

Krzysztof Witczyński

THE THEOREM OF DESARGUES IN THE SPACE P^n

The well-known theorem of Desargues (see [1]) concerns perspective triples of points. In this paper we formulate an analogous theorem about triples of k -dimensional hyperplanes in the projective space P^n ($0 \leq k < n$). We shall treat hyperplanes as subsets of the set of points of P^n . First we introduce the following notation and abbreviations:

$\neq (a, b, c \dots)$ means that the elements a, b, c, \dots are distinct.

A_i^L - an L -dimensional hyperplane, L can be omitted in the symbol A_i^L

$Z(A_1, A_2, \dots, A_j)$ - the join of hyperplanes A_1, A_2, \dots, A_j (the smallest hyperplane containing A_1, A_2, \dots, A_j).

Theorem 1. Assume that in the space P^n we are given hyperplanes $A_i^k, B_i^k, D^{k+1}, M_i^{k+1}, N_i^{k+1}, C_i^1 = Z(A_i, B_i)$, $i = 1, 2, 3$, satisfying the following conditions

$$(1) \quad \bigwedge_{i \neq j} A_i \neq A_j \wedge B_i \neq B_j; \quad i, j = 1, 2, 3$$

$$(2) \quad \bigwedge_{H^{k+1}} (A_1, A_2 \subset H^{k+1} \rightarrow A_3 \notin H^{k+1}) \wedge \\ \wedge (B_1, B_2 \subset H^{k+1} \rightarrow B_3 \notin H^{k+1})$$

$$(3) \quad \bigwedge_{(i, j, m)} Z(A_i, A_j) = M_m \wedge Z(B_i, B_j) = N_m; \quad i, j, m = 1, 2, 3$$

$$(4) \quad \bigwedge_i M_i \cap N_i \cap D = D_i^m, \quad \text{where } m > k; \quad i = 1, 2, 3.$$

Then we have

$$(*) \quad \bigvee_{C_i^{k+1}, F^k} \bigwedge_i \bar{C}_i, F \subset C_i \quad i = 1, 2, 3.$$

Proof. First observe that from the assumptions it follows that

$$(5) \quad \neq (M_1, M_2, M_3) \quad \text{and} \quad \neq (N_1, N_2, N_3).$$

In fact, if we had $M_1 = M_2$, then we would obtain the inclusion $\bigwedge_i A_i \subset M_1$. Next observe that for the proof of the theorem it suffices to consider the cases $k = n-3$ and $k = n-2$ only. In fact, from (2) and (3) it follows that the hyperplanes $Z_1 = Z(A_1, A_2, A_3)$ and $Z_2 = Z(B_1, B_2, B_3)$ have dimension $k+2$. Moreover, it is clear that $D \subset Z_1 \cap Z_2$ (in view of (5), $D_1 = D_2 = D_3$ cannot hold). Hence the dimension of the hyperplane $Z(Z_1, Z_2)$ is not greater than $k+3$. On the other hand, taking $k = n-1$, we obtain a contradiction with (2) which shows that k cannot exceed $n-2$.

From (1) and (3) it follows that if $i \neq j$, then the dimension of the hyperplane $A_i \cap A_j$ equals $k-1$. Let A_m^* and B_m^* denote respectively the intersections $A_i \cap A_j$ and $B_i \cap B_j$, where $i, j, m = 1, 2, 3; \neq (i \ j \ m)$. In the sequel we shall assume that $k \geq 1$, since for $k = 0$ the proof is analogous. Suppose that $A_1^* \neq A_2^*$, then, in virtue of (1) and (3), we infer that $A_1^* \neq A_3^* \neq A_2^*$. This implies that the dimension of $Z(A_1, A_2, A_3)$ is equal $k+1$ which contradicts (2). Hence we obtain the equalities

$$A_1^* = A_2^* = A_3^* = A^* \quad \text{and} \quad B_1^* = B_2^* = B_3^* = B^*.$$

First we consider the case

$$(6) \quad k = n - 3.$$

This equality means that the dimension of the hyperplane $Z(A_1, A_2, A_3, B_1, B_2, B_3)$ equals n . There are two possibilities: $A^* \neq B^*$ or $A^* = B^*$.

a) $\underline{A^* \neq B^*}$

1° $A^* \notin D$ and $B^* \notin D$. In this case the dimension of the hyperplanes $A_i \cap B_i$ is not less than $k-1$. In fact, from the relations $M_i \cap M_j = A_m$, $N_i \cap N_j = B_m$ for $i, j, m = 1, 2, 3 \neq (i, j, m)$ it follows that $D_i \cap D_j \subset A_m$ and $D_i \cap D_j \subset B_m$. Moreover, the hyperplane $F = Z(A^*, B^*)$ is contained in all hyperplanes $C_i = Z(A_i, B_i)$. If the dimension of F were equal to $k+1$, then there would hold the equality $F = C_i$ for all i which contradicts the assumption.

2° $A^* \subset D$ and $B^* \notin D$. We can distinguish the following subcases:

a) $\bigwedge_i A_i \subset D$. Then $\bigwedge_i A^* \subset D_i$ and consequently $\bigwedge_i A^* \subset N_i$.

Suppose that the dimension of the hyperplane $N_1 \cap N_2 \cap N_3$ equals k . In view of the relation $\bigwedge_{\neq(i,j,m)} N_i \cap N_j = B_m$ we then obtain $B_1 = B_2 = B_3$. On the other hand from the inclusion $B^* \subset N_1 \cap N_2 \cap N_3$ it follows that

$$(7) \quad \dim N_1 \cap N_2 \cap N_3 = k - 1.$$

Taking into account the fact that $\bigwedge_i A^* \subset N_i$ we obtain $A^* = B^*$ which means that under our assumption the case a) cannot hold.

b) $A_1 \subset D \wedge A_2, A_3 \notin D$. Then we have $A_1 = D_2 = D_3$, and consequently $N_2 \cap D = N_3 \cap D = A_1 = B_1$. This contradicts the assumption $B^* \notin D$.

c) $A_1, A_2 \subset D \wedge A_3 \notin D$. This implies, by (4), the relations $N_2 \cap D = A_1 \cap N_1 \cap D = A_3$ from which it follows that the dimension of the hyperplanes $A_1 \cap B_1$ and $A_2 \cap B_2$ equal $k-1$. From the relations $N_1 \cap N_2 = B_3$ and $A^* \subset N_1 \cap N_2$ it follows that the dimension of $A_3 \cap B_3$ is not less than $k-1$. Taking $F = B_3$ we obtain the thesis of the theorem.

3º $A^* \subset D$ and $B^* \subset D$.

a) $\bigwedge_i A_i \subset D \wedge B_i \subset D$. Then it is easy to see that

$$(8) \quad \bigwedge_{i \neq j} D_i \neq D_j.$$

On the other hand we have $\bigwedge_i A^*, B^* \subset D_i$ which implies $\bigwedge_i Z(A^*, B^*) = D_i$ contrary to (8).

b) $A_1 \subset D \wedge A_2, A_3 \notin D$. These conditions imply, by (3) and (4), the equalities $A_1 = B_1 = Z(A^*, B^*) = D_1 = D_2 = D_3$, and consequently $\bigwedge_i D_i \subset N_i$, which contradicts (7).

c) $A_1, A_2 \subset D \wedge A_3 \notin D$. This implies $A_1 = D_2$ $A_2 = D_1$ and consequently $A^* \subset N_1 \cap N_2$. Since $B^* \subset N_1 \cap N_2$ as well, we infer that $Z(A^*, B^*) = B_3$. If $B_1, B_2 \notin D$, then $A_3 = B_3$, a contradiction. Hence suppose that e.g. $B_1 \subset D$ and $B_2 \notin D$. This implies $B_1 = D_1 = A_2$. Finally observe that the hyperplanes $C_1 = D$, $C_2 = Z(A_2, B_2)$ and $C_3 = Z(A_3, B_3)$ have dimension $k+1$ and satisfy the condition $\bigwedge_i B_i \subset C_i$.

β) $A^* = B^*$

1º $A^* \notin D$. According to the equalities $\bigwedge_i Z(A^*, D_i) = M_i = N_i$ we then have

$$(9) \quad \bigwedge_i A_i = B_i.$$

However, this contradicts (6).

2º $A^* \subset D$. In this case, if $\bigvee_{i,j} A_i = B_j$, $i, j = 1, 2, 3$ then

$$(10) \quad A_i, B_j \subset D.$$

In fact, if we had e.g., $A_1 = B_3$ and $A_1, B_3 \notin D$, then, since $D \subset Z_1 \cap Z_2$, we would obtain $Z(D, A_1) = Z(D, B_3) = Z(A_1, A_2, A_3) = Z(B_1, B_2, B_3)$, a contradiction with (6). We shall consider the following subcases:

$$a) A_1, A_2 \subset D \wedge (B_1 \subset D \wedge B_2, B_3 \notin D \vee B_1, B_3 \subset D \vee B_3 \subset D \wedge \\ \wedge B_1, B_2 \notin D \vee B_1, B_2 \subset D).$$

We investigate all the components of this alternative.

a') $A_1, A_2, B_1 \subset D \wedge B_2, B_3 \notin D$. This implies $A_1 = B_1$. Taking $F = B_3$ we obtain the thesis of the theorem, since $B_2 \subset Z(B_3, A_2)$.

a'') $A_1, A_2, B_1, B_2 \subset D$. Then we have $A_1 = B_1$ and $A_2 = B_2$. Taking the hyperplanes B_3, M_1, M_2 as F, C_2, C_3 , respectively, we see that condition (*) holds.

a'') $A_1, A_2, B_1, B_3 \subset D$. This implies $A_2 = B_3$. Taking A_2, D, N_1, M_1 as F, C_1, C_2, C_3 , respectively, we obtain the thesis.

a'') $A_1, A_2, B_3 \subset D \wedge B_1, B_2 \notin D$. Then the hyperplanes A_2 and B_3 , as well as A_1 and B_3 would have to be identical, contrary to (1).

b) $A_1 \subset D \wedge A_2, A_3 \notin D$. This implies $A_1 = D_2 = D_3$, and consequently $A_1 \subset N_2 \wedge A_1 \subset N_3$. Hence the hyperplanes A_1 and B_2 coincide. We may assume that $B_2, B_3 \notin D$, because the converse has been discussed previously. In view of (7) we infer that $D_1 \neq A_1$. Since $M_1 \cap N_1 = D_1$, it follows that the dimension of the hyperplane $Z(M_1, N_1)$ is $k+2$ according to (6) we have $M_1 = N_1$. Hence the hyperplanes $Z(A_2, B_2)$ and $Z(A_3, B_3)$ of dimension $k+1$ have a common part, denoted by F , of dimension k . Taking into account that $A^* \subset F$ we infer that the hyperplane $Z(A_1, F)$ has dimension $k+1$ which concludes the proof of this case.

c) $\bigwedge_i A_i, B_i \notin D$. By (1) and (10) we infer that the hyperplanes $A_1, A_2, A_3, B_1, B_2, B_3$ are all distinct. It is easy to see that

$$(11) \quad \bigwedge_i M_i \neq N_i, \quad i = 1, 2, 3.$$

In fact, if we had, say $M_1 = N_1$, then the dimension of the hyperplane $Z(M_1, D)$ would equal $k+2$. In view of the inclusion $A_1, B_1 \subset Z(M_1, D)$ this is a contradiction with (6).

Let $T_1^{k+2}, T_2^{k+2}, T_3^{k+2}$ denote the hyperplanes $Z(M_i, N_i)$, $i = 1, 2, 3$, respectively. Similarly, let H_m denote the hyperplanes $Z(A_i, B_i) \cap Z(A_j, B_j)$, where $i, j, m = 1, 2, 3; i \neq j, m$. From the condition $Z(A_i, B_i), Z(A_j, B_j) \subset T_m$, where $i, j, m = 1, 2, 3 \neq (i, j, m)$, it follows that the dimension of the hyperplanes H_m , $m = 1, 2, 3$ is not less than k . Suppose that the dimension of the hyperplane H_1 equals $k + 1$. This implies that $Z(A_2, B_2) = Z(A_3, B_3)$, and consequently $M_1 = N_2$. Hence the hyperplanes H_1, H_2, H_3 have dimension k . Suppose that $H_1 \neq H_2$. Then the hyperplane $Z(C_1, C_2)$ (in this case we have $\bigwedge C_i = C_1$), of dimension $k + 2$, contains the hyperplanes H_1, H_2 and consequently it contains also their join, i.e. C_3 . But this contradicts (6). Hence we have $H_1 = H_2 = H_3$ and the hyperplanes C_1, C_2, C_3, H_1 fulfill the thesis of the theorem.

Now we are going to deal with the case

$$(12) \quad k = n - 2.$$

Similarly as in (6), the equality (12) implies that the join of the hyperplanes $A_1, A_2, A_3, B_1, B_2, B_3$ has dimension n . As previously, we can distinguish two cases: $A^* \neq B^*$ and $A^* = B^*$. The proof for the former runs analogously as in the case $k = n - 3$. Hence we may consider the second case, i.e. $A^* = B^*$. Depending on the situation of A^* with respect to the hyperplane D we have two possibilities:

1° $A^* \notin D$. Then similarly as in case (9) we obtain $A_i = B_i$ for all i which yields the thesis.

2° $A^* \subset D$. We distinguish two subcases:

a) $A_1, A_2 \subset D$. In view of the inclusions $A_1 \subset Z(B_1, B_3) \wedge A_2 \subset Z(B_2, B_3)$, taking $B_3 = F$, $C_1 = Z(B_1, B_3)$, $C_2 = Z(B_2, B_3)$, $C_3 = (A_3, B_3)$, we obtain the thesis of theorem.

b) $A_1 \subset D$ $A_2, A_3 \notin D$. This implies that $A_1 = B_1$. If the hyperplanes $Z(A_2, B_2)$ have a common part F of dimension k , the theorem holds. If on the other hand, the dimension of F is $k + 1$, then taking as F the intersection $Z(A_2, B_2) \cap D$ we obtain the thesis.

$$c) \bigwedge_i A_i, B_i \notin D.$$

We exclude the trivial case

$$(13) \bigwedge_i A_i = B_i.$$

We embed the space P^n into the $(n+1)$ -dimensional space P^{n+1} . Next we consider a hyperplane H^n such that $H \subset P^{n+1} \wedge H \neq P^n \wedge D \subset H$. It is easy to see that the hyperplanes D_1, D_2, D_3 have dimension k and are all distinct (from $D_1 = D_2$ it follows that $M_1 = M_2$). We take three distinct hyperplanes $E_1^{k+1}, E_2^{k+1}, E_3^{k+1}$ satisfying the conditions: $\bigwedge_i D_i \subset E_i \wedge E_i \subset H^n \wedge E_i \neq D$ $i = 1, 2, 3$. Let G_m^k denote the intersections $E_i \cap E_j$, $i, j, m = 1, 2, 3, \neq (i, j, m)$. The triples G_1, G_2, G_3 and A_1, A_2, A_3 , as well as G_1, G_2, G_3 and B_1, B_2, B_3 satisfy the assumptions (1) and (4), where $k = (n+1)-3$. Hence in view of the case probed previously we infer that there exist hyperplanes $F_1^k, F_2^k, C_{A,1}^{k+1}, C_{A,2}^{k+1}, C_{A,3}^{k+1}, C_{B,1}^{k+1}, C_{B,2}^{k+1}, C_{B,3}^{k+1}$ satisfying condition (*). Clearly the inclusions $A^* \subset F_1 \wedge A^* \subset F_2$ hold from which we infer that the dimension of the hyperplane $Z(F_1, F_2)$ does not exceed $k+1$. Observe moreover that we have $F_1, F_2 \subset H \wedge F_1, F_2 \notin P^n$, and $F_1 = F_2$ cannot hold. Hence the dimension $Z(F_1, F_2)$ is not less than $k+1$. Let F denote the intersection $Z(F_1, F_2) \cap P^n$. According to (13) we have, e.g. $A_1 \neq B_1$. Consider the hyperplanes $Z(A_1, B_1) = C_1^{k+1}, Z(A_1, G_1) = C_{A,1}^{k+1}, Z(B_1, G_1) = C_{B,1}^{k+1}, Z(C_1, C_{A,1}) = W_1^{k+2}$ and $Z(C_1, C_{B,1}) = W_2^{k+2}$. The common part of the hyperplanes W_1 and W_2 contains C_1 and G_1 , where $G_1 \notin C_1$. This implies $W_1 = W_2$. On the other hand from the inclusion $Z(F_1, F_2) \subset W_1$ it follows that $F \subset W_1$, and hence $F \subset C_1 \subset W_1 \cap P^n = C_1$. Similarly we can show that if $A_2 \neq B_2$ and $A_3 \neq B_3$, then $F \subset Z(A_2, B_2) \wedge F \subset Z(A_3, B_3)$. Finally if $A_2 = B_2$, then taking $C_2 = Z(A_2, F)$ we obtain the thesis.

Theorem 2. Assume that in the space P^n we are given hyperplanes $A_i^k, B_i^k, F^k, C_i^{k+1}, M_i^{k+1}, N_i^{k+1}$, $i = 1, 2, 3$, satisfying the conditions:

$$(2.1) \quad \bigwedge_{i \neq j} A_i \neq A_j \wedge B_i \neq B_j, \quad i, j = 1, 2, 3,$$

$$(2.2) \quad \bigwedge_{H^{k+1}} (A_1, A_2 \subset H^{k+1} \rightarrow A_3 \subset H^{k+1}) \wedge (B_1, B_2 \subset H^{k+1} \rightarrow B_3 \subset H^{k+1}),$$

$$(2.3) \quad \bigwedge_i A_i, B_i, F \subset C_i, \quad i = 1, 2, 3,$$

$$(2.4) \quad \bigwedge_{\neq(i,j,m)} (A_i, A_j \subset M_m) \wedge (B_i, B_j \subset N_m), \quad i, j, m = 1, 2, 3.$$

Then we have

$$(**) \quad \bigvee_{D^{k+1}} \bigwedge_i M_i \cap N_i \cap D = D_i^m, \quad m \geq k, \quad i = 1, 2, 3.$$

Proof. Similarly as in the proof of Theorem 1 it suffices to consider the cases $k = n - 3$ and $k = n - 2$ and $k > 1$ only. We also infer that

$$(2.5) \quad \neq (M_1, M_2, M_3) \text{ and } \neq (N_1, N_2, N_3),$$

$$\bigwedge_{i \neq j} (A_i \cap A_j = A^*) \wedge (B_i \cap B_j = B^*)$$

(clearly, the hyperplanes A^* and B^* have dimension $k-1$). First we are going to deal with the case

$$(2.6) \quad k = n - 3.$$

By assumption, the hyperplanes $Z_1 = Z(A_1, A_2, A_3)$ and $Z_2 = Z(B_1, B_2, B_3)$ have dimension $k+2$. Hence the hyperplane $Z_0 = Z_1 \cap Z_2$ has dimension $k+1$, as $Z_1 \neq Z_2$ by (2.6). Clearly, $\bigwedge_i M_i \cap N_i \subset Z_0$ and $M_i, N_i \subset Z(C_j, C_m)$ for i, j, m and $1, 2, 3$ and $\neq (i, j, m)$. This implies that the dimension of $M_i \cap N_i, i = 1, 2, 3$ is not less than k . Thus the theorem holds provided we take Z_0 as D .

Next let

$$(2.7) \quad k = n - 2$$

i.e. the hyperplane $Z(A_1, A_2, A_3, B_1, B_2, B_3)$ has dimension $k+2$. As before we consider two possibilities $A^* \neq B^*$ or $A^* = B^*$.

a) $\underline{A^* \neq B^*}$

1° $A_1 = F = B_1$. Then, by (2.7) we have $C_2 = Z(A_2, B_2) \neq C_3 = Z(A_3, B_3)$ and $M_2 = N_2 = C_3$, $M_3 = N_3 = C_2$. Taking the hyperplane M_1 as D we obtain the thesis (the hyperplanes $A_2 \cap B_2$ and $A_3 \cap B_3$ are contained in M_1 and N_1).

2° $A_1 = F = B_2$. In this case, in view of the conditions $B_3 \subset M_2 \cap N_2$, $A_3 \subset M_1 \cap N_1$, $F \subset M_3 \cap N_3$ and $Z(A_3, B_3, F) = C_3$ we infer that the hyperplane C_3 satisfies condition (**).

3° $A_1 = F \wedge \bigwedge_i B_i \neq F$. Taking into consideration the inclusions $Z(A_2 \cap B_2, A_3 \cap B_3) \subset M_1 \cap N_1$, $B_3 \subset M_2 \cap N_2$, $B_2 \subset M_3 \cap N_3$ and $Z(A_2 \cap B_2, A_3 \cap B_3) \subset Z(B_2, B_3) = N_1$ we see that the hyperplane N_1 satisfies the thesis.

4° $\bigwedge_i A_i \neq F \neq B_i$. Let E_i^{k-1} , $i = 1, 2, 3$, denote the intersections of the hyperplanes A_i and B_i . It is clear that all the hyperplanes E_1, E_2, E_3 are distinct. Next observe that $\bigwedge_{\substack{i,j,m \\ \neq(i,j,m)}} Z(E_i, E_m) \subset M_i \cap N_i$ for $i, j, m = 1, 2, 3$. Among the pairs M_i, N_i , $i = 1, 2, 3$, there are at least two pairs such that $M_i \neq N_i$ (the equality $M_1 = N_1$ and $M_2 = N_2$ would imply $C_1 = C_2 = C_3$, and so on). Suppose that $M_1 \neq N_1 \wedge M_2 \neq N_2$. Then the hyperplanes $M_1 \cap N_1$ and $M_2 \cap N_2$ have dimension k , hence $Z(E_2, E_3)$ and $Z(E_1, E_2)$ also have dimension k . This implies that the hyperplane $Z(E_1, E_2, E_3) = D$ has dimension $k+1$.

b) $\underline{A^* = B^*}$.

We exclude the trivial case

$$(2.8) \quad \bigwedge_i A_i = B_i, \quad i = 1, 2, 3.$$

1° $A_1 = F = B_1$. This implies $M_2 = N_2 = C_3$ and $M_3 = N_3 = C_3$. Clearly, there exists a hyperplane H^k contained in the intersection $M_1 \cap N_1$. It is easy to see that $H \neq F$ and $A^* \subset H$. Putting $D = Z(H, F)$ we obtain the thesis of the theorem.

2° $A_1 = F = B_2$. Then, in view of the conditions $A_3 \subset M_1 \cap N_1$, $B_3 \cap M_2 \cap N_2$ and $F \subset M_3 \cap N_3$, we see that the hyperplane $D = C_3$ satisfies condition (**).

3° $A_1 = F$ and $\bigwedge_i B_i \neq F$. In this case $D = N_1$ satisfies the thesis.

4° $\bigwedge_i A_i \neq F \neq B_i$. Similarly as in the proof of Theorem 1 we embed P^n into P^{n+1} . Let C^{k+1} be any hyperplane satisfying the conditions $C \not\subset P^n \wedge F \subset C$. Next let \bar{C}^k and $\bar{\bar{C}}^k$ be two distinct hyperplanes such that $\bar{C}, \bar{\bar{C}} \subset C \wedge \bar{C}, \bar{\bar{C}} \not\subset P^n \wedge A^* \subset \bar{C} \cap \bar{\bar{C}}$.

We denote the hyperplanes $Z(C, A_i)$, $Z(C, B_i)$ and $Z(C, C_i)$ by E_i^{k+1} , G_i^{k+1} and K_i^{k+2} , respectively. Let L_i^k denote the intersection $E_i \cap G_i$ (The dimension of L_i is k , because $\bigwedge_i E_i \cap G_i \subset K_i \wedge E_i \neq G_i$). It is not difficult to verify that $\bigwedge_i A^* \subset L_i$ and $\bar{C} \neq L_i \neq \bar{\bar{C}}$. Suppose that $L_1 = L_2$, then in view of the conditions $Z(L_1, \bar{C}) \cap P^n = A_1$ and $Z(L_2, \bar{C}) \cap P^n = A_2$ we obtain a contradiction with (2.1). Hence the hyperplanes L_1, L_2, L_3 are distinct. Let N_m^{k+1} denote the hyperplanes $Z(L_i, L_j)$, $i, j, m = 1, 2, 3, \neq (i, j, m)$. If the hyperplane $Z_0 = Z(L_1, L_2, L_3)$ had dimension $k+1$, then from the previous consideration it follows that the hyperplane $Z(A_1, A_2, A_3)$ would have dimension $k+1$, a contradiction. Hence we have shown that the triples A_1, A_2, A_3 and L_1, L_2, L_3 as well as B_1, B_2, B_3 and L_1, L_2, L_3 satisfy the assumptions (2.1) - (2.4). From the case $k = n-3$ proved above it follows that there exist hyperplanes \bar{D}^{k+1} and $\bar{\bar{D}}^{k+1}$, respectively for the first and the second triple, satisfying condition (**). If $Z_0 = P^n$ did hold, in view of the conditions $\bigwedge_i E_i \cap P^n = A_i \wedge G_i \cap P^n = B_i$ we would obtain $\bigwedge_i A_i = L_i = B_i$, contrary to (2.8). Thus the hyperplane $D = Z_0 \cap P^n$ has dimension $k+1$. Suppose that $\bar{N}_1 \subset P^n$. Hence we have $\bar{N}_1 = D$ which implies $\bar{N}_2, \bar{N}_3 \not\subset P^n$, and consequently

$\bar{N}_2 \cap P^n = L_3 \wedge N_3 \cap P^n = L_2$. On the other hand we know that $\bigwedge_i L_i \subset E_i \wedge E_i \cap P^n = A_i$ which shows that $A_2 = L_2$ and $A_3 = L_3$. Similarly we obtain the relation $B_2 = L_2$ and $B_3 = L_3$. Finally we see that $M_1 \cap N_1 = D$, $A_1 = B_3 \subset M_2 \cap N_2$ and $A_2 = B_2 \subset M_2 \cap N_2$, i.e. the hyperplane D satisfies the thesis of the theorem.

It remains to consider the case $\bigwedge_i \bar{N}_i \not\subset P^n$, $i = 1, 2, 3$. Let R_i^k, S_i^k denote the intersections $\bar{N}_i \cap M_i$, $\bar{N}_i \cap N_i$, respectively. Evidently we have $\bigwedge_i R_i^k, S_i^k \subset D$. However the dimension of the hyperplanes $\bar{N}_i \cap D$ is not greater than k which implies the equalities $\bigwedge_i R_i^k = S_i^k$ and the inclusions $\bigwedge_i R_i^k \subset M_i \cap N_i$. This ends the proof of the theorem.

Taking in Theorems 1 and 2 $n = 2$ or $n = 3$ and $k = 0$ we obtain the known theorems of Desargues.

BIBLIOGRAPHY

- [1] K. B o r s u k, W. S z m i e l e w: Podstawy geometrii. Warszawa 1970.
- [2] K. B o r s u k: Geometria analityczna wielowymiarowa. Warszawa 1966.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received March 4, 1975.

