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ON THÈ REPRESENTABHJTY OF FUNCTIONS 
IN THE FORM OF A SUM, PRODUCT, AND A PRODUCT OF SUMS 

In this paper we shall use algebraic methods to give suf-
ficient and necessary conditions for the representability of 
a function of n variables in the form of a sum of functions, 
a product of functionsj and a product of sums of functions 
with disjoint domains. At the same time these conditions will 
provide effective methods for finding those functions. 

Introduction 
In practice, one often encounters nomographic equations 

of the general form 

(1) F(x..,...,x > - ¿ ^ f,(x.) = 0 
1=1 

or 
n 

d'j p(x 1 t... tx n;«TT f,(x,) = 1. ' n 1=1 i i 

For these equation, one can construct collinear nomograms 
by means of elementary methods for joining nomograms (see [l]). 
For equations of the form (1) we use nomograms with parallel 
scales, and for equations of the form (1' ) - nomograms with 
scales on the sides of a triangle or, more general, nomograms 
of the shape of the letter N. In the case (1) the same aim can 
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be achieved by use of special nomographic rules (see [3]). 
We also frequently encounter equations of the form 

n n 
(2) P(x1t...,xn) * X fjUj ) + X gjUj ) = 0 

or 

) = 1 ( 2 < ) F(x1 V s JJ ^ 3 

with dosjoint domains of the functions f^ and g ̂. 
For equations (1) and (2) with n ^ 9 one can use nomograms 

with an oriented transparent. An exhaustive classification of 
these equations and methods of building nomograms with trans-
parent can be found in a paper of G.S. Chowanski [ 2 ] . By ta-
king logarithms of both sides of equations (1' ) and (2' ) we 
can reduce them to the forms (1) and (2)respectively. 

The above remarks indicate why it is important to repre-
sent a function ) in the form of a product or a sum 
of functions with disjoint domains. This problem is solved in 
Theorems 1 and 2 of the present work. Both theorems are rela-
ted by Theorem 3. The form of the function appearing there was 
suggested by A. Haitian [4] and it is as follows 

k 
x ) = T T X gjuj) + C, 

i=1 X=1 
where + 12 + ... + lk = n. Following [4] we shall call this 
form the second canonical form of nomographic polynomials in 
n-variables of the n-th order. 

Similar problems have been also considered by A. Hainan, 
E. Otto [ 1 ] and others. However, the conditions proposed there 
assume that F is differentiable. In our theorems, we even do 
not assume that the function F is continuous. 

Notation and assumptions of Theorems 1 and 2 
Let F(x^,.,.,xn) be a real function of n real variables defined 
in the cube Y = x Xif where X^ = { x^ : < x̂ ^ < for 
i=1,2,...,n. 

- 6 -
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let I denote the sequence of indices occurring in the sym-
bols of variables. We divide this sequence into k disjoint and 
non-empty subsequences I 2, • •• 

For j = X . where the elements 
ifelj 1 

of Yj are denoted by y.. = • We next distinguish and 
t) 

fix an element p € Y, p = (a^ a2,...,an). With the aid of 
this element we build, for each set Y^ ( U j 4 k), the corres-
ponding set Yj as follows 

n 

Y. = X Z l f where Z i = 
i=1 

for i e Ij 

{ai} f o r 1 V 

Again using p e Y we fix, in each set Y^, an element 
Pj e Yj in< the following way 

Pj = { ai ;i £ I 5' 

We see from above that for every j there are some mappings 
between the sets Yj, Y^ and Y. Namely, let h^ s Y — Y^ be 
defined as follows 

h3 

^ i e l = y = ( z i J l t I 

where 

zi = 

x^ for i t Ij 

a^ for i. i y 

Since Yj c Y and hj(y^) = y^, h^ is a special kind of 
retraction, namely it is the projection of the space Y onto 
the "hyperspace" Y^ passing through p £ Y. 

Similarly, let gj : Y j — » Yj be defined as follows 
Sj 

= 'j — = ( V i 6 I, . 

where z^ is defined above. 
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The map g^ is a homeomorphism. The superposition g ° h r f j 
maps the set Y into Y^. This map is independent of p, because 
the space Y is a cube. The above relations are illustrated in 
the diagram 

In the formulation of Theorems 1 and 2 we shall use the 
elements of the cartesian spaces j t Y, e Y^ and y^ t Y^ 
as the arguments of functions appearing there. Hence we may 
write y, kj(y) and gj1 [b-j(y)] instead! of y, y^, y^, re-
spectively. 

The function F(y.j) considered in Theorems 1 and 2 can be 
treated as a restriction of the function F(y) defined on the 
set Y to the set Y^ C Y. The function F(jj) c an also be inter-
preted as the function F-j(y) being an extension of the function 
P(yj) defined on the set Y^ to the set Y in the following way 

P^y) = 
P[g3(y)] for y e Y - Y^ 

Piy^ for y £ Yj 
= 

We can now formulate our theorems. 
T h e o r e m 1. In order that a function P(y) defi-

ned on Y could be represented in the form 
k 

(Z1) F(y) = ^(y^) 
3=1 

it is necessary and sufficient that the following identity 
hold k 
(T1 ) F(y) = ^ F(y.j) - (k - 1) F(P). 
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T h e o r e m 2. In order that a function F(y) ̂  0 
defined on Y could be represented in the form 

It 
(Z2) F(y) - FT M y J . 

it is necessary and sufficient that the following identity 
hold t 

ft 
(T2) F(y) » w h e r e *• 

[p(pj] 

Both theorems given above are speoial cases of the more 
general Theorem 3« Before we state this theorem we discuss no-
tation and assumptions involved in it. 

Similarly as in Theorems 1 and 2 we shall consider a real 
function F(x.j,...,xa) of n real variabl&s, defined in the cube 

n 
Y = XS' WHER$ ZB'[XB ' AS< XS< M F O R 8 = 1' 

k We divide the sequence of indices I = {1, 2,...,n} .int^ 
y^ m s disjoint non-empty subsequences forming the family 

S=1 

U = i l 1 I 2 I™1 I 2 I2 I*2 I1 

Tmi T1 A } 
We distinguish and fix any element p t Y, p = (a«J0 ̂  T S v S c X such that 

(3) F(p) = P(a1f a2,..., afl) f. 0. 

Poj eaoh l| t D me introduce 
1) the subproduot Y^ •= X- x s with a fixqd element 

s € i i 
¡5 = (a } J f v3 

- 9 -
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and a hyperspace pass ing through p e Y 

(4) 3) y j = X V w h e r e z s = 

e e l 

X8 i f S e 

| a s } i f 8 * i j . 

Next analogously as be fo re we in t roduce the maps between 
the s e t s Y, Y^ and Y^. 

T h e o r e m 3. i n order t h a t a f u n o t i o n F(y) def ined 
on Y could be represen ted in the form 

k SL̂  
(Z3) p(y) = T T S I 

1=1 j=i 
i t i s necessary and s u f f i c i e n t t h a t the fo l lowing i d e n t i t y 
hold 

(T3) F(y) 

k 
n 
i=1 Lj=1 

— p(yj> - U j - u F( P ) 

[P(P)] 
k - 1 

P r o o f . " F i r s t we s h a l l prove the neces s i t y of the 
above c o n d i t i o n . Assume t h a t (Z3) ho lds . By s u b s t i t u t i n g to 
(Z3) f o r each v a r i a b l e x a U 6 s < n) the value x„ = a„ being D 3 o 
the s - t h coordina te of the element p , we ob ta in 

(5) 
k mi 

F(p) = ] " J 
i=l 3=1 

For each f i x e d i Q ( i Q = 1 , 2 , . . . tk J and jQ ( j Q = ) 

we determine the f u n c t i o n F(y, ) . To t h i s aim we s u b s t i t u t e 
x0 

to both s ides of i d e n t i t y (Z3) the value i n = a„ in p lace of is s Q 
every v a r i a b l e x such, t h a t s 4. I., , according to d e f i n i t i o n 

k 0 o 

( 4 ) . Hence we ob ta in m
s equat ions of the form 

S=1 

- 10 -
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(6) F ( y S 
0 

a mi mi r fr z . z>i M .i=1|j?t 1 1 . jail iO\ H J x0\ XoJ L0\ H J 

(PJ J 
d=i 

Clearly from (3) and (5) it follows that ^ G^ ) ̂  0. 
Prom (6) we obtain 

( 7) G ° V Y ^ i ^
 Lo) . Z pJ + G 0/ o\ 

i=ii j=i; 
For each fixed iQ (iQ = 1, 2, k) by adding side by 

side m, respective equations of the form (7) we obtain k 
0, 

equations !of the form 

mi (8) 
'•o (Pi y ẑR)- ** oK o) + 

F(p) 
mi. 

.3=1 ' 0 

mi 

Transforming (8) we get 
x̂ o-viHa) 

(9) F(p) giK) 
mi, 

3=1 
1)- F(p), 

Next'multiplying side by side k equations of the form (9) 
we obtain 

r k * ^o) [F(P)] f ̂  ̂  ̂  -n 
tt i : a M > 1=1 

-

3=1 
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Finally making use of (Z3) and (5) we obtain from (10) the 
thesis (T3) of our theorem. 

The sufficiency of conditipn (T3) is obviqus. In fact, 
introducing the notation for every i (1 < i < k-l)| 

Gi(yi-} = a n d °ll 'il = K ^ V (mi"1) ^ P ^ 

and for i = k 

A G<kyjh L T r T p ( y k ) 

* * [P(p)] 1 

and 

\ k • r V - i * K ^ O " (mk-1) 

L*(p>J 

we obtain (T3). Hence Theorem 3 has been proved. 
The identity (Z3) appearing in Theorem 3 takes the form 

(Z2) in Theorem 2 when for eVery i ( H 1 « k) «e put m = 1. 
Similarly, when k = 1 the identity (Z3) takes the fo*m (Z1). 
Hence Theorems 1 and 2 are speoial cases of Theorem 3. 

E x a m p l e s 
1. let 

F(x,y,z) = sin(x+y+z) + 4sin ̂  sin ̂  sin . 

We ask whether this function can be represented in the form 

F(x,y,z) = G^(x) + G2(y) + G-jizJ. 

Let p = (JT,JT,JT). Hence-* 

F(pJ = F'CJT, jt , jt ) = 0, F(y 1) = F(X,JT,JT) = sin x, 

F(yoJ = F U , y ,jr) = sin y, F(y-j) = F(jt, jr, z) = sin z* 
From above it follows that 

F(x,y,z) = sin x + sin y + sin z 
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provided that the following identity holds 

sin (x+y+z) + 4 sin ^ ^ sin ^ ^ sin B S i n x + sin y + sinz. 

which is really the case. 
2. Let 

2 2 F(x^ f x^ y s »*9 Xg) = X1X4X5X6 + 

2 2 2 2 2 + 2x^x^x^xg + X̂ XQ + 2X̂ XJXQ + x2x^x^xg + X2Xy + X2XQ + 
(11) 

2 2 2 

- 2x2xyxg + 2x^Xy + 2x^xg - 4x^XyXg + 2x^x^xg + 2Xy + 

2 2 

+ 2Xg - x1 - 4XyXg - x2 - 2x^ - 2. 

We ask whether this function can be represented in the form 

Xg ) = 

= [G](X.,) + G^(X2; + G^(X3)J • [G2 (X4, X5, Xg) + G|(X7,X8)J . 

Let p = ( 0 , . . . , 0 ) . Hence we have 

P(p) = P ( 0 , . . . , 0 ) = -2, P ( y j ) = P ( x r 0 , . . . , 0 ) = -x* - 2, 

p(y^) = p(0, x2 , 0 , . . . , 0 ) = -x2 -2 

'F(y^) = p(0, 0, x3 , 0 , . . . , 0 ) = -2X3 - 2 

P(y2 ) = p(0, 0, 0, x4 , x5 , x 6 , 0, 0) = 2x4x5x6 - 2 

p(y|) = F (0 , . . . , 0 , X7, XQ) = 2XJ + 2x| - 4x?Xg - 2. 

Prom Theorem 3 i t follows that = xáy - 2 ) + ( - * 2 " 2 ) + (~2x3 - 2) + 

(12) - 2.(-2)] . [(2x4x5x6 - 2) + (2x^ + 2x2 - 4x?xg - 2) - 1«(-2)] = 

= [x2 + x2 + 2x3 + 2] • [x4x5x6 + (x ? - x8)2 - 1],. - 13 -
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provided that the function (11) is identically equal to (12). 
It is evident that this is true. 
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