

K. D. Singh, R. K. Vohra

INVARIANT SUBMANIFOLDS OF AN $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -MANIFOLD

Invariant submanifolds of almost complex, almost contact and f -structure manifolds have been studied by Schouten and Yano [2]; Yano and Ishihara [4]; and Vohra and Singh [3] respectively. In this paper, we study invariant submanifolds of an $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold. We mainly define and study two particular invariant submanifolds, which we call horizontal transversal submanifold and vertical transversal submanifold. We prove that an $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold does not admit any horizontal transversal submanifold while each vertical transversal submanifold is an almost quaternion manifold with Hermitian metric. Finally, we prove that if the structure tensors $\tilde{f}_{(1)}$ and $\tilde{f}_{(2)}$ in $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold are covariantly constant, then each vertical transversal submanifold of it is necessarily a minimal submanifold.

1. Introduction

Let V^m be an m -dimensional C^∞ Riemannian manifold imbedded differentiably as a submanifold in an n -dimensional C^∞ Riemannian manifold M^n ($m < n$) by an imbedding map $\phi : V^m \rightarrow M^n$. Let B be the Jacobian map of ϕ i.e. $B : T(V^m) \rightarrow T(M^n)$ where $T(V^m)$ and $T(M^n)$ are the tangent bundles of V^m and M^n respectively. Let $T(V, M)$ and $N(V, M)$ be the set of all those vectors of $T(M^n)$ which are respectively tangential and normal to the submanifold $\phi(V^m)$. The set $N(V, M)$ forms a vector bundle over $\phi(V^m)$ which is called the normal bundle of $\phi(V^m)$ while the vector

bundle induced by ϕ from $N(V, M)$ denoted by $N(V)$ is called the normal bundle of V^m . The mapping $B : T(V^m) \rightarrow T(V, M)$ is an isomorphism [4] and we denote by $C : N(V) \rightarrow N(V, M)$ the natural isomorphism. Let $C^\infty = \mathcal{J}_s^r(V^m)$ and $C^\infty = \mathcal{N}_s^r(V^m)$ be the spaces of all C^∞ tensor fields of type (r, s) associated with $T(V^m)$ and $N(V)$ respectively. Since B is an isomorphism [4] we have

$$(1.1) \quad [BX, BY] = B[X, Y]$$

for all $X, Y \in C^\infty = \mathcal{J}_s^r(V^m)$.

Let \tilde{g} be the Riemannian metric tensor in M^n , we then define g and g^* by

$$(1.2) \quad g(X, Y) = \tilde{g}(BX, BY) \circ \phi$$

and

$$(1.3) \quad g^*(N_1, N_2) = \tilde{g}(CN_1, CN_2)$$

for all $X, Y \in C^\infty = \mathcal{J}_s^r(V^m)$, and $N_1, N_2 \in C^\infty = \mathcal{N}_s^r(V^m)$. It is easy to verify that g is a Riemannian metric tensor in V^m and we call it the metric tensor of V^m induced by \tilde{g} while the tensor field g^* which is an inner product in $N(V^m)$ is called the metric of $N(V)$ induced by \tilde{g} .

The Riemannian connection $\tilde{\nabla}$, corresponding to the metric tensor \tilde{g} in M^n , induces a Riemannian connection ∇ in $\phi(V^m)$ defined by

$$(1.4) \quad \tilde{\nabla}_{BX} BY = B \nabla_X Y + CK(X, Y),$$

where $K(X, Y)$ is the second fundamental tensor of the submanifold $\phi(V^m)$ defined by

$$(1.5) \quad CK(X, Y) = \tilde{\nabla}_{BX} BY - B \nabla_X Y,$$

which satisfies

$$(1.6) \quad K(X, Y) = K(Y, X)$$

for all $X, Y \in C^\infty = \mathcal{J}_s^r(V^m)$.

The other second fundamental tensor H is defined by

$$(1.7) \quad H(X, U) = -(\nabla_X C)U = (\tilde{\nabla}_{BX} CU) - C \nabla_X U.$$

for $X \in C^\infty - \mathcal{J}'_o(V^m)$ and $U \in C^\infty - \mathcal{N}'_o(V^m)$. These two second fundamental tensors are related by

$$(1.8) \quad g^*(K(X, Y), U) = g(H(X, U), Y).$$

Let \tilde{R} and \bar{R} denote the Riemannian curvature tensor of the enveloping manifold M^n and the submanifold $\phi(V^m)$ respectively. We then have

$$(1.9) \quad \tilde{R}(BX, BY) BZ = B\bar{R}(X, Y)Z - B(H(X, K(Y, Z)) - H(Y, K(X, Z))) + \\ + C((\nabla_X K)(Y, Z) - (\nabla_Y K)(X, Z))$$

for any $X, Y, Z \in C^\infty - \mathcal{J}'_o(V^m)$.

Let X_1, X_2, \dots, X_m be m local orthonormal vector fields in V^m , where $m = \dim V^m$, then an element A of $\mathcal{N}'_o(V^m)$ defined by

$$(1.10) \quad mA = \sum_{i=1}^m K(X_i, X_i)$$

is called the mean curvature vector of the submanifold $\phi(V^m)$ and the submanifold $\phi(V^m)$ is called a minimal submanifold of M^n if its mean curvature vector vanishes.

2. Invariant submanifold of an $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold

Let M^n be a $C^\infty(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold i.e. it admits two non-zero $(1,1)$ tensor fields $\tilde{f}_{(1)}$ and $\tilde{f}_{(2)}$ such that

$$(2.1) \quad \begin{cases} \tilde{f}_{(1)}^3 + \tilde{f}_{(1)} = 0; & \tilde{f}_{(2)}^3 + \tilde{f}_{(2)} = 0 \\ \tilde{f}_{(1)}^2 = \tilde{f}_{(2)}^2; & \tilde{f}_{(1)} \tilde{f}_{(2)} = -\tilde{f}_{(2)} \tilde{f}_{(1)}. \end{cases}$$

Rank $(\tilde{f}_{(1)})$ is a constant integer all over M^n . If we put

$$\tilde{f}_{(3)} = \tilde{f}_{(1)} \tilde{f}_{(2)} = -\tilde{f}_{(2)} \tilde{f}_{(1)}$$

then

$$\begin{cases} \tilde{f}_{(3)}^3 + \tilde{f}_{(3)} = 0; & \tilde{f}_{(2)} \tilde{f}_{(3)} = -\tilde{f}_{(3)} \tilde{f}_{(2)} = \tilde{f}_{(1)}; \\ \tilde{f}_{(2)} = \tilde{f}_{(3)} \tilde{f}_{(1)} = -\tilde{f}_{(1)} \tilde{f}_{(3)}; & \tilde{f}_{(1)}^2 = \tilde{f}_{(2)}^2 = \tilde{f}_{(3)}^2 \end{cases}$$

and

$$\text{Rank } (f_{(1)}) = \text{Rank } (f_{(2)}) = \text{Rank } (f_{(3)}).$$

Corresponding to two complementary projection operators \tilde{l} and \tilde{m} defined by

$$(2.3) \quad \tilde{l} = -\tilde{f}_{(a)}^2, \quad \tilde{m} = 1 + \tilde{f}_{(a)}^2 \quad (a=1,2,3),$$

where l denotes the unit tensor, there exist two complementary distributions which we call the horizontal distribution and the vertical distribution respectively. We note

$$(2.4) \quad \begin{aligned} \tilde{f}_{(a)} \tilde{l} &= \tilde{l} \tilde{f}_{(a)} = \tilde{f}_{(a)}; & \tilde{f}_{(a)} \tilde{m} &= \tilde{m} \tilde{f}_{(a)} = 0 \\ \tilde{f}_{(a)}^2 l &= -l; & \tilde{f}_{(a)}^2 \tilde{m} &= \tilde{m} \tilde{f}_{(a)}^2 = 0. \end{aligned}$$

Thus an $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -structure acts as an almost quaternion structure on the horizontal distribution. Consequently the dimension of the horizontal distribution is of the form $4r$ for some constant integer r .

It is known that $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold always admits a positive definite Riemannian metric \tilde{g} such that

$$(2.5) \quad \tilde{g}(\tilde{X}, \tilde{Y}) = \tilde{g}(\tilde{f}_{(a)}\tilde{X}, \tilde{f}_{(a)}\tilde{Y}) + \tilde{g}(\tilde{m}\tilde{X}, \tilde{Y})$$

for all $X, Y \in C^\infty - \mathcal{J}'_o(M^n)$.

We now define an invariant submanifold of M^n . Let V^m be a C^∞ m -dimensional manifold imbedded as a submanifold in the $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold M^n . The submanifold V^m is defined to be an invariant submanifold of M^n if $m > (n-4r)$ and the linear mappings $\tilde{f}_{(1)}$ and $\tilde{f}_{(2)}$ leave invariant the tangent space $T_p(\phi(V^m))$ of $\phi(V^m)$ for each point $p \in \phi(V^m)$.

In the rest of the paper, we shall consider V^m to be an invariant submanifold of M^n . Thus for an arbitrary $X \in C^\infty - \mathcal{J}'_o(V^m)$, we have

$$(2.6) \quad \begin{cases} \tilde{f}_{(1)}(BX) = B(X_1) \\ \tilde{f}_{(2)}(BX) = B(X_2) \end{cases}$$

for some $X_1, X_2 \in C^\infty - \mathcal{J}'_o(V^m)$. The fact that both X_1 and X_2 are uniquely determined by X enables us to define two $(1,1)$ tensor fields $f_{(1)}$ and $f_{(2)}$ in V^m by

$$(2.7) \quad \begin{cases} f_{(1)}X = X_1 \\ f_{(2)}X = X_2. \end{cases}$$

Now from (2.6) and (2.7), we have

$$(2.8) \quad \tilde{f}_{(1)}(BX) = B(f_{(1)}X)$$

and

$$(2.9) \quad \tilde{f}_{(2)}(BX) = B(f_{(2)}X).$$

We now prove the following theorem.

Theorem 2.1. An invariant submanifold V^m of an $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold M^n admits an $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -structure induced by the $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -structure.

Proof. Operating $\tilde{f}_{(1)}^2$ on (2.8), $\tilde{f}_{(2)}^2$ on (2.9), and in view of (2.1) we have

$$f_{(1)}^3 + f_{(1)} = 0; \quad f_{(2)}^3 + f_{(2)} = 0$$

while the relations (2.1), (2.8) and (2.9) yield

$$f_{(1)} f_{(2)} = - f_{(2)} f_{(1)} \quad \text{and} \quad f_{(1)}^2 = f_{(2)}^2.$$

Now the proof is completed if $f_{(1)}$ and $f_{(2)}$ are shown to be non-zero.

Suppose that $f_{(1)} = 0$, i.e. $f_{(1)}X = 0$ for $X \in C^\infty - \mathcal{J}'(V^m)$. Hence by (2.8) $f_{(1)}(BX) = 0$ and $T(\phi(V^m)) \subset$ the null space of $\tilde{f}_{(1)}$. Then $\dim V^m = m \leq n - 4r$, since $\text{rank } (\tilde{f}_{(1)}) = 4r$. But this contradicts the assumption that $m > n - 4r$. Hence $f_{(1)} \neq 0$. Similarly it can be proved that $f_{(2)} \neq 0$.

Theorem 2.2. The Nijenhuis tensors corresponding to the $(1,1)$ tensor fields appearing in the $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -structure and the induced $(f_{(1)}, f_{(2)})$ -structure are related by

$$(2.10) \quad [\tilde{f}_{(c)}, \tilde{f}_{(d)}](BX, BY) = B[\tilde{f}_{(c)}, \tilde{f}_{(d)}](X, Y) \quad (c, d = 1, 2, 3).$$

The proof follows from the definition of Nijenhuis tensor and the relation (1.1)..

We now define two special invariant submanifolds of an $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold as follows.

Definition 2.2. An invariant horizontal transversal submanifold of an $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold M^n is an invariant submanifold of M^n whose tangent space $T_p(\phi(V^m))$ for each point $p \in \phi(V^m)$ does not contain any non-zero element of the horizontal distribution.

Definition 2.3. An invariant vertical transversal submanifold of an $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold is an invariant submanifold V^m of M^n whose tangent space $T_p(\phi(V^m))$ for each point $p \in \phi(V^m)$ does not contain any non-zero element of the vertical distribution.

We now prove the following theorem.

Theorem 2.3. An $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold does not admit any invariant horizontal transversal submanifold.

Proof. Suppose that V^m is an invariant horizontal transversal submanifold of M^n . Consequently, non-zero vector

fields of type BX for $X \in C^\infty - \mathcal{J}'_o(V^m)$ do not belong to the horizontal distribution.

Since by (2.3)

$$\tilde{l}(BX) = -\tilde{f}_{(a)}^2(BX) = B(-f_{(a)}^2 X); \quad (a=1,2,3)$$

and $\tilde{l}(BX)$ is a vector field in the horizontal distribution, therefore $\tilde{l}(BX)$ cannot be a non-zero vector field. Consequently

$$(2.11) \quad \tilde{l}(BX) = 0$$

i.e. BX belongs to the vertical distribution.

Operating $\tilde{f}_{(a)}$ on the equation (2.11), we get $\tilde{f}_{(a)}(BX) = 0$ which implies that $\dim V^m = m \leq n-4r$. This contradicts the assumption $m > n-4r$ appearing in the definition of the invariant submanifold.

As a corollary of the above theorem, we can state

Corollary 1.1. Every invariant submanifold of an $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold contains at least one non-zero element of the horizontal distribution.

Next, let V^m be an invariant vertical transversal submanifold of $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold. Thus non-zero vector fields of type BX for $X \in C^\infty - \mathcal{J}'_o(V^m)$ do not belong to the vertical distribution.

Since by (2.3)

$$\tilde{m}(BX) = (1 + \tilde{f}_{(a)}^2)(BX) = B(X + f_{(a)}^2 X) \quad (a=1,2,3)$$

and $\tilde{m}(BX)$ belongs to the vertical distribution, therefore $\tilde{m}(BX)$ cannot be a non-zero vector field. Consequently $\tilde{m}(BX) = 0$ i.e. BX belongs to the horizontal distribution and as a consequence $\dim V^m = m \leq 4r$.

Since

$$0 = \tilde{m}(BX) = (1 + \tilde{f}_{(a)}^2)(BX) = B(X + f_{(a)}^2 X)$$

and B is an isomorphism, we have

$$f_{(a)}^2 = -1 \quad (a=1,2,3).$$

Similarly

$$f(a)f(b) = -f(b)f(a) \quad (a \neq b, a, b = 1, 2, 3).$$

Thus an invariant vertical transversal submanifold V^m admits an almost quaternion structure [6] induced by the $(f_{(1)}, f_{(2)})$ -structure. As a consequence, the dimension of such a manifold is $4q \leq 4r$, q being a constant integer. In view of the relations (1.3), (2.5), (2.8) and (2.9) we have

$$g(f(a)X, f(a)Y) = g(X, Y) \quad (a = 1, 2, 3).$$

Combining the above facts, we have the following theorem.

Theorem 2.4. An invariant vertical transversal submanifold V^m of an $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold M^n admits an induced almost quaternion $(f_{(1)}, f_{(2)}, f_{(3)})$ -structure as well as an induced Hermitian metric g . The dimension of such a manifold is $4q \leq 4r$.

We now assume that the $(1, 1)$ tensor fields $\tilde{f}_{(1)}$ and $\tilde{f}_{(2)}$ are covariantly constant with respect to the Riemannian connection $\tilde{\nabla}$. Then in view of (1.4), we have

$$\tilde{\nabla}_{BX}(B f(a)Y) = B \nabla_{BX}(f(a)Y) + CK(X, f(a)Y) \quad (a = 1, 2, 3)$$

or

$$\tilde{\nabla}_{BX}(\tilde{f}_{(a)}BY) = B \left((\nabla_{BX}f(a))(Y) + f(a)(\nabla_{BX}Y) \right) + CK(X, f(a)Y)$$

hence

$$\begin{aligned} (\tilde{\nabla}_{BX} \tilde{f}_{(a)})(BY) + \tilde{f}_{(a)}(\tilde{\nabla}_{BX} BY) &= \\ &= B(\nabla_{BX}f(a))(Y) + B(f(a)\nabla_{BX}Y) + CK(X, f(a)Y) \end{aligned}$$

or

$$\tilde{f}_{(a)}(B\nabla_X Y + CK(X, Y)) = B(\nabla_X f(a))(Y) + B(f(a)\nabla_X Y) + CK(X, f(a)Y)$$

or

$$\tilde{f}_{(a)}CK(X, Y) = B(\nabla_X f(a))(Y) + CK(X, f(a)Y).$$

Since the left hand side of the above equation is normal to $\phi(V^m)$ equating tangential and normal parts, we get

$$(2.12) \quad \nabla_X f(a) = 0 \quad \text{and} \quad \tilde{f}(a) CK(X, Y) = CK(X, f(a)Y)$$

which in view of (1.6) and the fact that C is an isomorphism, yields

$$(2.13) \quad K(X, f(a)Y) = K(f(a)X, Y) \quad (a=1, 2, 3).$$

Writing (2.13) for $a=1$, and taking $f(2)X$ and $f(3)X$ in place of X and Y we get

$$K(f(2)X, f(2)Y) = - K(f(3)X, f(3)Y)$$

which in view of the relation (2.13) gives

$$(2.14) \quad K(X, Y) = 0.$$

Consequently the mean curvature vector of an invariant transversal vertical submanifold vanishes. Thus we have the following theorem.

Theorem 2.5. If the structure tensor fields $\tilde{f}(1)$ and $\tilde{f}(2)$ of an $(\tilde{f}(1), \tilde{f}(2))$ -manifold M^n are covariantly constant, then every invariant vertical transversal submanifold of M^n has vanishing second fundamental tensor K and consequently is a minimal submanifold and $f(1)$ and $f(2)$ are covariantly constant.

We next prove a theorem.

Theorem 2.6. If any two of the Nijenhuis tensors $[\tilde{f}(a), \tilde{f}(a)]$ ($a=1, 2, 3$) $[\tilde{f}(a), \tilde{f}(b)]$ ($a \neq b$, $a, b=1, 2, 3$) of an $(\tilde{f}(1), \tilde{f}(2))$ -structure manifold M^n vanish, then in an invariant vertical transversal submanifold of M^n all the Nijenhuis tensors corresponding to the induced almost quaternion $(f(1), f(2), f(3))$ -structure vanish.

Proof

The proof follows from the relations (2.8) and a theorem 3.9 in [6].

Let \tilde{R} and \bar{R} be the curvature tensors of the connections $\tilde{\nabla}$ and ∇ in $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold M^n and its invariant vertical transversal submanifold V^m respectively. If the structure tensors $\tilde{f}_{(1)}$ and $\tilde{f}_{(2)}$ are covariantly constant, then in view of Theorem 2.5 and the relation (1.9) we get

$$(2.15) \quad \tilde{R}(BX, BY)BZ = B(\bar{R}(X, Y)Z).$$

Next we prove the theorem.

Theorem 2.7. If in a locally flat $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold M^n the structure tensor fields $\tilde{f}_{(1)}$ and $\tilde{f}_{(2)}$ are covariantly constant, then the induced almost quaternion $(f_{(1)}, f_{(2)}, f_{(3)})$ -structure of an invariant vertical transversal submanifold of M^n is integrable.

Proof. Since $\tilde{f}_{(1)}$ and $\tilde{f}_{(2)}$ are covariantly constant from Theorem 2.5, we have

$$\nabla_X f_{(1)} = 0 \quad \text{and} \quad \nabla_X f_{(2)} = 0.$$

Thus as a consequence of Theorem 3.9 in [6], the Nijenhuis tensors $[f_{(a)}, f_{(b)}]$, $(a, b = 1, 2, 3)$ vanish. Since $(\tilde{f}_{(1)}, \tilde{f}_{(2)})$ -manifold is locally flat, the relation (2.15) yields

$$\tilde{R}(X, Y)Z = 0.$$

Hence in view of Theorem 6.3 [6], the almost quaternion $(f_{(1)}, f_{(2)}, f_{(3)})$ -structure is integrable.

Let V^m be an invariant submanifold of M^n and $X, Y \in T_p(V^m)$. Let \mathcal{Y} be the two-dimensional plane determined by the vectors X and Y . The sectional curvature of V^m at the point p with respect to the plane \mathcal{Y} is given by

$$'K(X, Y) = \frac{\bar{R}(X, Y, X, Y)}{g(X, X)g(Y, Y) - g(X, Y)^2}.$$

Let $\tilde{K}(X, Y)$ be the sectional curvature of M^n at the point p with respect to the plane \mathcal{Y} , then in view of (1.9)

$$\begin{aligned}\tilde{g}(\tilde{R}(BX, BY)BX, BY) &= \\ &= \bar{R}(X, Y, X, Y) - g(H(X, K(Y, X)), Y) + g(H(Y, K(X, X)), Y)\end{aligned}$$

i.e.

$$\begin{aligned}(2.16) \quad \tilde{R}(BX, BY, BX, BY) &= \\ &= \bar{R}(X, Y, X, Y) - g^*(K(X, Y), K(X, Y)) + g^*(K(Y, Y), K(X, X)).\end{aligned}$$

Thus

$$(2.17) \quad \bar{K}(X, Y) = \tilde{K}(X, Y) + \frac{g^*(K(X, Y), K(X, Y)) - g^*(K(Y, Y), K(X, X))}{g(X, X)g(Y, Y) - g(X, Y)^2}$$

which completes the proof of the following theorem.

Theorem 2.8. The sectional curvature $\bar{K}(X, Y)$ and $\tilde{K}(X, Y)$ of the invariant submanifold V^m and the enveloping $(\tilde{f}_1, \tilde{f}_2)$ -manifold M^n are related by the relation (2.17).

We now assume that the structure tensors \tilde{f}_1 and \tilde{f}_2 of M^n are covariantly constant. Let $\bar{K}_a(X)$ (respectively $\tilde{K}_{(a)}(X)$) denotes the sectional curvature of V^m (respectively M^n) at the point p with respect to the plane determined by the vectors X and $f_{(a)}X$.

Then in view of Theorem 2.5 and the relation (2.17) we have the following theorem.

Theorem 2.9. Let V^m be an invariant vertical transversal submanifold of $(\tilde{f}_1, \tilde{f}_2)$ -manifold such that \tilde{f}_1 and \tilde{f}_2 are covariantly constant. Then the sectional curvatures $\bar{K}_{(a)}(X)$ and $\tilde{K}_{(a)}X$ of V^m and M^n with respect to the plane determined by X and $f_{(a)}X$, are equal.

REFERENCES

[1] S. Hashimoto: On the differentiable manifold M^n admitting tensor fields (F, G) of type $(1, 1)$ satisfying $F^3 + F = 0$; $G^3 + G = 0$; $FG = -GF$ and $F^2 = G^2$, Tensor 15 (1964) 269-274.

- [2] J.A. Shouten, K. Yano: On invariant subspaces in the almost complex X_{2n} , Ind. Math. 17(1955) 261-269.
- [3] U.C. Vohra, K.D. Singh: Invariant submanifolds of f-structure manifold, Separata De Revista De Faculdade De Ciencias 14(1973).
- [4] K. Yano, S. Ishihara: Invariant submanifolds of an almost contact manifold, Kodai Math. Sem. Rep. 21(1969) 350-364.
- [5] K. Yano, S. Ishihara: Pseudo-umbilical submanifolds of codimension 2, Kodai Math. Sem. Rep. 21(1969) 365-382.
- [6] K. Yano, M. Ako: Integrability conditions for almost quaternion structures, Hokkaido Math. J. 1(1972) 63-86.
- [7] K. Yano: Integral formulae in Riemannian geometry. New York 1970.

DEPARTMENT OF MATHEMATICS AND ASTRONOMY, LUCKNOW UNIVERSITY, LUCKNOW (INDIA)

Received April 2nd, 1975.