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THE THEOREM OF DESARGUES IN THE SPACE P" 

The well-known theorem of Desargues ( see [ l ] ) concerns 
p e r s p e c t i v e t r i p l e s of p o i n t s . I n t h i s paper we formula te an 
analogous theorem ahout t r i p l e s of k-dimensional hyperplanes 
i n the p r o j e c t i v e space P n ( 0 < k < n ) . We s h a l l t r e a t hyper -
p lanes as subse t s of the s e t of p o i n t s of P11. F i r s t we i n t r o -
duce the fo l lowing n o t a t i o n and a b b r e v i a t i o n s : 

4 (a,"b,c . . . ) means t h a t the elements a , b , c , . . . a re 
d i s t i n c t . 

A^ - an L-dimensional hyperplane , L can omit ted i n the 
symbol A^ 

Z(A^ , A 2 , . . . ,Aj) - the j o i n of hyperplanes A 1 , A 2 , . . . , A^ 
( t h e sma l l e s t hyperplane con ta in ing A^ , a 2 , . . . ,A..). 

T h e o r e m 1, Assume t h a t i n the space P n we axe 
given hyperplanes A*, B*t D**1, M^"1, N^*"1, C^ = Z(A i , B±) , 
i = 1 ,2 ,3» s a t i s f y i n g the fo l lowing cond i t ions 

(10 A A t * A.AB. * B . | i , J = 1 , 2 , 3 

A ( B l ,B2 c H1^1 — B3 t H**1) 
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2 K.Witczynski 

(4) A l I ^ I . n D n D j , where m>k; i = 1,2,3. 

Then we have 

(*) V A o ^ F c C . 1=1,2,3. +1 -k i 1 1 
c f V 

P r o of. First observe that from the assumptions it 
follows that 

(5) ¿'(HlpMgiUp and i 

In fact, if we had M^ = M2, then we would obtain the inclusion 
M^. Next observe that for the proof of the theorem it 

suffices to consider the cases k = n-3 and k = n-2 only. 
In fact, from (2) and (3) it follows that the hyperplanes Ẑ  = 

and Zg = Z(B,| ,B2,BO have dimension k + 2. 
Moreover, it is clear that DcZ^nZ^ (in view of (5), D^ = 
= Dg = D^ cannot hold). Hence the dimension of the hyper-
plane Z(Z^,Z2) is not greater than k+3. On the other hand, 
taking k = n-1, we obtain a contradiction with (2) which shows 
that k cannot exceed n-2. 

From (1) and (3) it follows that if i^j, then the dimension 
* * 

of the hyperplane A.n i. equals k-1. Let AmandBm denote 
respectively the intersections A.n A. and B.nB,, where 
i,j,m = 1,2,3; ¡¿(i ¡j m). sequel we shall assume that 
k>1, since for k = 0 the proof is analogous. Suppose that 
A* i Ag, then, in virtue of (1) and (3), we infer that Â j 4 

Ag. This implies that the dimension of ZCA^.AgjA^) is 
equal k+1 which contradicts (2). Hence we obtain the equa-
lities 

A^ = A2 = A^ = A and B^ = B2 = B^ = B . 

?irst we consider the case 
(6) k = n - 3. 
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The theorem of Desargues 3 

This equality means that the dimens,ion of the hyperplane 
,B2,B^) equals n. There are two possibilities: 

A* * B or A* = B#. 

a) A* ^ B* 
1° A*<^ D and B*£ D. In this case ths dimension of the 

hyperplanes A^n B^ is not less than k-1. In fact, from the 
relations M^n M^ = N.nN. = B m for i, J,m=1,2,3 4 (i, j ,m) 
it follows that D i n C j c A

m
 311(1 ' D i n D o c B m * Moreover, the 

hyperplane F = Z(A*, B*) is contained in all hyperplanes 
C^ = Z(A^,B^). If the dimension of F were equal to k»+1, 
then there would hold the equality F = C^ for all i which 
contradicts the assumption. 

2° A*C D and 3*4 . D. We can distinguish the following 
subcases: 

a) A A ^ D . Then A A*c D± and consequently A a ' c ^ . 

Suppose that the dimension of the hyperplane n N 2 n N^ 
equals k. In view of the relation A N. n = B„ we then 

¿(i.j.m) 1 J m 

obtain B^ = B 2 = B^. On the other hand from the inclusion 
B*C ^ n N 2 n N^ it follows that 

(7) dim N ^ ^ n ^ = k - 1. 

Taking into account the fact that A A*C N^ we obtain A =B 
which means that under our assumption the case a) cannot hold. 

b) A^C DA AgjA^tf D. Then we have A^ = D 2 = D^, and 
consequently N 2n D = N^nD = A^ = B^. This, contradicts the 
assumption b V D. 

c) A^ ,A2C DA A^^ D. This implies, by (4), the relations' 
N 2n D = A^ A l ^ n D = A^ from which it follows that the dimension 
of the hyperplanes A^nB^ and A 2 n B 2 equal k-1. From the 
relations K^ n N 2 = B^ and A*c N^ n N 2 it follows that the 
dimension of A^ n B^ is not less than k - 1. Taking F = B^ 
we obtain the thesis of the theorem. 



K.Wltczynski 

3° A*C D AND B*C D. 

A) A a . C D AB . C D. THEN IT i s EASY TO SEE THAT 
I 1 1 

(8) AD. T D.. 
Wd 1 ¿J 

ON THE OTHER HAND WE HAVE A A* tB*C D^ WHICH IMPLIES 

/\Z(A*,B*) = DI CONTRARY TO (8). 

B) Â  C DA A2,Â <Î D. THESE CONDITIONS IMPLY, BY (3) AND 
(4), THE EQUALITIES A1 = B,, = Z(A*,B*) = D̂  = D2 = D^, AND 
CONSEQUENTLY Ad^CN^, WHICH CONTRADICTS (7). 

C) Â  ,A2G Da Â t D. THIS IMPLIES Â  = D2 A2 = D̂  AND 
CONSEQUENTLY A'CH^NKG» SINCE B'CI^NÏÏJ AS WELL,WE INFER 
THAT Z(A*,B*) = B^. IF B^BGCFD, THEN A^ = B^, A CONTRA-
DICTION. HENCE SUPPOSE THAT E.G. B̂  G D AND B2<JT D. THIS IM-
PLIES B̂  = D,J = A2. FINALLY OBSERVE THAT THE HYPERPLANÉS Ĉ  = 
= D, C2 = Z(A2,B2) AND Ĝ  = ZCA^B^) HAVE DIMENSION K+1 
AND SATISFY THE CONDITION Ab^cC^. 

/3) A* = B» 

1 A <£ D. ACCORDING TO THE EQUALITIES A Z(A*,D.) = M. = 1 X X 
= WE THEN HAVE 

(9) A A± Aj = B i . 

HOWEVER, THIS CONTRADICTS (6). 
2° A*C D. IN THIS CASE, IF V . L = B., I,J = 1,2,3 THEN 1 J 

(10) C D. 

IN FACT, IF WE HAD E.G., Â  = B̂  AND A^B^TFD, THEN,SINCE 
DCZ1.NZ2, WE WOULD OBTAIN Z(D,A/J) = ZCD.B̂ ) = =' 
= Z(B,J JB^B^) , A CONTRADICTION WITH (6). WE SHALL CONSIDER 
THE FOLLOWING SUBCASES: 
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The theorem of Desargues 5 

a) A^ C D A (B^ C DAB^B^ci DvB^.B^C DyB^C Da 

aB^ ,B2<^DvB1fB2CD). 

We investigate all the components of this alternative. 
a') A1 jAgjB^C DaB2,B2^ D. This implies A 1=B 1. Taking 

F = B^ we obtjain the thesis of the theorem, since B^ZiB^jA^. 
a") A^ ,A2,B^ ,B2C D. Then we have A^ = B^ and Ag = B2. 

Taking the hyperplanes B^M^,!^ as F,G2tGj, respectively, 
we see that condition (*) holds. 

a1") A^ ,A2,B1 D. This implies A 2 = B^. Taking A2,D, 
as F ^ j C ^ C ^ , respectively, we obtain the thesis. 

*alv) A^ fA2, B^C D A B^ ,B2<£D, Then the hyperplanes A2 and 
B^ ' as well as A^ and B^ would have to be identical, contrary 
to (1). 

b) A^ C L/\ A ^ A ^ D. This implies A^ = D 2 = D^, and 
consequently A^ C N2 A A^ C Hence the hyperplanes A^ and 
B 2 coincide. We may assume that B^B^tfD, because the con-
verse has been discussed previously. In view of (7) we infer 
that Dyj / A^. Since ll^n^ = D^ , it follows that the dimen-
sion of the hyperplane Z(M^,Ii^) is k + 2 according to (6) 
we have M^ = N^ . Hence the hyperplanes Z(A2,B2) and 
of dimension k+1 have a common part, denoted by F, of di-
mension k. Taking into account that A*c F we infer that the 
hyperplane Z(A^,F) has dimension k+1 which concludes the 
proof of this case. 

c) A a ^ B . 0 . By (1) and (10) we infer that the hyper-
planes A^jAgjA^jB^,B2,B^ are all distinct. It is easy to 
see that 

(11) A M i ^ N±, 1 = 1,2,3. 

In fact, if we had, say M^ = , then the dimension of the 
hyperplane Z(M1tD) would equal k+2. In view of the in-
clusion A,. Z(1IL ,D) this is a contradiction with (6). 
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6 K.Wltczynskl 

Let T 1̂"2, T 1̂"2, T 1̂"2 denote- the hyperplanes Z(Mi,Ni) , 
i = 1,2,3, respectively. Similarly, let E^ denote the hyper-
planes Z(Ai,Bi)rt Z(A , where i,j,m = 1,2,3} t (i,j,m). 
From the condition Z ( A . . c Tm, where = 
= 1,2,3 ̂  (i,j,m), it follows that the dimension of the hyper-
planes Hm, m = 1,2,3 is not less than k. Suppose that the 
dimension of the hyperplane Ĥ  equals k + 1. This implies 
that Z(A£,B2) = ZXA^jB^), and consequently. M^ = Hg.Hence the 
hyperplanes Ĥ  j^jH^ have dimension k. Suppose that Ĥ  ¿K^» 
Then the hyperplane Z(Ĉ  ,02) (in this case we have A 0^=0^), 
of dimension k + 2, contains the hyperplanes H^ jHg and conse-
quently it contains also their join, i.e. C^. But this contra-
dicts (6). Hence we have Ĥ  = H^ = H^ and the hyperplanes 
C1»°2»G3H1 f u l f i 1 1 "the thesis of the theorem. 

No«- we are going to deal with the case 

(12) k = n - 2. 

Similarly as in (6), the equality (12) implies that the 
join of the hyperplanes A^ »AgjÂ jB̂  ,B2»B̂  has dimension n. 
As previously, we can distinguish two cases: A ^ B* and 
A* = B*. The proof for the former runs analogously as in the 
case k = n - 3. Hence we may consider the second case, i.e. 
A* = B*. Depending on the situation of A* with respect to 
the hyperpljkne D we have two possibilities: 

1° k*<t D. Then similarly as in case (9) we obtain A^ = B^ 
for all' i which yields the thesis. 

2° A*c D. We distinguish two subcases: 
a) A^,A2CD. In view of the inclusions Â  C Z(B̂  ,B^) A AgC 

CZ(B2,B3), taking B^ = F, Ĉ  = Z(B1 ,B3) , C2 = Z(B2,B3) , = 
= (A^jB^), we obtain the thesis of theorem. 

b) A^cd A2,A3<iD. This implies that A1 = B1. If the 
hyperplanes ZCAgjBg) have a common part F of dimension k, 
the theorem holds. If on the other hand, the dimension of F 
is k + 1, then taking as F the intersection Z(A2»B2)n D we 
obtain the thesis. 
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The theorem of Desargues 7 

c) A A i , B i < i D . 
i 

We exclude the t r i v i a l case 

(13) A A ± = B i . 

We embed, the space P11 into the (n+1)-dimensional space 
P n + > 1 . Next we consider a hyperplane H n such that HC PfL+'1 A H ^ 

4 P n A D C H . I t i s easy to see that the hyperplanes D^D-^D^ 
have dimension k and are a l l d ist inct (from = D2 i t 
fo l lows that M̂  = M 2 ) . We take three dist inct hyperplanes 
E^*"1 , e ! * " 1 , * ^ 1 sat is fy ing the conditions: A D ± C E ± a E.JC H n A 

AE i / D i = 1,2,3. Let denote the intersections E^nE^, 
i , j ,m = 1,2,3, 4 ( i , j , m ) . The t r i p l e s G,j jG^.G^ and A^.A^A^, 
as wel l as . G^,G2,G2 ^¿L B^ i^g »^ sa t i s f y the assumptions 
(1 ) a n d ( 4 ) , where k = (n+1)-3. Hence in view of the case 
proced previously we in fe r that there exist hyperplanes F^, 
F2> 0 O ' C3,l> CB^3 sat is fy ing condition 

* # 

( * ) . Clearly the inclusions A C F^aA C Fg hold from which 
we in fer that the dimension of the hyperplane Z(F^ ,F2 ) does 
not exceed k+1. Observe moreover that we have F̂  jFgiHAF^ ,F2^ 
i P n , and F^ = F2 cannot hold. Hence the dimension Z(F^ ,F2 ) 
i s not less than k+1. Let F denote the intersection ZiF^ ,F2 ) n 

n 
According to (13) we have, e . g . A^ ^ B^. Consider the 

hyperplanes Z(A1 ,B1 ) = C^"1, Z(A^ ,G^) = C ^ j , Z(R, = c j ^ j , 
Z ( C V C A 1 ) = w f 2 and Z ( C 1 , C B = W^4"2. The common part 
of the hyperplanes Ŵ  and W2 . contains Ĉ  and G^, where 
Ĝ  i C^. This implies Ŵ  = W2. On the other hand from the in-
clusion Z ( P 1 , r 2 ) C S 1 i t fo l lows that F C Ŵ  , and hence Fc 
C W1 n P11 = Ĉ  . Similarly we can show that i f A2 4 B2 and 
A^ t B y then F C Z(A2 ,B2 ) A FC ZCA^B^) . F inal ly i f A2 

then taking C2 = Z(A2 ,F) we obtain the thesis . 
T h e o r e m 2. Assume that in the space P n we are 

given hyperplanes aJ, b£, F k , cj1"1 , M 1̂"1 , N ^ 1 , 1 = 1,2,3, sa-
t i s f y i n g the conditions: 
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( 2 . 1 ) A A 1 ft A , A B i ¿ . B , , = 1 , 2 , 3 , 
i/i 

( 2 . 2 ) A ( A i , A 2 C H f c f 1 ^ A 3 G H l C f 1 ) A ( B 1 , B 2 C H t f 1 - B j C H 1 ^ , 
IP 

( 2 . 3 ) A A i , B i , F C C 1 , 1 = 1 , 2 , 3 , 

( 2 . 4 ) A ( A - . A . G M ) A ( B i , B , G U ) , i , j , m = 1 , 2 , 3 . 

Then fte have 

( # # ) V A M1nNinD = Dj , m^k, 1 = 1,2,3. 
Dk+1 i 

P r o o f . S i m i l a r l y a s i n t h e p r o o f of Theorem 1 i t s u f -
f i c e s t o c o n s i d e r t h e c a s e s k = n - 3 and k = n - 2 and k > 1 
o n l y . We a l s o i n f e r t h a t 

* ( K , , ] l 2 , U 3 ) and J ( N ^ ^ , ^ ) , 

( 2 . 5 ) 
Q ( A . n A j C i 4 ) A ( B i ^ = B*) 

( c l e a r l y , t h e h y p e r p l a n e s A* and B* have d i m e n s i o n k - 1 ) . F i r s t 
we a r e g o i n g t o d e a l w i t h t h e c a s e 

( 2 . 6 ) k = n - 3 . 

By a s s u m p t i o n , t h e h y p e r p l a n e s Z^ = Z(A^,A2»A3) and Zg = 
= Z iB^ jBg tB^) have d i m e n s i o n k + 2 . Hence t h e h y p e r p l a n e 
ZQ = Z^nZj has d i m e n s i o n k + 1 , a s Z^ ¿ Z 2 by (2.6). C l e a r l y , 
A M i n N i c ' Z o and I ^ ^ c Z ( C . , C m ) f o r i , j ,m and 1 , 2 , 3 and 

t ( i , G , m ) . T h i s i m p l i e s t h a t t h e d i m e n s i o n of M^n N ^ , i = 1 , 2 , 3 
i s n o t l e s s t h a n k . Thus t h e t h e o r e m h o l d s p r o v i d e d we t a k e 
ZQ a s D. 
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Next let 

(2.7) k = n - 2 

i.e. the hyperplane Z(A^ »A^A^B^ .B^B^) has dimension k + 2. 
As before we consider two possibilities A ^ B or A = B . 

«) A* 4 B* 
1° A1 = F = B v Then, by (2.7) we have C 2 = Z(A2,B2) t 

= Z(A^,B^) and M 2 = N 2 = G^ M^ = N^ = Cg. Taking the hyper-
plane M^ as D we obtain the thesis (the hyperplanes A 2nB 2 

and A^ n B^ are contained in M^ and ). 
2° A^ = F = B 2. In this case, in view of the conditions 

B ^ C M g O N ^ A ^ C M 1 n N 1 , F G M ^ n N ^ and ZiA-^B^.F) =0^ we in-
fer that the hypeiplane C^ satisfies condition (**). 

3° A^ = FA AB^ £ F. Taking into consideration the in-
clusions Z(A 2n B ^ A ^ n B p c M^ n N^ jB^C M 2 n N 2,B 2C M^ n N^ and 
Z(A2n B 2 tA^n B^) C Z(B2fB^) = we see that the hyperplane 
satisfies the thesis, 

4° A A ± F B i. Let E*"1, i= 1,2,3, denote the in-
tersections of the hyperplanes A^ and It is clear that 
all the hyperplanes E^jE^E^ are distinct. Next observe that 
A Z ( B , , E J c l l . f i l for ,m = 1,2,3. Among the pairs 1 m 1 x 

1 = 1,2,3» there are at least two pairs such that IM^N^ 
(the equality M^ = N^ and M 2 = N 2 would imply C^ = C 2 = C^, 
and so on). Suppose that M^ ^ N ^ A M 2 ^ N 2. Then the hyper-
planes M^nl^ and. M2r>N2 have dimension k, hence Z(E2,E^) 
and Z(E,j ,E2) also have dimension k. This implies that the 
hyperplane ZiE^jEgjE^) = D has dimension k + 1. 

6) A* = B* . 
We exclude the trivial case 

(2.8) A A ± = B ±, 1 = 1,2,3. 
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10 A1 = F = B^. This implies M2 = N2 =C^ and M̂  = = C3. 
Clearly, there exists a hyperplane contained in the in-
tersection M,| n . It is easy to see that H ^ F and A*C H. 
Putting D = Z(HtF) we obtain the thesis of the theorem. 

2° Â  = F = Bg, Then, in view of the conditions A^CM^o 
rt N^, B^nM2nN2 and FCM^nN^, we see that the hyperplane 
D = Ĝ  satisfies condition ( * * ) . 

30 Â  = F and i^B^ / Ï , In this case D = satisfies 
the thesis. 

4° Aa^ / I Similarly as in the proof of Theorem 1 

we emhed P11 into PI l+ ' '. Let C ^ "be any hyperpLane satisfy-
ing the conditions 0(^PnAFCG. Next let Ck and Ck "be two 
distinct hyperplanes such that C , C C O a C , C Ç ! P i 1 a A * C CnÔ, 

We denote the hyperplanes Z(C fA ± ) f ZÇC.Bp and ZiC.C^) 
v-fl >+-1 W-2 k 

"by E^ , G^ and K- , respectively. Let L^ denote the 
intersection (The dimension of L^ is k, because 

A E i , G i c K i A E i 4 G^). It is not diff icult to verify that 

A A* C L^ and C ^ L^ ^ C. Suppose that L^ = L2, then in 

view of the conditions Z(L1 ,C)oPn = A., ernd Z(L2,C) n Pn = A2 
we obtain a contradiction with (2.1). Hence the hyperplanes 

k+1 
L/],L2,L^ are distinct. Let Nm denote the hyperplanes 
Z(L i tL^), i , j ,m = 1,2,3, t ( i , j ,m) . If the hyperplane = 
= ZiL^L^L^) had dimension Ic+i , then from the previous con-
sideration it follows that are hyperplane Z(A^ would 
have dimension k+1, a contradiction. Hence we have shown 
that the triples A^jA^A^ and L̂  as well as B̂  tB2,B^ and L^L-^L^ satisfy the assumptions (2.1) - ( 2 . 4 ) . From the 
case k = n-3 proved above it follows that there exist hyper-

-k+1 =k+1 
planes D and D , respectively for the f i r s t and the 
second triple, satisfying condition ( * * ) . If ZQ = Pn did hold, 
in view of the conditions A E. n P11 = A. a 6, n Pn = B. we would ^ X X X X 

obtain A A^ = L^ = contrary to (2.8). Thus the hyperplane 

D = û n pn 
has dimension k+1. Suppose that ÏL c P11. Henoe we 

have ÎL = D which implies N2,iL i P11. and consequently 
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N 2 n P n = L^A N, n P11 = L 0 , On the other, hand we know that 
A L . C E ^ E . O P 1 1 = A^ which showts that A2 = L2 and A^ = L^. 

Similarly we obtain the relation B 2 = L 2 and B^ = L^. Fi-
nally we see that M^nH^ = D, A^ = B^CMg^N,, and A 2 = 
= B 2cM 2nN 2, i.e. the hyperplane D satisfies the thesis of 
che theorem. 

It remains to consider the case A N. ?! P11, i = 1,2,3. Let i i * 
k k — -R..S- denote the intersections N^o M^, N^n N^, respectively. 

Evidently we have AH^,S^CD, However the. dimension of the 
hyperplanes H^nD is not greater than k which implies the 
equalities A R^ = S^ and the inclusions Ar^CM^ON^. This 
ends the proof of the theorem. 

Taking in Theorems 1 and 2 n = 2 or n = 3 and k=0 we 
obtain the known theorems of Desarques. 
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