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THE THEOREM OF DESARGUES IN THE SPACE P’

The well-known theorem of Desargues (see [1]) concerns
perspective triples of points, In this paper we formulate an
analogous theorem about triples of k-dimensional hyperplanes
in the projective space P™(0<k<n). We shall treat hyper—-
planes as subsets of the set of points of P2, First we intro-
duce the following notation and abbreviations:

# (a,b,c ..,) means that the elements a,b,c,... are
distinct.

A& ~ an L-dimensional hyperplane, L can omitted in the
symbol A?

2(A, ,A2,...,Ad) - the join of hyperplanes Agshoyees s A

(the smallest hyperplane containing A1’A2""’Aj)'

Theoremn 1, Assume that in the space PR we are
given hyperplanes A?, B?, Dk*1, M§*1, N§}1’ Ci = Z(Ai, By)y
i=1,2,3, satisfying the followling conditions

J

(1) 1/,4\3 Ay # A AB £ BSi 1,3 = 1,2,3
k1 o+
(2) H{L(A“AZCH —>A3¢ B A
A(By,B, C B — By ¢ gty

(3) Z(Ai’Aj) = MmA'z(Bi’Bj) = Nm§ 1,jm = 102’3'

#(’wjvm)
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2 K,Witczyihski

(4) /i\Min N;nD = DI; s Where m>ky i=1,2,3.
Then we have

(*) \/ /\éi,FCC- i=1’2’30

. C:+1,Fk i 1

Proof. First observe that from the assumptions it
follows that

(5) # (M19M2,M3) and # (N1’N2’N3)’
In fact, if we had M, = M;, then we would obtain the inclusion
éAic M'l‘ Next observe that for the proof of the +theorem it

sufficss to consider the cases k = n-3 and k = n-2 only.
In fact, from (2) and (3) it follows that the hyperplanes 7, =
= Z(A,1 'AZ’AB) and Z, = Z(B,I ,B2,B3) have dimension k+2,
Moreover, i_.t is clear that D(:Z,l r'\_Z2 (in view of (5), D,I =
= D2 = D3 cannot hold). Hence the dimension of +the hyper-
plane Z(Z,l,Zg) is not greater than kt3, Op the other hand,
taking Xk = n-1, we obbtain a contradiction with (2) which shows
that k cannot exceed n-2.

From (1) and (3) it follows that if i#J, then the dimension
of the hyperplane Ain Aj equals k-1, Let A;and B; denote
respectively the intersections Ain Aj and BinB., where
i,j,m = 1,2,33 #(i j m). In the sequel we shall assume that
¥>1, since for k=0 the proof is analogous. Suppose that
A; # A'a, then, in virtue of (1) and (3), we infer that A; #
# Ag # A;. This implies that the dimension of Z(A,l ’AZ’AB) is
equal k+1 which contradicts (2). Hence we obtain the equa~
lities
* *

* » * »
4 = A2 = A3 = A and B1 = B2 = B3 =B .

First we consider the case

e

6) k=n—3o
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The theorem of Desargues >

This equality means that the dimension of the hyperplane
Z(Aq, 2’ 3,B1 ,B2,B3) equals n, There are two possibilities:
A" #B" or &% =38",

a) A* E B*

1° A*¢D and B¢ D. In this case the dimension of -the
hyperplanes Ain Bi is not less than k-1, In fact, from the
relations M. nM:l = A, N r\N:j = B for i,j’,m:’l,2,3;£(i,j,m)
it follows that D nD CA and D nD CB Moreover, the
hyperplane Z(A B*) is contalned 1n all hyperplanes
Cy = Z(Ai’Bi)' If the' dimension of F were equal to k+1,
then there would hold the equality F = Ci for all i which
contradicts the assumption.

2° 4*¢D and B*¢ D, We can distinguish the following
subcases:

a) /i\AiC D, Then /1\ A'c D; and consequently /1\A'c; N,.

Suppose that the dimension of the hyperplane Nqn N‘2 N N3

equals k. In view of the relationié( /\ )NinN. = B we then
i,i,m
obtain B’I = B2 = B3. On the other hand ‘from +the inclusion

B'c N nNZr\N3 it follows that
(7 dim NynN,n Ny = k ~ 1,

Taking into account the fact that /i\A*C Ni we obtain A" =B*

which means that under our assumption the case a) cannot hold.

b) A,CDAL,,A ¢D. Then we have A, = D, = Ds, and
consequently NZnD = N3nD = A’I = B,]. This, contradicts the
assumption B'¢ D,

c) A ,A,CDA A3¢ D, This implies, by (4), the relations
N2r\ D= A,]/\ N,ln D= A3 from which it follows that the dimension
of the hyperplanes A,'n B,‘ and A2n B‘2 equal k ~1., From the
relations N,‘nl\I2 = B3 and A'c N nN2 it follows +thdat the
dimension of A3nB3 is not less tban k - 1. Taking F = B3
we obtain the thesis of the theorem,



4 . K.Witczyfiski

3° A'c D and B'c D,
a) /i\AiC DAB;C D, Then it is easy to see that

(8) /\D. #D..

On the other hand we have /i\ A* B'c D;  which implies
/’-\Z(A* B*) = D; contrary to (8).

b) A,CDA A2,A ¢ D. These condltlons imply, by (3) and
(4), the equalitles Ay =B, = 7(a" ,B") = Dy = Dy = D3 and
consequently /1\D’1C Ni’ which contradicts (7).

©) AqshyCDAASED, This implies Ay = Dy A = Dy and
consequently A" CN,‘nNz. Since B”" Cl\I,‘nl\T2 as well,we infer
that 2z(A*,B") = By, If B, yB,¢ D, then Ay = By, a contra-
diction. Hence suppose that e.g. B,CD and B2¢ D, This im-
plies B,] = D,] = A2. Finally observe that the hyperplanés C,]
=D, C, = Z2(A,,B,) amd C, = Z(A,,B,) have dimension k+1

2 2172 3 373
and satisfy the condition /\B d Ci

p) A* = B*
O ¥ . s s A\ *
1 A" ¢ D. According to the equalities A Z(A ’Di) = Mi =

= Ni we then have
(9) /1\ A

However, this contradicts (6).
2° A%c D, In this case, if 1\/in = Byy 1,§=1,2,3 then
*

(10) 4;,84 € D,

In fact, if we had e.g., A; = B; and 4, ,B3¢D, then,since
DC Z4n Z,, we would obtain Z(D,A ) = Z(D,BB) = 2(A, ,A2,A3) =’
= Z(B,] ,B2,B3), a contradiction with (6). We shall consider
the following subcases:
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The theorem of Desargues 5

a) A A2C DA(B,]C Dn B2,B3¢ Dv B,] ,B3C DyBBC Dn

'] ’

AB, B,¢DVB,,B,CD).

We investigate all the components of this alternative.
a) A, ’AE’B C DAB,,By ¢ D. This implies. A, =B, Taking
F = B3 we obtiain the thesis of the theorem, since B2CZ(BB,A2)

a") Aj4A5yB,,B,C D, Then we have A =B, and A, = Bo.
Taking the hyperplanes B3,M,| ,M2 as F,CZ,C3, respectively,
we see that condition-  (¥) holds.

a Aq,A5,B, ’B3CD° This implies A2=B3. Taking A,,D,

N’l ,M,1 as F,C,] ,02,03, respectively, we obtain the thesis.

“a") Aqshs B3C DAB, ,B2¢ D, Then the hyperplanes A, and
B3 - a8 well as A’l and B3 would have to be identical.contrary
to (1.

b) A CD/\AZ,A3¢D This implies A, = D, = D3, and
consequently A CN AA CN3. Hence the hyperplanes A,1 and
B2 co:.nc:.de. We may assume that B2,B3¢D because the con-
verse has been discussed previously. In view of (7) we infer
that D,] # A’I' Since M,]n N,] = Dy, it follows that the dimen-
sion of the hyperplane Z(M,1 ,N ) is k+2 according to (6)
we have M, = N, . Hence the byperplanes Z(A2'Ba) and Z(A ,B)
of dimension k+1 have a common part denoted by F, of dJ.—
mension k, Taking into account that A*Cc F we infer that the
hyperplane Z(A,] yF) has dimension k+1 which concludes the
proof of this case.

c) /1\A.,B.¢ D. By (1) and (10) we infer that the hyper-

planes A,I,A2,A3,B ,132,B3 are all distinct. It is easy to
see that

1 /1\Mi # Nio i=1,2,3.
In fact, if we had, say M1 = N’I’ then the dimension of +the

hyperplene Z(M,,D) would equal k+2, In view of the in-
clusion A1 B4 Z(M,] ,D) this is a contradiction with (6).
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6 K Witezyhski

Let T2, 1572, T13‘+2 denote the hyperplames  Z(M;,N,),

i=1,2,3, respectively., Similarly, let Hm denote the hyper-~
planes Z(Ai,Bi)ﬁZ(A.,'Bj), where i,j,m = 1,2,33 # (i,j,m).
From the condition ZEAi’Bi)' Z(Aj,Bj)c T,s Where i,j,m =
=1,2,3 # (1,j,m), it follows that the dimension of the hyper~
planes H_, m = 1,2,3 1is not less than k, Suppose that the
dimension of the hyperplane H,I equals k + 1, This implies
that Z<A2’B2) = Z_(A3,B3), and consequently. 1\11,1 =N2.Hence the
h,yperplanes H,] ,H2,H3 have dimension k., Suppose that H,] #Ha.
Then the hyperplane Z(C,] ,02) (in this case we have /\aiﬁ Ci),
of dimension k + 2, contains the hyperplanes H,‘_,H2 and conse~
quentlyvij; contains also their join, i.e. CB.But this contra-
dicts (6)., Hence we have B, = B = H3 and +the hyperplanes
01,02,CBH1 fulfill the thesis of the theorem,
Noi we are going to deal with the case

(12) k=n- 2,

Similarly as in (6), the equality (12) implies +that the
join of the hyperplanes A,] ,A2,A3,B,| ’B2’B3 has dﬁ.mens:}‘on n,
As previously, we can distinguish two cases: A # B and
A* = B*, The proof for the former runs analogously as in the
case k = n - 3, Hence we may consider the second case, i,e,
A* = B¥, Depending on the situation of A* with respect to
the byjperplﬁne D we have two possibilities:

1° A*¢ D, Then similarly as in case (9) we obtain A; =By
for all: i which yields the thesis, _

2° A*c D, We distinguish two subcases:

a) A,,A,C€D, In view of the inclusions A,C Z(B4 ’B3)A AsC

CZ(B2,}33), taking 133 = F, C,I = Z(B,] ’BB)’ 02=Z(B2,B3), 03=
= (A3,B3), we obtain the thesis of theorem.
- b) A,ICD A2,A3¢D. This implies that A,I = B,]. If the
hyperplanes Z(A2,B2) have a common part F of dimension k,
the theorem holds., If on the other hand, the dimension of F
is k + 1, then taking as F the intersection Z(A,,B5)ND we
obtain the thesis,
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The theorem of Desargues 7

e) /1\ A;,B; ¢D,
i
We exclude the trivial case

(13) /}A

i = By

We embed the space P2 into the (n+1)-dimensional space
. Next we consider a hyperplane H® such that HC Pnﬂ/\H#
# PPADCH, It is easy to see that the hyperplanes D,‘,D2,D3
have dimension X and are all distinct (from D4 = D, it
follows that M,1 = M2) We take three distinct hyperplanes
kt+1 ol Ek*’l N ‘s A n

E’I R E2 3 satisfying the conditions: s DiC Ei/\ EiCH A

AE; #D 1= 1,2,3. Let GE denote the intersections E;n E.

i, j,m = 1,2,3, # (i,j,m), The triples G ’G2’G3 snd A, A2, 3
as well as . C-,l ,G2,G3 and B1 ,B2,B3 satisfy the a.ssu.mptlons
(1) and-(4), where k = (n+1)-3, Hence in view of the case
proced previously we infer that there exist hypeéerplanes F,}]{,
F5, cf?l, cf:;, cf;,clgq, cg‘: 3, cif:}" satisfying condaition
(*). Clearly the inclusions e F,]/\A*C F, hold from which
we infer that the dimension of the hyperplane Z(F,‘ ,F2) does
not exceed kt1, Observe moreover that we have F, ,F2¢HAF1 ,F2¢
¢ P, and F4 = F, cannot hold. Hence the dimension Z(F,],FZ)
is not less than k+1. Let F denote the intersection Z(E e 2)n
~ PP, According to (13) we have, e.g. A # B,] Consider the

hyperplanes Z(A,1 ,B,]) = C,]fﬂ, Z(A ,G ) = A 19 Z(B,l )G = Clg":]l,

Z(C C, 1) k+2 and Z(C’l’CB,'l) = 12C+2. The common part
of the h;yperplanes W1 and W2 . contains C,] and G,], where
G ¢C,]. This implies W,] = W2. On the other hand from the in-
clus1on Z(F,I o F )L'W,l it follows that FCW1, and hence FC
cw, nP" = . Similarly we can show that if A, #B, and
Ay ;e B3y then FCZ(Ay,B) AFC (A4 ,B ). Finally 1f A, =B,
then taking C, = Z(AZ,F) we obtaln the thesis.

Theoren 2. Assume that in the space PP we are
given hyperplanes AL, BY, FX, &1, w1 w51 34,55, sa-
tisfying the conditions:

Pn+1
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8 K Witezyhski

(2.1) AAABy £33y, 1,5 =1,2,3,

AR

(2.3) é\Ai,Bi,FCC i=1,2,3,

1’

(2.4)#({}'m)(Ai,AdCMm)A(Bi,BjCNm), i,3,m = 1,2,3.

Then we have

(*%) \1‘/1/1\ M,nN;nD =D}, m>k, 1=1,2,3.
D'l-

Proof, Similarly as in the proof of Theorem 1 it suf-
fices to consider the cases k=n-3 and k = n-2 and k >1
only. We also infer that

# (M,] ,M2,M3) and # (N1 1N21N3) ’

(2.5)

.=B*)

*
EATOA (BiﬁBa

7y Ainhy

(clearly, the hyperplanes A* and B" have dimension k-1).First
we are going to deal with ‘the case '

(2.6) k=n- 3.

By assumption, the hyperplanes Z, = Z(A,] ,A2,A3) and- Z, =
= Z(B,I 'BB’BB) have dimengion k + 2. Hence +the hyperplane
2, = 'Z,]nZB has dimension k.+’|, as 2, #2, by (2.6). Clearly,
/1\ My Nicfzo and M,,N,C Z(Cj,Cm) for i,j,m and 1,2,3 and
# (i,j,m). This implies that the dimension of M;nN;,i=1,2,3
is not less than k. Thus the theorem holds provided we +take

Z° as D,
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The theorem of Desargues 9

Next let
(207) k=n-2

i.e. the hyperplane Z(Aq485,A 3,B,1 ,B2,B ) has d.:.mens:Lon k+2,
As before we consider two possibilities Iy # B or A =B .

a) A #B* |

1° A, = F = B,, Then, by (2.7) we have C,=Z(4,,B,) #0y=
= Z(AB'BB) and M, = N, = 03 M3 = N3 = C,. Taking the hyper-
plane M, as D we obtain the thesis (the hyperplanes A,NB,
and A3n33 are contained in M; and N,). V

2° A, =F = B, In this case, in view of the conditions
BBCM20N2,A A3C M,nN,, FC M3r\N3 and Z(AB’BB’F) =,C3 we in-
fer that the hyperplane ,03 satisfies condition (* %),

3° 4, = Fa /\13i # F, “Taking into consideration the in-

clusions Z(A,n BoyhynBy JcMyn N, 1B3C MynNN,,B,C MynN; and
Z(A nBZ,ABnB )CZ(329B3) = N, we see that the hyperplane N,
satisfies the thesis,

¥ /1\Ai #F #B;. Let Er ', 1=1,2,3, denote the in-

tersections of the byperplanes Ai and Bi‘ It is clear that
all the hyperplanes Eq4E5,B 3 are distinct, Next observe that

g(/\ )Z(Ei,Em)c M;nN; for 4i,j,m = 1,2,3. Among the pairs
i,5.m
i" ', i=1,2,3, there are at least two pairs such that Mi’mi

(the equality M, =N, and M; = ‘N2 would imply C, =02=03,
and so on), Suppose that M, £ NjAM, # N,. Then the hyper-
planes M,nN, and i,nN, have dimension k, hence Z(E2,E3)
and Z(E‘I syE5;) also have dimension Xk, This implies that the
hyperplane ‘Z(E,] ,E2,E3) = D has dimension k + 1.

B A" =B".

We exclude the trivial case

(2.8) by =3y, 1= 1213
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10 A’I F = By, This implies I\II2-I\12_C3 and M3_N3 = C3.
Clearly, there exists a hyperplane HE contained in the in-
tersection M,InN,]. It is easy to see that H # F and A*C H.
Putting D = Z(H,F) we obtaln the thesis of the theorem.

2° Ay = F = By Then, in view of the conditions A3C M,n
nN,], B3nM2r\ N2 and FC MB(\NB, we see that the hyperplane
D = C, satisfies conditipn (**),

30 A,] =F and /} By # F. In this case D = N, satisfies
the thesis,

4o /1\Ai # F # By. Similarly as in the proof of Theorem 4

we embed P% into Pn+1.' Let Ck""I be any hyperplane satisfy-
ing the conditions C¢ PPAFCC, Next let C° and GOF be two
distinct hyperplanes such that G,CCCAC,C¢P2AA*Cc NG,

We denote the hyperplanes Z(C,Ai), Z(C,Bi) and Z(C,.Ci)

by E?M, Gk+1 and K]i_k+2, respectively. Let L]; denote the

intersectlon E;NG; (The dimension of L; is Xk, because
/\E sGy CK; AEy #Gi). It is not difficult +to verify that

{\A CL; and C # L, # C. Suppose that L, = L,, then  in

view of the conditions Z(L,,0)nP" = A, and Z(L,,0)nPP=4,
we obtain a contradiction with (2.1), Hence the byperplanes
L,l ,L2,L3 are distinct. Let N il denote . the hyperplanes
Z(Li,Lj). i,d,m = 1,2,3, # (1.a,m). If the hyperplane ¢ =
= Z(L,I ,L2,L3)v had dimension k+1, then from the previous con-
sideration it follows that are hyperplane Z(A'l ,A2,A3) would
have dimension k+t1, a contradiction., Hence we have shown
that the triples A’I ,A2,A3‘ and L, ,L2,L3 as well as B’I’BZ’BB
and L, ,L2,L3 satisfy the assumptions (2.,1) -(2.4). From the
case k = n-3 proved above it follows that there exist hyper-
planes ka’l and f)km, respectively for the first and the
second triple, satisfying condition (**). If 2 =P" did hold,
in view of the conditions /\ Ein P o= A, /\GinPn = B; we would

obtain A4, =L, = B,, contrary to (2,8). Thus the hyperplane
i 1 i 1

D= ZonPn has dimension k+1,., Suppose that ITI,lc P, Hence we

have N, = D which implies ﬁg,NB ¢ P, and consequently
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The theorem of Desargues 11

NznPn = L3/\ NBnPn = Lys On ‘the other. hand we know that

m ’ n — 2 —_— —
/1\Lic E;AB;nP" = A; which shows that A, = L, and A3 = L3.

Similarly we obtain the relation B2 = L2 and 133 = L3. Fi-
nally we see that M,]n N,] = D, A,] = BBC Mzn N2 and A2 =
= B2C M2nN2,' i.e, the hyperplane D satisfies the thesis of
che theorem,

It remains to consider the case /1\1711¢ P, i=1,2,3, Let

R?,SI{ denote the intersections ﬁin My, N;nN,;, respectively.
Evidently we have é\Ri’SiCD' However the. dimension of the

hyperplanes ﬁinD is not greater than k which implies the
equalities /1\Ri = Si and the inclusions /i\RiCMinNi. This
ends the proof of the theorem,

Taking in Theorems 1 and 2 n =2 or n=3 and k=0 we

obtain the known theorems of Desarques.
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