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INVARIANT SUBMANIFOLDS OF AN (f(1), y-MANIFOLD 

Invariant submanifolds of almost complex, almost contact 
and f-structure manifolds have been studied by Schouten and 
Yano [2] ; Yano and Ishihara [4]$ and Vohra and Singh [3] re-
spectively. In this paper, we study invariant submanifolds 
of an f(2))-manifold. We mainly define and study two 
particular invariant submanifolds, which we call horizontal 
transversal submanifold and vertical transversal submanifold. 
We prove that an (f^^^,f(2)^-manifold does not admit any ho-
rizontal transversal submanifold while each vertical transver-
sal submanifold is an almost quaternion manifold with Hermi-
tian metric. Finally, we prove that if the structure tensors 
f(-j) and f(2) 1)»^(2) ̂  -manifold are covariantly con-
stant, then each vertical transversal submanifold of it is 
necessarily a minimal submanifold. 

1. Introduction 
Let V111 be an m-dimensional C°° Riemannian manifold imbedded 

differentiably as a submanifold in an n-dimensional C°° Rieman-
nian manifold M n (m < n) by an imbedding map $ : V 1 1 1—M n. Let 
B be the Jacobian map of $ i.e. B : tCV™) T(Mn) where TCv"1) 
and T(Mn) are the tangent bundles of V111 and M Q respectively. 
Let T(V,M) and W(V,M) be the set of all those vectors of T(Mn) 
which are respectively tangential and normal to the submani-
fold $ (V™). The set N(V,M) forms a vector bundle over $ (V111) 
which is called the normal bundle of $ (V*11) while the vector 
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bundle induced by § from W(V,It) denoted by U(V) is called the 
normal bundle of V™. The mapping B : Ti?"1) —-T(V,M) is an 
isomorphism [4] and we denote by Cs TT(V) — N(V,M) the natural 
isomorphism. Let C° - e^fCV111) and C°° - ft/iv"1) be the spaces 
of all C°° tensor fields of type s) associated with TCV111) 
and W(V) respectively. Since B is an isomorphism [4] we have 

(1.1) [BX, BY] = B[X,Y] 

for all X, Y t C M - J* (V™). 
Let g be the Riemannian metric tensor in Mn, we then de-

fine g and g* by 

(1.2) g(X,Y) = glBX,BY)° § 

and 

(1.3) g^N^Ng) = KCW^CNg) 

for all X, Y t C K - (V™), and Nt, U2 6. C°° - %'0 (V111). It is 
easy to verify that g is a Riemannian metric tensor in V111 and 
we call it the metric tensor of Vs1 induced by % while the ten-
sor field g* which is an inner product in NiV111) is called the 
metric of N(V) induced by g. 

The Riemannian connection V , corresponding to the metric 
tensor g in Mn, induces a Riemannian connection V in $ (V111) 
defined by 

(1.4) V B X BY = B,^XY + CK(X,Y) , 

where K(X,Y) is the second fundamental tensor of the submani-
fold ¿(V111) defined by 

(1.5) CK(X,Y) = V B X BY - B Vx Y, 

which satisfies 
(1.6) K(X,Y) = K(YtX) 
for all X, Ye. C~ (V™). 
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The other second fundamental tensor H is defined by 

(1.7) H(X,U) = -(\7TC)U = (fcTCU) - C VTU 

for X e C°° (V™) and U e C°° - «^'(V1"). These two second funda 
mental tensors are related by 

Let R and R denote the Riemannian curvature tensor of the 
enveloping manifold M n and the submanifold § (V®) respectively. 
We then have 

(1.9) R(BX, BY) BZ = BR(X,Y)Z - B(H(X,K(Y,Z)) - H(Y,K(X,Z))) + 

for any X, Y, Ze C°° (Vm). 
let X^, X2, ..., XJJJ be m local orthonormal vector fields 

in V , where m = dim Vm, then an element A of #0'{Vm) defined by 

m 
(1.10) mA i=1 1 1 

is called the mean curvature vector of the submanifold § (V111) 
and the submanifold $ (V111) is called a minimal submanifold of 
M n if its mean curvature vector vanishes. 

2. Invariant submanifold of an (f^1^.f^^)-manifold 
Let M n be a C°°(f ̂  1 ̂  )-manifold i.e. it admits two 

non-zero (1,1) tensor fields ^ j and f(2) such that 

(1.8) g» (,K(X,Y),U) = g (H(X,U),Y) 

+ C ( (VXK)(Y,Z) - (VyK)(X,Z)) 

f ( D + f ( D = f\2) + f(.2) = 0 
(2.1) 

(1) = f (2)» f(l) f(2) = " ?(2) f ( D ' 

Rank (f^)) is a constant integer all over Mn. If we put 
( 1 ) 
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f(3) = f ( D f(2) = ~ f(2) f ( D 

then 

f(3) + f(3) = 

,f(2) = f(3) f ( D 

and 

Sank (f(1j) = Rank (f(2)) = Rank 

Corresponding to two complementary projection operators 1 

and m defined by 

(2.3) 1 = - 3 = 1 + (a=1,2,3)» 

where 1 denotes the unit tensor, there exist two complementary 

distributions which we call the horizontal distribution and 

the vertical distribution respectively. We note 

f~(a) 1 = 1 ?(a) = f(a)' *(a)
 2 = 3 f(a) = 0 

(2.4) 

f 2l = - 1; ff a ) m = m f\ a ) = 0. 

Thus an ( f ^ ^ 2 ) ) - s t r u c t u r e acts as an almost quaternion 

structure on the horizontal distribution. Consequently the 

dimension of the horizontal distribution is of the form 4r 

for- some constant integer r. 

It is known that ( f ^ ^ , f ^ ) - m a n i f o l d always admits a po-

sitive definite Riemannian metric g such that 

(2.5) g(X,Y) = g(f ( a )X, f ( a )Y) + g(mX,Y) 

for all X, Y e C " (M q ) . 

f(2) f(3) = " f(3) f(2) = f ( D » 

= - f *2 
( 1 ) f ( 3 ) $ f ( D 

? 2 - f 2 

( 2 ) ~ (3) 
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We now define an invariant submanifold of MQ. Let V111 be 
a C°° m-dimensional manifold imbedded as a submanifold in the 

-manifold Mn. The submanifold V™ is defined to be 
an invariant submanifold of M n if m > (n-4r) and the linear 
mappings f(-j) aid ^(2) l e a v e invariant the tangent space 
Tp( $ (V11)) of § (V°) fo* each point p 6 § (V®) . " 

In the rest of the paper, we shall consider v"1 to be an 
invariant submanifold of Mn< Thus for an arbitrary XtC 0 0-
-f 0 (V®), we have 

(2.6) 
f(l)(BX) = B(X.,) 

f(2|(BX) = B(X2) 

for some X1, X2t C°°(V 1 1 1). The fact that both X1 and X2 
are uniquely determined by X enables us to define two (1,1) 
tensor fields f^j and in V® by 

(2.7) 
f ( 1 )x = x1 

f ( 2 )X = x2. 

Wow from (2.6) and (2.7), we have 

(2.8) 

and 

(2.9) 

f(l)(BX) = B(f(l)X) 

f(2)(BX) = B(f(2)X), 

We now prove the following theorem. 
T h e o r e m 2.1. An invariant submanifold v"1 of an 

(f^j )-manifold M n admits an (f̂  1 j )-structure indu-
ced by the (f^),f^2j)-structure. 

P r o o f . Operating f^j on (2.8), on (2.9), and 
in view of (2.1) we have 

f(D + f(D - f(2) + f(2) " 0 
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while the relations (2.1), (2.8) and (2.9) yield 

f ( D f(2) = ~ f(2) f ( D a n d f ( D = f(2)' 

How the proof is completed if f ^ j and f ^ are shown to be 
non-zero. 

Suppose that f ^ j = 0, i.e. f(-,)X = 0 for Xe. C°° - # (Vm). 
Hence by (2.8) f'^j(BX) = 0 and ^ ( V ® ) ) C the null space of 
f^j. Then dim V^ = m 4 n - 4r, since rank (f^j) = 4r. Bat 
this contradiots the assumption that m > n - 4r. Hence f^j^O. 
Similarly it can be proved that ^ 

T h e o r e m 2.2. The Nijenhuis tensors corresponding 
to the (1,1) tensor fields appearing in the 1 ^ ) - s t r u c -
ture and the induced (f ̂  ̂  .f^) )-structure are related by 

(2.10) " [ f ^ ^ f ^ j W . B Y ) = B.[f(0)»f(d)](X,Y) (c,d=1,2,3). 

The proof follows from the definition of Nijenhuis tensor 
and the relation (1.1). , 

We now define two special invariant submanifolds of an 
(f^1^,f)-manifold as follows. 

D e f i n i t i o n 2.2. An invariant horizontal trans-
versal submanifold of an (f^1^,f)-imanifold M n is an inva-
riant submanifold of M n whose tangent space ^(^(V01)) for each 
point peifiV™) does not contain any non-zero element of the 
horizontal distribution. 

D e f i n i t i o n 2.3. An invariant vertical trans-
versal submanifold of an (f^^^,f^))-manifold is an invariant 
submanifold V01 of M n whose tangent space Tp(#(Vin)) for each 
point pe ̂ (V0) does not contain any non-zero element of the 
vertical distribution. 

We now prove the following theorem. 
T h e o r e m 2.3. An (f^^,f^)-manif'old does not 

admit any invariant horizontal transversal submanifold. 
P r o o f . Suppose that V m is an invariant horizontal 

transversal submanifold of Mn. Consequently, non-zero vector 
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fields of type BX for X e C°° (V111) do not belong to the 
horizontal distribution. 

Since by (2.3) 

1(BX) = - i(a)(BX) = B(-f^a)X); (a=1,2,3) 

and 1(BX) is a veotor field in the horizontal distribution, 
therefore l(BX) cannot be a non-zero veotor field. Consequently 

(2.11) 1(BX) » 0 

i.e. BX belongs to the vertical distribution. 
Operating on the equation (2.11), we get f^a^(BX) = 0 

which implies that dim V111 = m ^ n-4r. This contradicts the 
assumption m > n-4r appearing in the definition of the inva-
riant submanif-old. 

As a corollary of the above theorem, we can state 
C o r o l l a r y 1.1. Every invariant submanifold of 

an (f(i),f(2))-inanifold contains at least one non-zero element 
of the horizontal diatribution. 

Next, let V111 be an invariant vertical transversal submani-
fold of 2j)-manifold. Thus non-zero vector fields of 
type BX for Xe.C°° - cf10 (V111) do not belong to the vertical di-
stribution. 

Sinoe by (2.3) 

in (BX) = (1 + f(a))(BX) = B(X + f(a)X) (a=1,2,3) 

and m(BX) belongs to the vertical distribution, therefore 
m(BX) cannot be a non-zero vector field. Consequently f5(BX)=0 
i.e. BX belongs to the horizontal distribution and as a con-
sequence dim V® = m 4r. 

Since 

0 = m(BX) = (1 + f^fl))(BX) = B(X + f(a)X) 

and B is an isomorphism, we have 
f(a) = -1 (a^1,2,3). 
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Similarly 

f(a)f(b) = - flb)f(a) a,b=1,2,3). 

Thus an invariant vertical transversal submanifold V111 admits 
an almost quaternion structure [6] induced by the (f^^f^))-
-structure. As a consequence, the dimension of suc.h a manifold 
is 4q ^ 4r, q being a constant integer. In view of the rela-
tions .(1.3), (2.5), (2.8) and (2.9) we have 

g(f(a)X' f(a)Y) = g ( X' Y ) (a=1,2,3). 
Combining the above facts, we have the following theorem. 

T h e o r e m 2.4. An invariant vertical transversal 
submanifold V111 of an (f^ ̂  )-manifold M n admits an induced 
almost quaternion (f ̂  1 j )-structure as well as an 
induced Hermitian metric g. The dimension of such a manifold 
is 4q ^ 4r. 

We now assume that the (1,1) tensor fields and f(2) 
are covariantly constant with respect to the Riemannian connec-
tion V . Then in view of (1.4), we have 

*BX(b f(a)Y) " B *BX(f(a)Y> + (a-1,2,3) 
or 

W f ( a ) B Y ) = R K x f ( a ) ) ( Y ^ + f(a)(VBXY)) + CK(X,f(fl)Y) 

hence 

< % x W ( K ) + f ( a ) ^ B X B Y ) = 

" B(7BXf(a)>(Y> + B<f(a)7BXY> + 

or 

f(a)(B7xY + CK(X,Y)) = B(\7xf(fl))(Y) + 3(f(a) VjX) + K(X,tf(a)Y) 
or 

f(a)CK(X,Y) f B(yzf(a))(Y) + K(X,f(a)Y), 
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Since the left hand side of the above equation is normal to 
$(7™) equating tangential and normal parts, we get 

(2.12) ^xf(a) = 0 a n d ?(a)CK(X,Y) = CK(X,f(a)Y) 

which in view of (1.6) and thfe fact that C is an isomorphism, 
yields 

(2.13) K(X,f(fl)Y) = K(fu)X,Y) (a=1,2,3). 

Writing (2.13) for a=1, and taking f(2)x a n d f ( 3 ) x i n P l a c e 

of X and Y we get 

K(f^2jX, = - f^jY) 

Which in view of the relation (2.13) gives 

(2.14) K(X,Y) = 0. 

Consequently the mean curvature vector of an invariant trans-
versal vertical submanifold vanishes. Thus we have the follo-
wing theorem. 

T h e o r e m 2.5. If the structure tensor fields 
and f^gjof an (f^^,f)-manifold M n are covariantly con-
stant, then every invariant vertical transversal submanifold 
of Mq has vanishing second fundamental tensor K and consequent-
ly is a minimal submanifold and (̂-j) and ^ 2 ) sre covariantly 
constant. 

We next prove a theorem. 
T h e o r e m 2.6. If any two of the Nijenhuis tensors 

^(a)'£(a)3 (a=1,2,3) ~[f(a),f(t) j (a^b, a,b=1,2,3) of an 
(f(.,),f(2))-structure manifold vanish, then in an invariant 
vertical transversal submanifold of M n all the Nijenhuis ten-
sors corresponding to the induced almost quaternion (f(-|)» 
f(2)(3))-structure vanish. 

P r o o f 
The proof follows from the relations (2.8) and a theorem 

3.9 in £6], 
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Let R and R be the curvature tensors of the connections-V 
and V in (f^1^,f^2))-manifold M û and its invariant vertical 
transversal submanifold V111 respectively. If the structure ten-
sors f^i) and a r e covari-antly constant, then in view of 
Theorem 2.5 and the relation (1.9) we get 

(2.15) R(BX, BY)BZ = B(R(X,Y)Z). 

Next we prove the theorem. 
T h e o r e m 2.7. If in a locally flat ( f ^ 1 ^ ) - m a -

nifold M" the structure tensor fields and a r e c 0~ 
variantly constant, then the induced almost quaternion 
(f^^,f»£(3))-structure of an invariant vertical transver-
sal submanifold of, M n is integrable. 

P r o o f . Since f ^ ) and ?(2) a r e covariantly constant 
from Theorem 2.5, we have 

7 x f ( l ) = 0 and V xf ( 2 ) . 0. 

Thus as a consequence of Theorem 3.9 in [6], the Uijenhuis 
tensors [ f ( a ) ( t ) ] » (a,b=1,2,3) vanish. Since ( f ^ 1 ^ 2 j ) - m a 
nifold is locally flat, the relation (2.15) yields 

R(X,Y)Z = 0 . 
Hence in view of Theorem 6.3 [6], the almost quaternion 
(f^^^g)3))-structure is integrable. 

Let V® be an invariant submanifold of M n and X.YeTptv"1). 
Let ^ b e the two-dimensional plane determined by the vectors X 
and Y. The sectional curvature of V111 at the point p with res-
pect to the plane is given by 

'R(X,Y) = R(X,Y,XtY) g(X,X)g(Y,Y) - g(X,Y) 

Let 'K(X,Y) be the sectional curvature of at the point p with 
respect to the plane % t then in view of (1.9) 
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g(R(BX,BY)BX,BY) = 

= R(X,-Y,X,Y) - g (H (X ,K (Y ,X ) } ,Y ) + g (H (Y ,K (X ,X ) ) Y) 

i.e. 

( 2 . 1 6 ) R ( B X , B Y , B X , B Y ) = 

= R(X,Y,X,Y) - g * ( K ( X , Y ) , K ( X , Y ) ) + g * ( K ( Y t Y ) ,K (X ,X ) ) . 

Thus 

( 2 . 1 7 ) 'K(X.Y) = 'K (X ,Y ) + g » ( K ( X , Y ) ,K(X,Y) ) - g * ( K ( Y t Y ) tK(X,X))) 
g ( X , X ) g ( Y , Y ) - g (X ,Y ) 

which completes the proof of the following theorem. 
T h e o r e m 2 .8. The sectional curvature'K(X,Y) and 

'K(X,Y) of the invariant submanifold V111 and the enveloping 
(f ̂  1 ̂  ,f )-manifold M N are related by the relation ( 2 . 1 7 ) . 

We now assume that the structure tensors ^(2) 0^ 
M q are covariantly constant. Let Kfl(X) (respectively K^a^(X)) 
denotes tlie sectional curvature of V111 (respectively M n) at the 
point p with respect to the plane determined by the vectors X 
and f ( a )X. 

Then in view of Theorem 2.5 and the relation (2.17) we ha-
ve the following theorem. 

T h e o r e m 2.9. Let V™ be an invariant vertical 
transversal submanifold of (f^ 1^,f)-manifold such that 

^(2) a r e covariantly constant. Then the sectional cur-
vatures 'K(a)(X) and of V111 and M n with respect to the 
plane determined by X and f^^X, are equal. 
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