

Marian Jaszczak

ON SOME GENERALIZATION OF THE NOTION OF DECOMPOSABLE
TENSOR IN A LOCALLY DECOMPOSABLE RIEMANNIAN SPACE

Let M_n be an n -dimensional locally decomposable Riemannian manifold of class C^∞ . Hence by assumption M_n is a differentiable manifold endowed with

1) a tensor field $F : BM \rightarrow BM$ satisfying, in the domain of an arbitrary chart x from the atlas of M_n , the following identities:

$$(1) \quad F_j^i F_i^h = A_j^h$$

and

2) a field of a metric tensor g satisfying, in the domain of the chart x , the identities

$$(2) \quad F_j^t F_i^s g_{ts} = g_{ji}.$$

Moreover, the following identities hold

$$(3) \quad \nabla_j F_i^h = 0, \quad \nabla_j F_{ih} = 0,$$

where BM is a module of smooth vector fields on M_n and ∇ denotes a Levi-Civita connection on M_n ([1] p. 221).

Let $f : BM^p \rightarrow FM$ be a tensor field of type $(p,0)$ on M_n . Here $BM^p = BM \times BM \times \dots \times BM$, and FM is the ring of smooth functions on M_n . We assume the following definition.

Definition. A tensor field $f : BM^p \rightarrow FM$ of type $(p,0)$ will be called $1/p$ -decomposable field provided that in the domain of an arbitrary chart $x \in atl M_n$ the following identities hold

$$(4) \quad F_j^r \nabla_r^f i i_2 \dots i_p = F_1^r \nabla_j^f r i_2 \dots i_p.$$

It is easy to see that if we assume that the tensor f is a pure tensor, i.e. if in the domain of an arbitrary chart $x \in atl M$ the following identity hold

$$\bigwedge_{i_1 \leq i_k, i_k \leq i_p} F_{i_k}^r f_{i_1 \dots r \dots i_p} = F_{i_h}^r f_{i_1 \dots r \dots i_p}$$

then the tensor f is decomposable in the usual sense ([1] p. 225).

If we assume that the indices i_2, \dots, i_p denote successive covariant derivatives of the vector \hat{f}_i , i.e. if we assume that $\hat{f} : BM \rightarrow FM$ and

$$f_{i i_2 \dots i_p} = \nabla_{i_p} \nabla_{i_{p-1}} \dots \nabla_{i_2} \hat{f}_i$$

then our definition becomes the definition of p -decomposable vector in the sense given in [2].

Hence the definition given above is a generalization of the definition of decomposable tensor and the definition of p -decomposable tensor.

It is easy to see that analogously as in [1] p. 226 and [2] we can prove the following theorem.

Theorem. A necessary and sufficient condition in order that in a compact orientable locally decomposable Riemannian space M_n a tensor of type $(p,0)$ be $1/p$ -decomposable

is that in the domain of an arbitrary chart $x \in \Omega M_n$ the following identities hold

$$g^{ji} \nabla_j \nabla_i f_{i_1 \dots i_p} - F^{ji} \nabla_j \nabla_i f_{i_1 \dots i_{p-1} r} F^r_{i_p} = 0.$$

BIBLIOGRAPHY

- [1] K. Yano : Differential geometry on complex and almost complex spaces. Pergamon Press 1965, p.221-226.
- [2] K.D. Singh, A. Nigam : On generalizations of product-conformal Killing vectors, Demonstratio Math. 7 (1974) 411-422.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received February 14, 1975.

