

Ireneusz Nabiałek

Z-AGGREGABLE SETS OF FUNCTIONS

Introduction

The notions of a Z-computable function and a Z-computable set of functions have been introduced in [1]. The notions of a Z-aggregable set of functions and a *-connected Z-computable set of functions are introduced in this paper. The aim of this paper is to show that:

1. a Z-aggregable set is a sum of equivalence classes and that these equivalence classes are Z-computable sets;
2. a Z-aggregable set and a Z-computable set are sums of equivalence classes and that these equivalence classes are *-connected Z-computable sets.

The notion of a base of the Z-aggregable set is introduced in this paper, too. The notion of *-connected, Z-computable set plays the most fundamental role in the construction of the basis for a Z-aggregable set.

1. Basic notions and definitions

Let \mathbb{R} be the set of all real numbers, and \mathbb{R}^+ - the set of all non-negative real numbers. By (t, x) we denote the point $(t, x_2, \dots, x_n) \in \mathbb{R}^n$ if $n \geq 2$, and the point $(t) \in \mathbb{R}$ if $n = 1$. Let $\Omega_n = \mathbb{R}^+ \times \mathbb{R}^{n-1}$. For any set $Z \subseteq \Omega_n$ and for any $a \in \mathbb{R}^+$ we denote $Z_a = \{(t, x) \in \Omega_n : (t-a, x) \in Z\}$. Let X be an arbitrary non-empty set, to be fixed in the sequel. By $\mathcal{F}^{(n)}$ we denote the set of all mappings $f : \Omega_n \rightarrow X$, and by $\mathcal{F}_Z^{(n)}$ the set of all mappings $f : Z \rightarrow X$, where $Z \subseteq \Omega_n$. The restriction of $f \in \mathcal{F}^{(n)}$ to $Z \subseteq \Omega_n$ we denote by $f|_Z$.

By the shift operator we mean the operator $\mathcal{P}^{(n)}$ which assigns to every mapping $f: Z_a \rightarrow X$ the mapping $f^*: Z \rightarrow X$ such that $f^*(t, x) = f(t+a, x)$ for every $(t, x) \in Z$. If $f \in \mathcal{F}^{(n)}$, then we put $f_{z_a} = (f|_{Z_a})^*$ and, in particular, $f_a = f|_{(\Omega)_a}$.

W. Zakowski [1] introduced the notion of a Z-computable function. The most characteristic property of such a function is that a function $f \in \mathcal{F}^{(n)}$ is Z-computable iff

$$\forall (a, b \geq 0) \left[(f_{z_a} = f_{z_b}) \Rightarrow (f_a = f_b) \right].$$

In [1] a set $F \subseteq \mathcal{F}^{(n)}$ is said to be Z-injective iff

$$\forall (f, g \in F) \left[(f_z = g_z) \Rightarrow (f = g) \right],$$

and a set F is said to be closed under the operation of shift iff

$$\forall (f \in F) \forall (a \in \mathbb{R}^+) (f_a \in F).$$

In [2] for any $H \subseteq \mathcal{F}^{(n)}$ the set $H^* = \{f_a : f \in H, a \in \mathbb{R}^+\}$ is said to be the *-closure of the set H . The set $F \subseteq \mathcal{F}^{(n)}$ is Z-computable iff F is Z-injective and $F^* = F$ ($F^* = F$ iff F is closed under the operation of shift, i.e. if F is the *-closed set).

2. Z-aggregable sets

Let $\mathcal{F}_{(z)}^{(n)}$ be the set of all Z-computable functions $f: \Omega_n \rightarrow X$.

Definition 1. Functions $f, g \in \mathcal{F}_{(z)}^{(n)}$ are said to be commonly computable (in symbols $f \sim g$) if there exists a Z-computable set $F \subseteq \mathcal{F}^{(n)}$ such that $f, g \in F$.

Corollary 1. The relation \sim is reflexive and symmetric in the set $\mathcal{F}_{(z)}^{(n)}$.

Theorem 1. For any $f \in \mathcal{F}_{(z)}^{(n)}$ and for any $a \in \mathbb{R}^+$, $f \sim f_a$.

Proof. For any $f \in \mathcal{F}_{(z)}^{(n)}$ and for any $a \in \mathbb{R}^+$, $f, f_a \in \{f\}^*$. The set $\{f\}^*$ is Z-computable (see Corollary 9 in [2]).

Definition 2. The set $F \subseteq \mathcal{F}_{(z)}^{(n)}$ is said to be Z-aggregable iff the relation \sim is transitive in the set F and $F^* = F$.

Corollary 2. For any Z-aggregable set F the relation \sim is an equivalence relation in the set F .

Theorem 2. For any Z-aggregable set F and for any $f \in F$ the equivalence class $[f]_\sim$ is a Z-computable set.

Proof. The set $[f]_\sim$ is $*$ -closed, because if $g \in [f]_\sim$ and $h \in \{g\}^*$, then $g \sim h$, hence $h \in [f]_\sim$. The set $[f]_\sim$ is Z-injective, because for any $g, h \in [f]_\sim$, $g \sim h$, hence $\{g, h\}$ is Z-injective. Hence $[f]_\sim$ is Z-computable.

3. $*$ -connected Z-computable sets

Definition 3. For any $f, g \in \mathcal{F}_{(z)}^{(n)}$ we define the relation $\stackrel{*}{=}$ as follows

$$(f \stackrel{*}{=} g) \Leftrightarrow \exists (a, b \in \mathbb{R}^+) (f_a = g_b).$$

Theorem 3. The relation $\stackrel{*}{=}$ is an equivalence relation in the set $\mathcal{F}_{(z)}^{(n)}$.

Proof. It is evident that the relation $\stackrel{*}{=}$ is reflexive and symmetric in the set $\mathcal{F}_{(z)}^{(n)}$. If $f \stackrel{*}{=} g$ and $g \stackrel{*}{=} h$, then $\exists (a, b, c, d \in \mathbb{R}^+) (f_a = g_b, g_c = h_d)$. We denote $m = \max(b, c)$ and $a' = a + m - b$, $d' = d + m - c$. Then $f_{a'} = g_m$ and $g_m = h_{d'}$, hence $f_{a'} = h_d$, $f \sim h$. Hence the relation $\stackrel{*}{=}$ is transitive in the set $\mathcal{F}_{(z)}^{(n)}$.

Corollary 3. For any Z-aggregable set F the relation $\stackrel{*}{=}$ is an equivalence relation in the set F .

Theorem 4. For any Z -aggregable set F and for any $f, g \in F$ if $f \stackrel{*}{=} g$, then $f \sim g$.

Proof. If $f \stackrel{*}{=} g$, then $\exists (a, b \in \mathbb{R}^+) (f_a = g_b)$. Since $f \sim f_a$, $g_b \sim g$, and F is the Z -aggregable set, we infer that $f \sim g$.

Corollary 4. For any Z -aggregable set F and for any $f \in F$ we have $[f]_{\stackrel{*}{=}} \subseteq [f]_{\sim}$.

Theorem 5. For any Z -aggregable set F and for any $f \in F$ the equivalence class $[f]_{\stackrel{*}{=}}$ is a Z -computable set.

Proof. The set $[f]_{\stackrel{*}{=}}$ is Z -injective, because $[f]_{\stackrel{*}{=}} \subseteq [f]_{\sim}$ and $[f]_{\sim}$ is the Z -injective set. If $g \in [f]_{\stackrel{*}{=}}$ and $h \in \{g\}^*$, then $h \stackrel{*}{=} g$, hence $h \in [f]_{\stackrel{*}{=}}$. The set $[f]_{\stackrel{*}{=}}$ is $*$ -closed. Hence $[f]_{\stackrel{*}{=}}$ is Z -computable.

Definition 4. The set $F \subseteq \mathcal{F}_{(z)}^{(n)}$ is called $*$ -connected iff

$$\forall (f, g \in F) (f \stackrel{*}{=} g).$$

Theorem 6. Let F be a Z -aggregable set such that $G \subseteq F$ and $f \in G$. The set G is Z -computable and $*$ -connected iff $G^* = G$ and $\{f\}^* \subseteq G \subseteq [f]_{\stackrel{*}{=}}$.

Proof. If the set G is Z -computable and $*$ -connected, then $\{f\}^* \subseteq G$ and $G \subseteq [f]_{\stackrel{*}{=}}$ and $G^* = G$. If $G^* = G$ and $G \subseteq [f]_{\stackrel{*}{=}}$, then G is Z -computable because $[f]_{\stackrel{*}{=}}$ is Z -computable. The set G is $*$ -connected because $[f]_{\stackrel{*}{=}}$ is $*$ -connected.

Corollary 5. For any Z -aggregable set F and for any function $f \in F$ the set $\{f\}^*$ is the minimal set, and the set $[f]_{\stackrel{*}{=}}$ is the maximal set of all Z -computable and $*$ -connected sets G such that $G \subseteq F$ and $f \in G$.

4. Basis of Z -aggregable set

Definition 5. For any Z -aggregable set F a set $G \subseteq F$ is called a basis of the set F iff $F = \bigcup_{f \in G} [f]_{\stackrel{*}{=}}$ and

$$\bigvee (f, g \in G) \left\{ (f \neq g) \Rightarrow [\sim (f \equiv g)] \right\}.$$

Let F/\equiv be the quotient space of the equivalence relation \equiv .

Theorem 7. Let F be Z-aggregable set and let $G \subseteq F$. G is a basis of the set F iff the set G has exactly one element in common with every set $[f] \in F/\equiv$.

Proof. If G has exactly one element in common with every set $[f] \in F/\equiv$ then $\bigcup_{f \in G} [f] = F$, and if $f, g \in G$ and $f \neq g$, then $f \in [\psi] \in F/\equiv$, $g \in [\psi] \in F/\equiv$ and $[\psi] \neq [\psi]$, hence $\sim (f \equiv g)$.

If $\bigcup_{f \in G} [f] = F$ and $\bigvee (f, g \in G) \left\{ (f \neq g) \Rightarrow [\sim (f \equiv g)] \right\}$, then for every $[f] \in F/\equiv$ there exists an element $g \in G \cap [f]$.

If g, h are different elements of the set G , then $\sim (g \equiv h)$. Hence for every $[f] \in F/\equiv$ there exists exactly one element $g \in G \cap [f]$.

REFERENCES

- [1] W. Żakowski: Continuous simple Z-machines, Z-computation and Z-computable sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22(1974) 1063-1067.
- [2] I. Nabiąłek, W. Żakowski: On \ast -closure of sets of functions, Demonstratio Math. 8 (1975) 249-252.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received March 20, 1975.

