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INVARIANT SUBMANIFOLDS OF AN (f

w?

f )~MANIFOLD

Invariant submanifolds of almost complex, almost contact
and f-gtructure manifolds have been studied by Schbuten and
Yano [2]; Yano and Ishihara [4]3 and Vohra and Singh [3] re-
spectively. In this paper, we study invariasnt submanifolds
of an (5(1), f(z))-manifold. We mainly define and study two
particular invariant submanifolds, which we call horizontal
transversal submanifold and vertical transversal submanifold,
We prove that an (f(1),f(2))-manifold does not admit any ho-
rizontal transversal submanifold while each vertical transver-
sal submanifold is an almost guaternion manifold with Hermi-
tian metric. Finally, we prove that if the structure tensors
f(1) and 5(2) in (f(1),f(2))-manifold are covariantly con-
stant, then each vertical transversal submanifold of it is
necessarily a minimal submanifold,

1. Introduction

Let V™ be an m-dimensional C* Riemannian manifold imbedded
differentiably as a submanifold in an n-dimensional C* Rieman-
nian manifold M® (m < n) by an imbedding map & : V" — MP. Let
B be the Jacobian map of ¢ i.e. B : T(V®) = T(M?) where T(VT)
and T(MP) are the tangent bundles of v and MR respectively.
Let T(V,M) and N(V,M) be the set of all those vectors of T(MP)
which are respectively tangential and normal to the submahni=-
fold ¢ (V®). The set N(V,M) forms a vector bundle over ¢ (V©)
which is called the normal bundle of ¢ (V™) while the vector(

- 65 -



2 K.D.Singh, R.K.Vohra

bundle induced by ¢ from N(V,M) denoted by N(V) is called the
normal bundle of V", The mapping B : T(V®) — T(V,M) is an
isomorphism [4] and we denote by C: N(V) —N(V,M) the natural
igsomorphism. Let C® - & (V") and ¢ - 77(V") be the spaces
of all C® tensor fields of type (s,s) assocliated with (V™)
and N(V) respectively. Since B is an isomorphism [4] we have

(1.1) [Bx, BY] = B[X,Y]

for all X, ¥ € C* =47 (V).
Let & be the Riemannian metric tensor in Mn, we then de-
fine g and g* by

(1.2) | g(X,Y) = Z(BX,BY)* §
and
(1.3) g* (N,,N,) = &(CN,,CN,)

for all X, YeC*® -4, (V®), and Ny Ny C® -7 (V). It is
'easy to verify that g is a Riemannian metric tensor in V® and
we call it the metric tensor of V™ induced by 5 while the ten-
sor field g* which is an inner product in N(V?) is called the
metric of N(V) induced by g. I '

' The Riemannian connection ¥ , corresponding to the metric
tensor § in M", induces a Riemannian cpnnectidn Vin ¢ (V9)
defined by ' '

(1.4) Vgx BY = BVyY + CK(X,Y),

where K(X,Y) is the second fundamental tensor of the submani-
fold ¢ (V™) defined by

(1.5) ' : CK(X,"I). = Vggx BY - B Vg ¥,

which satisfies _
(1.6) K(X,Y) = K(Y,X)

for all X, Ye C™ =g (V™).
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Invariant submanifolds 3

The other second fundamental tensor H 1s defined by

(1.7) H(X,U) = =(%C)U = (VgxCU) = C VyU.

for XeC®~.J] (V®) and Ue G - %Z'(Vm). These two second funda~-
mental tensors are related by

(1.8) g* (x(x,¥),U) = g (H(X,U),Y).
Let R and R denote the Riemannian curvature tensor of the

enveloping manifold M? and the submanifold é (v®) respectively.
We then have

(1.9) f(BX, BY) Bz = BR(X,Y)Z - B(H(X,K(Y,2)) - H(Y,K(X,2))) +
+ C (%K) (¥,2) - (WK)(X,2))

for any X, Y, Ze C® -J:, (v,
Let X1, X2, eoey Xm be m local orthonormal vector fields

in'Vm, where m = dim VM, {then an element A of -ZZg'(Vm) defined by
. m
(1.10) m:E:K@qK)
i=1 171

is called the mean curvature vector of the submanifold ¢ (V‘m)
and the submanifold & (V") is called a minimal submanifold of
Mn if its mean curvature vector vanishes.

2, Invariant submanifold of an (5(1),5(2))-manifold
Let M™ be a C”(f(1),f(2))-manifold i.e. it admits two
non-zero (1,1) tensor fields f(”_ and f(z) such that

53 5 3 Fo. -
o+ T =% Hy*rHe =0
(2.1) ,

~

~2 - ...2 . ~ - ~ -~
[Ftn = T2 (o T2 =~ T2y F(oye
Rank (5(1)) is a constant integer all over M". If we put
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3y = £y £a) = - (o) E(1)

then

~3 -~ . ~ ~ _ ~ ~ _~
3) * f(3) =05 f(p) f(3) = = £(3) T(2) = T(q)3

£y f f F F 72 2 %2
f2) = T3) Ty = = Fy Ty Ty = fy = £(5)

and

Rank (f(1)) = Rank (f(z)) = Rank (f(B)).

Corresponding to two complementary projection operators I
and fi defined by

(2.3) i-- f‘fa). =14 f'%a) (a=1,2,3),

where 1 denotes the unit tensor, there exist two complementary
distributions which we call the horizontal distribution and
the vertical distribution respectively. We note

1 =1 f(a) = f(a); f(a) B o= m f(a) =0

(2.4)

0.

=4

1--1; oy i = 1 5,
Thus an (5(1),5(2))—structure acts as an almost quaternion
structure on the horigzontal distribution. Consequently the
dimension of the horizontal distribution is of the form 4r
.for some constant integer r. o

It is kxnown vhat (5(1),5(2))—manifold always admits a po~-
sitive definite Riemannian metric § such that

for all X, Y eC® ~o/f (M%),
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We now define an invariant submanifold of M2, Let VT be
a C® m-dimensional manifold imbedded as a submanifold in the:
(f(1),f(2))—manifold M, The submanifold V® is defined to be
an invariant submanifold of M® if m > (nf4r) and the linear
mappings f q) and f(,) leave invariant the tangent space
Tp( $ (V™)) of (V™) for each point pe @ (VP). "

In the rest of the paper, we shall consider v to be an
invariant submanifold of M®; Thus for an arbitrary XeC® -

-J, (vV®), we have

f(1)(BX) B(X1)

(2.6)

f(z)i(BX) B(XQ)

for some X,, Xy& C= -, (V") The fact that both X, and X,
are uniquely determined by X enables us to define two (1,1)
tensor flelds f(,) and f,) in v by

£, =X
(1) 1
(2.7)
Now from (2,6) and (2.7), we have
(2.8) 5(1)(Bx) = B(£(4)X)
and
(2.9) 5(2)(Bx) = B(£(5)%).

We now prove the following theorem, _

Theorem 2.1, An invariant submanifold V% of an
(f(1),f(2))-qanifg}d MP admits an (f(1),f(2))-structure indu-
ced by theA(f(1),f(2))-structure.

Proof ., Operating 5%1) on (2.8), 5%2) on (2.9}, and
in view of (2.1) we have : :

3 3
Ty * £(1) =03 f(p) +f(p) =0
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while the relations (2.1), (2.8) and (2.9) yield

: 2 2
() f2) =~ ) Fy T = ey

Now the proof is completed if f(T) and f(2) are shown to be
non=-zero. ,

Suppose that £(,) = 0, i.e. £ ;)X = O for Xe € - J (V7).
Hence by (2.8) f(1)(BX) = 0 and T§¢(Vm)) ¢ the null space.of
f(q)+ Then dim =m <n - 4r, since rank (5(1)) = 4r. But
this contrad}ots the assumption that m > n - 4r. Hence f(1)#0.
Similarly it can be proved that (o) #.0.

Theoren 2.24 The Nijenhuis tensors corresponding
to the (1,1) tensor fields appearing in the (5(1),f(2))-struc-
ture and the induced (f(1),f(2))-structure are related by

(2.10) _[f(c),f(dﬂkBX,BY) = B{?(o),f(d)](i,y) ~ (e,d=1,2,3),

The proof follows from the definition of Nijenhuis tensor
and the relation (1.1). .

We now define two special invariant'squanifolds of an
(5(1),5(2))-manifold as follows.

Definiltion 2.2, An invariant horizontal trans-
versal submanifold of an (f(1),f(2))amanifold u® is an inva-
riant submanifold Qf,Mn whose tangent space T_ (& (V")) for each
point p£:¢(vm) does not contaln any non-zero glement of the
horizontal distribution.

Definition 2.3. An invariant vertical trans-
versal submanifold of an (fk1),f(2))—manifold is an invariant
submanifold V" of M® whose tangent space Tp(@(Vm)) for each
point pe@(Vm) does not contain any non-zero element of the
vertical distribution,

We now prove the following theorem,

Theorem 2.3. An (5(1),f(2))-manifold does not
admit any invariant horizontal transversal submanifold,

Proof. Suppose that V™ is an invariant horizontal
transversal submanifold of MR, Consequently, non-zero vector
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Invariant submanifolds 7

fields of type BX for XeC™ -/ (V™) do not belong to the
horizontal distribution. ’
Since by (2.3)

i(BX) = - f%é)(BX) = B(-f%;)x);' (a=1,2,3)

and 1(BX) is a veotor field in the horizontal distribution,
therefore 1(BX) cannot be a non-zero vector field, Consequently

(2.11) I(Bx) = 0

i.e. BX belongs to the vertical distribution.

Operating f(a) on the equation (2.11), we get f(a)(BX) =0
which implies that dim V™ = m g n-4r. This contradicts the
assumption m > n-4r appearing>in the definition of the inva-
riant submanifold, '

As a corollary of the above theorem, we can state

Corollary 1.1. EBvery invariant submanifold of
an (5(1),5(2))-manifold contains at least one non-zero element
of the horlzontal diatribution.

Next, let V" be an invariant vertical transversal submani-
fold of (f(1),f(2))-manifold. Thus non-zero vector fields of
type BX for XeC® ad@’(vm) do not belong to the vertical di-
stribution.

Since by (2.3)

~

fi(BK) = (1 + #2,))(BX) = B(X + £7,)%) . (a=1,2,3)

and f(BX) belongs to the vertical distribution, therefore
i (BX) cannot be a non-zero vector field. Consequently fif (BX)=0
i.e. BX belongs to the horizontal distribution and as a con-
sequence dim v = m < 4r.

Since

0 = &(BX) = (1 + E%a))(sx) = B(X + f%a)X)

and B is an isomorphism, we have
2 .
»f(a) = =1 (a=1,2,3).
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8 K.D.Singh, R.K,Vohra

Similarly

f(a)f(b) = - f(b)f(a) (8fb, a,b=1,2,3).

Thus an invariant vertical fransversal submanifold V* admits
an almost quaternion structure [6] induced by the (f(1),f(2))-
-gtructure. As a consequence, the dimension of such a manifold
is 49 <€ 4r, q being a constant integer. In view of the rela-
tions (1.3), (2.5), (2.8) and (2.9) we have

8lf(g)%s f(g)¥) = 8(XY) (a=1,2,3).

Combining the above facts, we have the following theorem.
Theorenmn 2.4, An invariant vertical transversal
submanifcld Vo of an (f(1),f(2))-manifold M? admits an induced
almost quaternion (f(1),f(2),f(3))—structure ag well as an
induced Hermitian metric g. The dimension of such a manifold
is 4q < 4r,
We now assume that the (1,1) tensor fields f(1) and 5(2)
are covariantly constant with respect to the Riemannian connec-
tion ¥V . Then in view of (1.4), we have

ﬁBX(B £g)Y) = B Vgg(f()¥) + CR(X,f)¥) (a=1,2,3)
or

Vg (E(a)BY) = B((VBxf(a))(Y) + f(a)(VBxY)) + CK(X,£(o)Y)

hence
(\?Bx f(a))(BY) + f(a)(an BY) =
= B(Vpgf(q))(Y) + B(£(,)Vpx¥) + CK(X,£(4)¥)
or

f(a)(BVXY + CK(X,Y)) = B(fo(a))(Y) + B(f(a) VyY) + K(X,ff(a)Y)

or .
Z)CK(X,Y) = B(VgE (o)) (Y) + K(X,2()Y).
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Invariant submanifolds ‘ 9

Since the left hand side of the above egquation is normal to
@(Vm) equating tangential and normal parts, we get

(2.12) Vgf(a) = O and f(a)cxgx,y) = CK(X,f(,)Y)

which in view of (1.6) and thd fact that C is an isomorphism,
ylelds ’

(2.13) K(X,f(a)Y) = K(f(a)X,Y) (a=1,2,3).

Writing (2.13) for a=1, and taking f(z)x and f(B)X in place
of X and Y we get ' '

KE(g)% T(2)¥) = = K(E(5)%s £(5)¥)
which in view of the relation (2.13) gives

(2.14) K(X,Y) = O,

Consequently the mean curvature vector of an invariant %rans-
versal vertical submanifold vanishes. Thus we have the follo~
wing theorem.

Theoren 2.5, If the structure tensor fields fk1)
and 5(2).of an (5(1),5(2))-manifold M? are covariantly con-
stant, then every invariant vertical transversal submanifold
of M7 has vanishing second fundamental tensor K and consequent-
1y is a minimal submanifold and f(1) and f(2) are covariantly
constant,

_We next prove a theorem.

Theorem 2.6, If any two of the Nijenhuis tensors
[f(a),f(a)] (a=1,2,3) If(a),f(bé] (a#b, a,b=1,2,3) of an
(f(1),f(2))-structure manifold MP vanish, then in an invariant
vertical transversal submanifold of MP all the Nijenhuis -4en~
sors corresponding to the induced almost quaternion (f(1),
f(z),f(3))-stguCtu;e vanish.

‘Proof :
The proof follows from the relations (2.8) and a theorem
3.9 in [6]0
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10 K.D,Singh, R.K.Vohra

Let R and R be the curvature tensdrs of the connections.V
and V in (f(1),f(2))-manifold M2 and its invariant vertical
transversal submanifold V™ respectively., If the structure ten-
sors f(1) and f(2) are covariantly constant, then in view of
Theorem 2.5 and the relation (1.9) we get

(2.15) R(BX, BY)Bz = B(R(X,Y)z).

Next we prove the theorem.

Theorem 27 If ina locally flat (f(1),f(2))-ma-
nifold M® the structure tensor fields f(1) and f(2) are co~-
variantly constant, then the induced almost guaternion
(f(1),f(2),f(3))—structure of an invariant vertical transver-
sal submanifold of,Mn is integrable.

Proof. Since f(1) and f(z) are covariantly constant
from Theorem 2.5, we have

VXf(1) =0 and fo(Q) = O.

Thus as a consequence of Theorem 3.9 in [6], the Nijenhuis
tensors [f(a)’f(b)]’ (a,b=1,2,3) vanish. Since (f(1),f?2))—ma—
nifold is locally flat, the relation (2.15) yields

R(%,Y)Z = 0.

Hence in view of Theorem 6,3 [6], the almost gquaternion
(f WFraysf )=structure is integrable,
(1)2°(2)°7(3) n
Let V™ be an invariant submanifold of M™ and X,Ye.Tp(Vm).
Let zlbe the two-dimensional plane determined by the vectors X
and Y, The sectional curvature of V" at the point p with res-
pect to the plane 7 is given by

R(X,Y,X,Y) .
g(%,X)e(¥,Y) - g(X,¥)°

‘R(X,Y) =

Let K(X,Y) be the sectional curvature of M at the point p with
respect to the plane 4 , then in view of (1.9)
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g(R(BX,BY)BX,BY) =
- R(EY,X,Y) - g(H(XE(Y,D),Y) + (H(L,K(X,X)Y)
i.e.
(2.16)  R(BX,BY,BX,BY) =
= R(X,Y,X,Y) - g*(K(X,Y),K(X,Y)) + g*(K(Y,Y),K(X,X)).

Thus

(2.17) R(x,¥0) = R(x,¥) +& *(K(X,¥),R(X,Y)) - g*(K(Y, 1)K, L))
g(X,Xx)g(Y,Y) - g(X, Y)?

which completes the proof cf the follow1ng theorem.

Theorem 2,8 The sectional curvature 'K(X,Y) and
'R(X,Y) of the invariant submanifold V™ and the enveloping
(f(1),f(2))-manifold M? are related by the relation (2.17).

We now assume that the structure tensors f and ¥ 2) of
M2 are covariantly constant. Tet K (X) (reéspectively K (X))
denotes the sectional curvature of Vm (respectively Mn) at the
point p with respect to the plane determined by the vectors X
and f(a)X.

Then in view of Theorem 2,5 and the relation (2.17) we ha-
ve the following theorem,

Theoren 2.9. Let VT be an invariant vertical
transversal submanifold of (f(1), 2))-manifold such that
f(1) and f( ) are covariantly constant Then the sectional cur~
vatures K( )(X) and ?(a)x of V™ and M® with respect to the
plane determined by X and f(a)x, are equal.
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