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PARTITIONS AND COUNTING ISOMORPHISM TYPES
OF CERTAIN MAXIMAL GRAPHS WITHOUT 1-FACTORS

Introduction

Number theory and combinatorics (including graph theory)
are closely related areas of mathematics. This paper gives
one more example which confirms this opinion, Namely, it
proves that counting isomorphism types of certain makximal
graphs (in particular of those without 1~factors) is a problem
of the additive theory of numbers, Simply this problem resol-
ves itself into counting certain restricted partitions of some
positive integers into odd parts.

"In Sections 2 and 3 there are found auxiliary recurrence
equations for the numbers of partitions of certain integers
into definite number of odd parts. One of these formulae can
be used for the effective tabulation of an auxiliary function
Y of two variables. Summing up those of its values which form
a definite part of a column of the table, we obtain one of the
desired numbers of isomorphism types., We have not succeeded
in finding a general recursion formula for +these  numbers
without involving the auxiliary function ¢ (or one of its
equivalents ¢,).

Section 1 gives graph-theoretical essentials including Ma-
der’s characterization of maximal graphs of a given order and
with a given deficiency, Section 2 gives necessary information
from the theory of partitions. The extensions of the formal
power series method are outlined [8]. Some simplifications
are indicated.
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2 Z,Skupien

1. Graph-theoretical preliminaries

Now we shall quote some results of gréph theory together
with necessary definitions. Only finite ordinary graphs will
be considered, Let V be a finite set disjoint from the set

P(V) of its two-element subsets: VN P (V) = @, The cardi-
nality |V| of V will be denoted by n. A graph G with the
vertex set V(G) = V and the edge set E(G) =B is an abstract
unoriénted simplicial complex of dimension 1 or O (if E=¢)
with the vertex set V and with the set E of ‘-simplexes-
(called edges of G), where EC ?z(V). The graph G is usually
represented as an ordered pair < V3E >, The number n=|V| of
vertices of G is called the order of G, while lE(G)l. is
called the size of G,

The graph <V, ?Z(V) > with all possible edges is complete
and is denoted by X or by Kn (possibly with distinguishing
superscript) if its order is n, Two graphs G,] = <V1,,E,]> and
G, =<V2,E2> are disjoint if they are subgraphs of a certain
graph and their vertex sets are disjoint, that iss

(V,uVy)n ?2(V1UV2) =9 and V,nV,=4.

The union G,IUGZ: =<V1uV2, E’IU E2> of disjoint graphs G,]
and G, is denoted by G, *+ G,. Similarly, Z G, denotes the

union of mutually disjoint graphs Gi' The symbol G,‘*Gz stands
for the join of two disjoint graphs _G,‘ and G2,which equals
G1+G2' togei_:her with all possible edges with one énd-vertex
from V1 and the other from V2.

Incidence of a vertex and an edge, isomorphism of graphs
(denoted by = or simply by the equality sign =), and iso-
morphism type of a graph are notions borrowed from the general
theory of complexes, Two different vertices or two different
edges are adjacent if they are simulataneously incident to
another simplex (an edge or a vertex, respectively).The de-
gree d(x,G) of a vertex x in G is the number of edges
of G dincident to x,

- 448 —



Partitions|and graphs 3

A graph G, = <V,,E,> is a subgraph of G (i.e., G,]CG)
if V,€V and E,lQE; G, 1is a factor of G it Vv, =V and
E,] € E. A subgraph of G, in which each vertex is of degree 1,
is a matching of G. Hence any two edges of a matching are
not adjacent. A matching of G is meximal if its size is ma-~
ximal. A matching of G containing all the vertices is a
1-factor of G. The number of vertices of G which do not
belong to a maximal matching of G 1is the deficiency  a(G)
of G. Another interpretation of the number a(G) gives the
theorem of Tutte~Berge (cf. [7]). Since each - matching is of
even order, therefore the order n and the deficiency a(G)
of a graph G are of the same parity: a(G) = n(mod 2).

In 1973 Mader [7] listed all graphs G each of which has
a positive deficiency a(G)>0 which decreaseg,when added any
new edge if G 1is not complete, Hence one can easily obtain
the characterization of graphs G of order n with the given
deficiency a(G)>0 which are maximal with respect to the
relation: "to be a factor of"' which coincides with the in-
clusion relation restricted in such a way that it holds true
only between graphs with identical vertex sets.

Mader?s result confirms the conjecture of Kotzig [6] for-
mulated in 1969 on the structure of maximal graphs G without
1-factors (i.e,, with 1 < a(G)<2). This structure was in-
dependently described by Homenko and Vyvrot [4] in 1971, and
their result was improved by the present author [:’IO] in 1973.
The result deduced from that of Mader is more general and can
be formulated as follows,

Theorem, Let G be a maximal graph of order n with
a given deficiency a(G)> 0. Then one has either

Gan if n is odd and a(G) =1

or there are integerse h and k such that
(1.1 a(G) = k+2=2
and

(1.2) X = n(mod 2), 0 k £ n-2, and O0<h<(n-k-2)/2,
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4 Z.Skupied

and there are ht+k+3 mutually disjoint complete graphs Kgo)
end KV, i=1,2,...,b+k¢2, wheve

1 h+k+2

(1.3) h + § n; = n, n12n2>,.,>nh+k+2>’],
and each ng is an odd integer

such that G is of the form

h+k+2

(0) (1)
(1.4) K 1§. Kni .

Conversely, each graph of the form (1.4) with integer pa-
rameters h, k, n,, n satisfying (1.3) and (1.2) is one of
the maximal graphs G on n vertices and with deficiency
“1.1).

We omit the proof.

Observe that if G is of the form (1.4) andii‘er(Kgo))

(for h>0), then d&(x,G) = n~1 (the maximal possible degree

of vertices in G), while if er(Kni)) s then d(y,6) =
. i
=h+n -1<n -1, Moreover, the structure of +the graph

(1.4), i.e., its isomorphism,type, is completely determined by
the sequence of integers

By Dy Doy eeey Dpypen

which satisfy (1.3). Observe that the sequence (ni)is.a par-
tition of the positive integer n-h into h+k+2 odd parts.

2. On partitions of integers.

Partitions were considered already in the 17th century.
Many interesting results on partitions were published by L,
Euler [1] in a chapter "De partitione numerorum and also in
some subsequent papers, He introduced (factually formal) power
series with one or two indeterminates as generating functions
for unrestricted and for various restricted partitions of na-
tural numbers, He proved certain identities involving those
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Partitions and graphs 5

power series, found number-theoretical meanings of these iden-
tities, and derived recursion formulae for counting various
partitions,

By a partition of the natural number s we mean a decrea-
sing sequence (m,] ,m2,...,mr) of positive integers m>m,>...>
;mr>0 (called parts or summands) whose sum is s. Denote
by p'(s,r) the number of partitions of s into r odd parts.
Recall that the number of unrestricted partitions of s is
usually denoted by p(s), while pr(s) stands for the number
of partitions of s with parts not exceeding r.

For the general theory of partitions the reader is referred
to [2,3,8,9], an account on formal power series with one in-
determinate (and possibly with additional parameter) can Ybe
found in [8] and (5]

Now we are going to outline the theory of <formal power
series with two indeterminates. Let N = {0,1,...} and Z de-
note the set as well as the ring of integers, Given an inte-
gral domein D (a commutative ring D with unity 1 and with
no zero divisors, e.g., D = Z ) an integral domain -D[[t,z]]
consists of doubly infinite arrays

= (ug) e pN*N

which are written as
u U~n ¥ U t+u z +u t2+ %tz + u z‘?‘+
= Y90 T Y0 01 20 Y19 02

and are called formal double power series over D with inde-
terminates t+ and 2z, The addition (u,v) — utv and multi-
plication (u,v) —~uv in D [[t,z]] are defined in an usual
way

k 1
(u + v) = u, + Vil (uv)kl =12=:0 :E) uijvk—i,l-j‘

The multiplicative unit element in D [t z'_]] denoted
simply by 1, is series’ (uk1> in which the leading coefficient
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6 Z+.Skupied

U, =1 (unity in D) and all the remaining ones are equal to
0O (zero of D)., Note that the integral domain of (formal) po-
lynomials in t,z over D 1is usually denoted by D[t,z] and
is a subring of D I:[t,z]] « The integral domains of formal power
series (and polynomials) over D with one or more than two
indeterminates can be similarly defined.

Now the meanings of symbols / [[t]:] Z 5], (ZJ[[tiD[__[z]]

etc, are clear, One can prove that the rings

(Z 1) [0 s Z 602, ene (Z [ [2])

are pairwise isomorphic. Given a doubly infinite array |u,

ue Z [[6,2]] , 1ét
u, = (Unslyqs +-0) and ugF (ugpaUgpe eee)

be its k-th row and 1l-th column, respectively; and let a, 121
be the series of rows of u and that of columns of u, res-
pectively, i,e.,

3= (uy,4uq,0eee) € (2 (2] [6]
= (u.o,u.,].,...) e(/Z [[t]]) [[z]] .

)
1

The correspondences

N = ] = 1

establish, as one can easily show, the isonorphisms in ques~
tion, Thus u can be even identified either with a or with
ﬁ, and conversely.

One can show that a series u (with any number of in-
determinates and with leading coefficient 1) is invertible in
the corresponding ring of series, i,e., there 1is an inverse
series u'1 (with leading coefficient equal to 1 too)., The
values of the function Vv = u™ (that is, the coefficients of
the series u'q) can be one after the other computed from

the equality wvu=1.
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Partitions and graphs 7

An infinite sum gi% u(l) of formal power series u(l) is
admitted if for any argument there is only a finite number of
series u(i) each of which has a non-zero value at that argu-

ment, Slmllarly, an infinite product Jj u( 3 of formal power

series u(a) represents a power series if almost all factors

(3) have the value 1 at the argument (0,0,...,0) and only a
finite number of factors u J have non-zero values at any
fixed non-zero argument (e.g., at any fixed (k,1l) #(0,0) in
the case of series with two indeterminates).

The rule of substitution (cf. [8], p.212). can be extended
over series with several indeterminates, Namely, the replace-
ment of an indeterminate by any polynomial with constant term
0 is admissible as a transformation of a series into a se-
ries, Also the substitution of a constant for an indetermi-
nate in a power series is admitted‘provided that it yields
another power series with remaining indeterminates. So the
Euler?’s method consisting in using the rule of substitution
and deriving functional equations to prove certain identities
l(cf. the method (i) of § 19,5 in [3]) is justified as ad-
missible also in the theory of|formal power series.This method
is widely used in [3] and [9], and can provide considerable
simplifications in Rademacher’s derivation of certain identi-
ties in §§ 96 and 97 of [8]. We shall use this method to prove
inother identity which is closely related to them, Put

00
1
2.1 G(t S
( ) ( 9 Z) i=0 ']_zt21+1

Clearly this infinite product represents a formal doublé
power series which is the generating functions for the number
p (s, r) of partitions of s into r odd parts, that is,

(2.2) G(t,2) =1 + ; 1‘2 p(s, r)t52T =1 +Z Z p'(s, o t52
™5 even r+seven
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8 2 .,Skupief

Definition (2.1) implies that the ranges of s and r in
(2.2) are correctly determined, Namely, it is easy to see that
p'(s,r) # O iff it is true that

(2.3) s+tr is even and 1<r<s or s=0-=r,
Moreover,
p'(s,8) =1 for all integers s30

and

P'(8,1) =1 for allodd s3> 1.

Thus we can assume bGhat

(2.4) p'(0,0) =1, and p'(s,r),=0 iff integers s,r do not satisfy (2.3)

The formula (2.1) also implies that G(t,z) satisfies the
following functional equation

(2.5) (1 = zt)a(t,2) = G(t,2t2).

The series G(t,z) can be also represented as a series
in z with coefficients, D_(t) say, from / ]

(2.6) G(t,2) = é;o D (£)z° with D (%) = 1.

Substitution of this series to the identity (2.5) gives the
following identity

; (zr D(t) - 25 % I}r(t)> =§ 2% 2% D_(%).

Hence, equating coefficients of zr, one obtains the recurrence
formula

(2.7) (1-t°F) D(#) =t D_,(t) (r=1,2, ...) with D_(t)=1,
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Partitions and graphs 9

whence

D_(%) &
T (1D (1) .. (16T

and, by (2,6) and (2.2),

(2.8)

(2.9) D(t) = 2. p'(s,o)t° for T =1,2,...
T s>r
8+Ir even

Thus we have proved the following above-mentioned identity

[- -3 o0 r
_ 1 T t
st,z) =11 —1___ =1+ 3
" 420 q - g2t =1 (1=t (1=t™) .. . (1=t2T)

from which, putting 2z = 1 (what is admissible),we can obtain
another identity.

The above results enable us to give the following number-
—theoretical interpretations of p'(s,r). Namely, p'(s,r) is
the number of partitions:

(i) of s linto r odd parts (with repetitions permitted);
(i) of s into parts the maximal of which equals r and is
the only part which appears an odd number of +times in

. each of those partitions;

(1i) of s-r into even parts not exceeding 2r;

(ii') of s-r into at most 2r parts each of which appears an
' even number of times;.

(iii) of (s-r)/2 into parts not exceeding r, i.e.,

(2.10) | p'(s,m) = p,(55D) 5

@Aii') of (s-r)/2 into at most r parts;
(iv) of (s+r)/2 with the maximal part =}
(iv') of (s+r)/2 into r parts.

In fact, the interpretation (i) follows from (2.2) and
(2.1), while (ii) follows from (2.9) and (2.8); (ii) in turn
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10 Zo.Skupiefi

implies (iii) and (iv). Furthermore, each of interpretations
marked by an undashed symbol, that is, (i),.(ii), (1ii), and
(iv), is equivalent to that marked by the same symbol with a
dash, for both of them concern so-called conjugate partitions.
Recall that two conjugate partitions of a number n can be
represented by one Ferrers-Sylvester diagram which is an array
of n dots with rows representing parts in one of +the +two
partitions and with columns corresponding to parts in the re-
maining one. ‘
Regarding the formula (2.10), note that

[

1 - 2 N4
F_(% = = i
(%) (1-8) (1=£) o . (1=tF) =0 Px(s)

with p (0) :=1, r=1,2,..., i.e., F (t) is thegenerating
series for pr(s). Hence, for r=1,

(2011) p1(s) =1 fOI‘ 8 = 0,1,005

For r=2, Fr(t) can be decomposed -into partial fractions,
each of which can be expanded into power series with complex
coefficients, in general, Hence p,(s) can be obtained. Thus
Rademacher [8] found that, for s>=0,

(2.12) p,(s) = [s/2] + 1,
(2.13) py(s) = [s(s+6)/12] + 1,

where brackets denote integer parts.
For increasing r such formulae can also be found but
they get more and more involved. For instance, we have

/2h /8, 25/14h A 9xPa17mes | A _dex® 4B

F4(t) - (1-x)4 ('l--x)3 ('l-x)2 [P 1€ (’l--xg)2 Pex e

14x 1+22

=S s (s43), dfse2 25 ¢ 1) ii 9 KH2, g0 Bk oo 3K
501(24(3)+8(2)+144 s+) +72k0( + + )+
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Partitions and graphs 1

! Z (1) 4 1 3 ol _ M _ x4k+3>.
k=0 ¥ k=0 .

Now one can obtain p4(s) as the coefficient of x° in the
above expansion of F4(‘q):

(2.14)  p(s) = [s (215546349 1D /14-4]+ 1.

In fifties of 19th century J.J.Sylvester developed a spe-
cial method in order %o compute +the so-called denumerants,
i.e., the numbers of partitions of a given integer into spe-
cified parts, e.g., he obtained (cf. (11]) that 1 (s) (in his
notation 1—?’?) is the nearest integer to (s +3)2/12 what
is compatible with (2.13).

Now we shall represent the simplest method of evaluation,
used by Buler already. It consists in deriving recurrence for-
mulae, So substituting the. series (2.9) into (2.7) one ob-
tains

' ' + ' +1
:é;.‘(p(s,r)ts -p'(s,r)t° 2r -p'(8,0-1)t° 1) = 0,
sS+Xr even

Hence, taking the coefficients of ts, we have the following
formula of recursion

(2.15) p'(s,r) =p'(s-2r, r) +p'(s-1, 1)

with initial condition (2.,4). The same result can be obtained
by putting (2.2) into (2.5).

3+ Counting graphs
We are interested in calculating

(3.1) ¢, (n,h) := p'(n-h, h+k+2)

which, according to Section 1, for parameters n, h, and k sa-
tisfying (1.2), is the number of maximal graphs with deficiency
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12 Z,Skupief

kt2 and with n vertices of which exactly h are of degree
n-1, Therefore we change variables in (2,15) putting

s = n~h
r = htk+2,

where n, h, ke/ . Thus we obtain

P'(n-h, hti+2) = p'(n-h-2(h+k+2), h+k+2) + p(n-h-1, h+k+1).
Hence, by (2.15) and (2.4),
(3.2) @, (n,h) = ¢, (0-2(b+k*2) \b) + ¢, (n-2,b-1) for k=const.eZ

with initial condition
(3.3) ¢, (n,h) =0

if and only if h ¢ Z or ntk is o0dd or neither nx2h+k+t2>h
nor n=h=-k-2 holds true. Furthermore, tpk(-k-2, -k=2) = 1,
The problem (3.2), (3.3) 1s clearly equivalent to the
following one:
0,(n,b) = ¢, (n-2(h+k+2),h) + @, (n=1,h) for h=const. € Z
with initial condition

‘Pk(n,h) =0 if ntk is odd or neither n» 2h+tk+2>h nor n =
= h = -k-2, and «
9, (b, h) =1 with k= -h-2,
Put
(n-k=2)/2
(3.4) £ = 2 gla,n).
h=0

Then, according to Section 1 &nd the formula G.1), f,(n) is
the number of isomorphism types of maximal graphs on n ver-
tices and with the deficiency k+2, provided that O<gk<n-2,
1t is easy to see that, by the recursion formula (3.2),

(3.5)  f(n) = g (envkr2, BE=2y_ o (n2k+2,-1).
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Moreover, since ¢,(n,h)>C, therefore, by (3.4) and (3.3),
£,(n) with keN is non-zero only if nt+k is even and
0<k<n-2, In general, £, (n) #0 <> ke {-n-2, -n, ~n+2,...,n-2]
and o eN={0,1,...].

In order to simplify the recurrence equation (3.2) we put

ntit2 = &, btk =n withEeZ)
and

(3.6) PG 3= ¢ (E-k-2, n-k-2).

Then the problem (3.2), (3.3) reduces to the recurrence equa-
tion

(3.7) GE,D = ¢E-2n, n) + 9(E-2, n-1) (where&e Z)
with initial condition
(3.8) ¢(0,0) = 1,

and, furthermore, ¢(£,n) = O iff n ¢ Z or & is 0dd or neither
£>20 >0 noré =n = 0.

Hence it 'follows that we actually may consider ¢ as the
function of two variables only. So, by (3.6),

(3.9) 9 (n, h) =wv(n+1~:+2, h+k+2),

and, by (3.4),

' (n=k=2)/2 (n+k+2)/2
(3.10) £, (n) = E) @(n+k+2, h+k+2) = Q=}E+2 ¢(ntkt+2, 7).

Moreover, by (3.5)and (3.9)., or by (3.10) and (3.7), we get
(3.1) £,(n) = ¢(2n+2krs, (o+kt2)/2) - @(a+3k+s, k1),

Fﬁrthermore, by (3.6), (3.1), and (2;10), we have
¢(§sz) = ¢k(§-k—2, Q—k—2) = P'(E-'I, Q) = pq((§- 2’2)/2)-
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14 Z.Skupied

Hence, by (2.11), (2.12), (2.13), and (3.8),

vE, 1) =1 for £ = 2,4,65040,
(3.12) 1§ w(E, 2) = [6/4] for even E >0,
g&, 3) = [(€2+12)/48:| for even Ex=-~ 4,

Using (2.14) one can get the explicit formula for ¢ (&,4) too.
Consider (3.1) and (3.3) as the definition of (pk(n,h) for
any k, né€ Z and heR. Then, in particular, by (3.6),

¢(n, b) = ¢_o(n, h).
Moreover, the formulae (3.9), (3.11), and (3.12) imply that

9y(n,h) = 9 (avk=g, b+k-3),
£ () = (pj(2n+2k—j+2, (nt+k-2j-2)/2) -q)j(n+3k-j+2, k-3-1),

(pk(n, =k-1) = 1 for n=-k, -kt2, -kti4,,..,
0 (n, -K) = [(n+ic+2) /1] for n=-k-2, ~kK, =k+2,...,
0 (n, k1) = [((n+xt2)2412) /48] for n= k-6, -k-t, ~k-2,...
Observe that, by (3.11), (3.12), and (3.3),

¢ (2n+4, (n+2)/2) -1 for even n3» -2,
v(2n+6, (n+3)/2) - [(a+7)/4] for odd n>=7,

£o(m)
£,(

f2(n) = (2nt8,(nt4)/2) - [(n2+20n+112)/48:| for even n>-14,
Moreover, it follows that

£,(n) = £5(a+1) - [(a+3)/4] for odd n3» -3,
£5(n) =f,|(n+'l) + [(n+8)/4] - [(n2+20n+'112)/48] for even n3-§

=fo(n+2) - [(n2+20n+64)/48] for even nx>-~4,
The formulae (3.9) and (3.10) express both (pk(n_,h) and

fk(n) by means of the values ¢(E,n) of the function ¢. An
effective tabulation of ¢ (8,n) can be performed using recur-
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Partitions and graphs 15

rence formula (3.7) together with (3.8), The non-zero values
¢(E,n) fort < 24 (and consequently n<12) are given in the
coordinate system O £n in Table 1, In this table the values

y(4n, n) « % ¢(2n,n) = £,(2n-2) + 1 (with neN)

are put into small. squares, Furthermore, above the line n= &
there are numbers 0,1,...,10 which are not the values of ¢,
Any of them, k¥ say, corresponds to a point, say Oi{, which
is the nearest of the distinguished points on the line n = £,
Then, when we translate the origine O of the coordinate sys-
tem O0E&n to Oix’ we obtain a new coordinate system, O];E,' n
say, in which, according to (3.6), the values given in the
Table 1 can be read off as the values tpk(g',rz') of @y

Table 1

nd

12, 1
11 1 1
10 1 1 2

9 1 1 2 3

8 1 1 2 3 5

Z 12 5 2 7
51 2 I%] 5 [7Z] 10 13

4 3 © 9 11 15

3 1 4 5 7 8 10 12
2 1 1 3 4 4 5 5 )
1. 1 1 1 1 1 1 1

o) K1
10 2 4 6 8 10 12 14 16 18 20 22 24 3

Table 2 gives all non-zero values of fk(n) for 2<k+2¢n<25
and k<10, The values lying on the left ot the sloped 1line
can be obtained from Table 1 wusing the formula (3,10). Table
2 gives the numbers of maximal graphs of order n < 25 and
with deficiency kt+2, where O0<k<10,.
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16 ZSkupief

Table 2
nl2 & 6 8 10 12 14 16 18 20 22 24
¥K\] 3 5 7 9 11 13 15 17 19 21 23 25
o1 2 4 6 10 14 21 29 41 55 76 100
11 1 2 4 7 11 17 25 36 50 70 94 127
2 1 2 4 7 12 18 28 40 58 80 111
3 4 12 19 29 43 62 88 122
L 1 2 4 7 12 719 "30 44 65 92
5 1 2 7 12 719730 45 66 95
6 1 2 4 7 12719 30
7 1 2 4 7 12719 30 45 &7
8 1 2 4 7 12719 30 4
9 1 2 4 7 127197 30 45
10 1 2 4 7 1 30
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