 - B f[x](t.l)) - d1(1‘2 - B f[x](tz))+

2 s ) 2
+ a1[3'0f ( f £[x](u)du)ds + o454 f f[x](u)du} .
'l'-,]‘ t1 't,l

Thé system of equations (42) - (44) is equivalent to the
system (1), (4). The function x from the system {(42) - (44)
satisfies the boundary condition (4) pecause the pointwise
convergence of the functlonal sequence {xn} follows from
its uniform convergence, in particular at the points ti’

i = 1,2, This means that the function defined by formula (42)
is a solution of boundary value problem (1), (4).

Now we shall prove the uniqueness of this solution. Suppo-
se' the contrary, i.e. that there exist two different solutions
x and X together with the corresponding vectors A, B, 4, B
to the problem (1), (4), and that these solutions are both of
the class 02 in D. Functions x and X must fulfil equation (42).
Thus, they satisfy the assumptions of Lemmas 6, 7 and 8. Hence
we obtain the inequalities

(45) Ix - xfI < c5 Q[Xx,x],
(26) % - x|l < ¢, Q[%,x]
and

(47) Iz - =l < Q[%,x].

Using (8) we have

(48) pX<p Cy (p X+ % +9 %),
(49) pPX<P Cy (pX+9p% +p %),
(50) pPRLP(pET+DX +p X" )
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Differential equations with deviated arguments 15

Adding side to side inequalities (48) - (50) we obtain

(51) (p§+f>5f'+I=>i")>[1-(03p+c‘4f>'4.-f>)]:éO
with
[i = Iz - =l ,
o= Iz -x,
= iz - x"ll.

In view of (23), inequality (51) is fulfilled only for X = X'=
= X" = 0, which means that solutions X and x are the same,
The estimations (24) follow from the formula (8.3.8) of
the mentioned handbook [6].
" This completes the proof of our theorem,
The existence and uniqueness theorem may be obtained as
a corollary to Theorem 1 by taking ¥ = 1 and w1(t) = t. The
analoguous theorem may also be obtalned under weaker assumptions.
Theoren 2. Let a continuous function £ of the

type
f : Dx R%x R® — R%

fulfil the Lipschitz condition

l£(t,x,y) = £(4,%,3) < p() I x -%x1 + p(t)lly -5, t e D,
where p and p are non-negative continuous real functions de~-
fined in interval D and satisfying there the inequality

e + cpav o) p+@rcpBll <1,

where in constants C1 and 02 are defined by formulae (15) and
(17). Then, under assumption (5) in interval D there exists
a unique soluticn of the class 02 of the system of ordinary
differential equations

x' (%) = £(t,x(t),x' (t))
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46 J.Kalinowski

gatisfying boundary value condition

"
H

ocox.(t 1 )+ oz1bt(f1 )

Box(t,) + /51:ii(t2)

]

The
The sequence of succesive approximations is defined by the
formulae -

t

. 5
' 2
xn(t) ='f {f f(u,xn_.l(u),xh_.](u))du}ds +A[x, ]t - t) +
ty .ty _ '

+ B[xn-—1]

where the veotors A[x, _.], B[x,.¢] € K" are defined in the
following manner

te -]
A[xr._,‘] :-2—*[0{01'2 -/Sor,I -rxoﬁof ( f f(u,xn_,l(u),x;l_,](u)) du )ds +
t’l t,‘

s

..ozooc,‘f f(u,xn_q(u),x;l_,](u)) du} .
t
1

2

(

1 1

B[xpq] = %{ﬁo(tz -ty - B f(u’xn-1(u)’x;1-1(")),.d“ ) ds +

d'\ ot
d-\ ]

t

2

+ 4Ty mouyT, +a1/31f f(u,xn_,l(u),x;\_,](u))du} .
t
1

for n = 1,2,..s, whereas
- .t
x' (%) =f f_(u,xn_.](u),x’n_,'(u))du +~A[xn_1] s, t € D.
t
1
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