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Introduction 
Number theory and combinatorics (including graph theory) 

are c losely re lated areas of mathematics. This paper gives 
one more example which confirms th i s opinion. Namely, i t 
proves that counting isomorphism types of cer ta in maximal 
graphs ( in par t i cu la r of those without 1 - f a c t o r s ) i s a problem 
of the addit ive theory of numbers. Simply t h i s problem resol-
ves i t s e l f into counting certa in r e s t r i c t e d par t i t ions of some 
pos i t ive integers into odd p a r t s . 

In Sections 2 and 3 there are found aux i l i a ry recurrence 
equations for the numbers of par t i t ions of cer ta in integers 
into de f in i te number of odd p a r t s . One of these formulae can 
be used f o r the e f f e c t i v e tabulat ion of an auxi l i a ry function 

of two v a r i a b l e s . Summing up those of i t s values which form 
a def in i te part of a column of the t a b l e , we obtain one of the 
desired numbers of isomorphism types. We have not succeeded 
in f inding a general recursibn formula fo r these numbers 
without involving the auxi l i a ry function U> (or one of i t s 
equivalents <Pk). 

Section 1 gives graph-theoretical e s s e n t i a l s including Ma-
der ' s characterizat ion of maximal graphs of a given order and 
with a given def ic iency. Section 2 gives necessary information 
from the theory of p a r t i t i o n s . The extensions of the formal 
power se r i e s method are outlined [8 ] . Some s impl i f ica t ions 
are indicated. 
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2 Z.Skuplen 

1. Graph-theoretical preliminaries 
Now we shall quote some results of graph theory together 

with necessary definitions. Only finite ordinary graphs will 
be considered. Let V he a finite set disjoint from the set 

of its two-element subsets: V n ? 2 ( V ) = 0. The cardi-
nality |V| of V will be denoted by n. A graph G with the 
vertex set V(G) = V and the edge set E(G) = E is an abstract 
unoriented simplicial complex of dimension 1 or 0 ( i f E=0) 
with the vertex set V and with the set E of 1-simplexes 
(called edges of G), where E£ P 2 (V ) , The graph G is usually 
represented as an ordered pair < V ; E > . The number n=|V| of 
vertices of G is called the order of G, while |E(G)|. is 
called the size of G. 

The graph < V, PgOO with, a l l possible edges is complete 
and is denoted by K or by K^ (possibly with distinguishing 
superscript) if its order is n. Two graphs Ĝ  = < and 
G2 = <V2 ,E2> a r e d-isdoiB-'k if they are subgraphs of a certain 
graph and their vertex sets are disjoint, that is/» 

( Y ^ V ^ n ? 2 (T 1u¥ 2 ) = 0 and V^nV2=0. 

The union Ĝ  u G^: ^ V ^ u V g , E ^ u E ^ of disjoint graphs Ĝ  
and Gg is denoted by Ĝ  + Gg. Similarly, X! G^ denotes the 

union of mutually disjoint graphs G^. The symbol G^*G2 stands 
for the join of two disjoint graphs Ĝ  and G2,which equals 
G1+G2 together with a l l possible edges with one end-vertex 
from V̂  and the other from V2. 

Incidence of a vertex and an edge, isomorphism of graphs 
(denoted by ^ or simply by the equality sign = ) , and iso-
morphism type of a graph are notions borrowed from the general 
theory of complexes. Two different vertices or two different 
edges are adjacent if they are simulataneously incident to 
another simplex (an edge or a vertex, respectively).The de-
gree d(x,G) of a vertex x in G is the number of edges 
of G incident to x. 
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Partitionsland graphs 3 

A graph Ĝ  = < V^jE^> i s a subgraph of G ( i . e . , Ĝ  C G) 
i f V/] c v and E1 c E; G 4 i s a f a c t o r of G i f V1 = V and 
E^ £ e . A subgraph of G, in which each vertex i s of degree 1, 
i s a matching of G. Hence any two edges of a matching are 
not adjacent . A matching of G i s maximal i f i t s s ize i s ma-
ximal. A matching of G containing a l l the v e r t i c e s i s a 
1 - f a c t o r of G. The number of ve r t i ce s of G which do not 
"belong to a maximal matching of G i s the deficiency a(G) 
of G. Another interpretat ion of the number a(G) gives the 
theorem of Tutte-Berge ( c f . [7])« Since each matching i s of 
even order, therefore the order n and the deficiency a(G) 
of a graph G are of the same par i ty : a(G) = n(mod 2). 

In 1973 Mader [7] l i s t e d a l l graphs G each of which has 
a pos i t ive deficiency a ( G ) > 0 which decreasesi, when added any 
new edge i f G i s not complete. Hence one c§m eas i ly obtain 
the character izat ion of graphs G of order n with the given 
deficiency a ( G ) > 0 which are maximal with respect to the 
relat ions " to be a f a c t o r o f " • which coincides with the in-
clusion re l a t ion r e s t r i c t e d in such a way that i t holds true 
only between graphs with ident ica l vertex s e t s . 

Mader*s re su l t confirms the conjecture of Kotzig [6] f o r -
mulated in 1969 on the structure of maximal graphs G without 
1 - f a c t o r s ( i . e . , with 1 < a ( G ) < 2 ) . This structure was in-
dependently described by Homenko and Vyvrot [4] in 1971 • and 
the i r re su l t was improved by the present author [10] in 1973. 
The re su l t deduced from that of Mader i s more general and can 
be formulated as fo l lows. 

T h e o r e m. Let G be a maximal graph of order n with 
a given deficiency a ( G ) > 0 . Then one has ei ther 

G = K^ i f n i s odd and a(G) =1 

or there are integers h and k such that 

(1 .1 ) a(G) = k ' + 2 > 2 

and 

(1 .2 ) k = n(mod 2 ) , 0 k < n-2, and 0^h<(n-k-2) / -2 , 
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4 Z.Skuplen 

and there are h+ls+3 mutually disjoint complete graphs K^^ 
and K^3"), i=1,2,...,h+k+2, where 

1 h+k+ti 
(1.3) h + Z ] ^ = n, n 1 ^ n 2 ^ . . . ^ n h + ] c f 2 > 1 , 

and each n^ is an odd integer 

such that G is of the form 
. » h+k+2 ... 

(1.4) H . h i=i 

Conversely, each graph of the form (1.4) with integer pa-
rameters h, k, n^, n satisfying (1.3) and (1.2) is one of 
the maximal graphs G on n vertices and with deficiency 
(1.1). 

We omit the proof. 
Observe that if G is of the form (1.4) a n d i f x e Y ^ 0 ^ 

( for h>0 ) , then d(x,G) = n-1 (the maximal possible degree 
of vertices in G), while if y ^ V ^ j , then d(y,G) = 

= h + n ^ - 1 < n - 1 . Moreover, the structure of the graph 
(1.4), i . e . , its isomorphism .type, is completely determined by 
the sequence of integers 

h, n^, 1I2, nj h+k+2 

which satisfy (1.3)- Observe that the sequence (n^) is a par-
tition of the positive integer n-h into h+k*2 odd parts. 

2. On partitions of integers 
Partitions were considered already in the 17th century. 

Many interesting results on partitions were published by L, 
Euler [1] in a chapter "De partitione numerorum'7 and also in 
some subsequent papers. He introduced (factually formal) power 
series with one or two indeterminates as generating functions 
for unrestricted and for various restricted partitions of na-
tural numbers. He proved certain identities involving those 
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Partitions and graphs 5 

power series, found number-theoretical meanings of these iden-
tities, and derived recursion formulae for counting various 
partitions. 

By a partition of the natural number s we mean a decrea-
sing sequence (m^ »nig,... ,mr) of positive integers m ^ n ^ . . . > 
^ m r> 0 (called parts or summands) whose sum is s. Denote 
"by P*(s,r) the number of partitions of s into r odd parts. 
Recall that the number of unrestricted partitions of s is 
usually denoted by p(s), while pr(s) stands for the number 
of partitions of s with parts not exceeding r. 

For the general theory of partitions the reader is referred 
to [2,3,8,9], an account on formal power series with one in-
determinate (and possibly with additional parameter) can be 
found in [8] and [5] 

Now we are going to outline the theory of formal power 
series with two indeterminates. Let N = {o,1,...| and Z d e -
note the set as well as the ring of integers. Given an inte-
gral domain D (a commutative ring D with unity 1 and with 
no zero divisors, e.g., D = Z ) an integral domain D[[t,zjj 
consists of doubly infinite arrays 

U = (u^) € D 

which are written as 

• u = u00 + u10t + V l Z + u20 t 2 + + u02 z 2 + ••• 
and are called formal double power series over D with inde-
terminates t and z. The addition (u,v) — u + v and multi-
plication (u,v) — u v in D |jt,z]] are defined in an usual 
way 

k 1 
+ ^ + • ( U V )*1 = £ §> uidvk-i,i-r 

The multiplicative unit element in D [[jt,z]j , denoted 
simply by 1, is series (uv1) in which the leading coefficient 
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6 Z.Skuplen 

uQ0 = 1 (unity in D) and all the remaining ones are equal to 
0 (zero of D). Note that the integral domain of (formal) po-
lynomials in t,z over D is usually denoted by D[t,z] and 
is a subring of D [[t, z]J . The integral domains of formal power 
series (and polynomials) over D with one or more than two 
indeterminates can be similarly defined. 

Now the meanings of symbols Z [M] , Z ft] , (Z|[M^lM] 
etc. are clear. One can prove that the rings 

(Z [M]) [M] * Z[[t,z]] , and (ZM)M 

are pairwise isomorphic. Given a doubly infinite array u, 
ue Z [[t,z]] , let 

uk.= ûk0'ulr1 ' u.lF Cu0l'u1l' 

be its k-th row and 1-th column, respectively} and let à, u 
be the series of rows of u and that of columns of u, res-
pectively, i.e., 

1 = ( V ^ . m . O Ê C Z M ) [M] 

u = (u^.u^,...)£(zft;t]]) M • 

The correspondences 
1 2 U •—«• U —— U 

establish, as one can easily show, the isomorphisms in ques-
tion. Thus u can be even identified either with u or with 
2 

u, and conversely. 
One can show that a series u (with any number of in-

determinates and with leading coefficient 1) is invertible in 
the corresponding ripg of series, i.e., there is an inverse A 

series u~ (with leading coefficient equal to 1 too). The 
values of the function v = u*" (that is, the coefficients of 
the series u ) can be one after the other computed from 
the equality v u = 1. 
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Partitions and graphs 7 

An infinite sum 2 u^^ of formal power series u ( i ) is 
i=0 

admitted if for any argument there is only a f inite number of 
series u^"^ each of which has a non-zero value at that argu-

o O - / 

ment. Similarly, an infinite product I I u.^ '̂ of formal power 
( i ) ' j = ° series uv o / represents a power series if almost a l l factors 

u^^ have the value 1 at the argument (0 ,0 , . . . , 0 ) and only a 
f inite number of factors u^^ have non-zero values at amy 
fixed non-zero argument ( e .g . , at any fixed (lc,l) ¿(0,0) in 
the case of series with two indeterminates). 

The rule of substitution ( c f . [8], p.212) can "be extended 
over series with several indeterminates. Namely, the replace-
ment of an indeterminate "by any polynomial with constant term 
0 is admissible as a transformation of a series into a se-
ries. Also the substitution of a constant for an indetermi-
nate in a power series is admitted provided that i t yields 
another power series with remaining indeterminates. So the 
Euler's method consisting in using the rule of substitution 
and deriving functional equations to prove certain identities 
l(cf. the method ( i ) of § 19,5 in [3]) is justified as ad-
missible also in the theory of| formal power series.This method 
is widely used in [3] and [9] > and can provide considerable 
simplifications in Rademacher's derivation of certain identi-
ties in §§ 96 and 97 of [8] . We shall use this method to prove 
mother identity which is closely related to them. Put 

(2.1) G(t, z) = n 
1=6 i - z t 2 1 ; 1 ' 

Clearly this infinite product represents a formal double 
power series which is the generating functions for the number 
p'(s, r ) of partitions of s into r odd parts, that is(, 

OS DO 

(2.2) G(t,z) = 1 + S 2 p ' ( s , r ) t s z r =1 +H S p ' ( s , r ) t s z r . 
y ' s=1 1<r«s r=1 ss>r 

r+s even r+s even 
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8 Z.Sknplen 

Definition (2.1) implies that the ranges of s and r in 
(2.2) are correctly determined. Namely, it is easy to see that 
p'(s,r) 4 0 iff it is true that 

(2.3) s+r is even and 1 < r < s or s = 0 = r . 

Moreover, 

p'(s,s) = 1 for all integers s > 0 

and 
p'(s,1) = 1 for all odd s > 1. 

Thus we can assume that 

(2.4) p'(0,0)=1, and p'(s,r)|30 iff integers s,r do not satisfy (2.3). 

The formula (2.1) also implies that G(t,z) satisfies the 
following functional equation 

(2.5) (1 - zt)G(t,z) = G(t,zt2). 

The series G(t,z) can "be also represented as a series 
in z with coefficients, Dp(t) say, from ~Z_ [[tj] 

eo 
(2.6) G(t,z) = S D ft)zr with D ft) = 1. r=0 r ° 

Substitution of this series to the identity (2.5) gives the 
following identity 

2 (z r Dr(t) - z3*1 t Dr(t)) = 2 z r t 2 r Dr(t). 

Hence, equating coefficients of z r, one otrtains the recurrence 
formula 

(2.7) (1-t2r) D r(t)=t D ^ C t ) (r = 1,2, ...) with DQ(t) = 1, 
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Partitions and graphe 9 

whence 

(2.8) D (t) = p 2F r (1-t2)(1-0...(1-t r) 

and, by (2.6) and (2.2), 

(2.9) D,(t) = T, p'(s,r)ts for r=1,2,... 
s » r 

s+r even 
Thus we have proved the following above-mentioned identity 

OP oo 

G(t,z) = l~l = 1 + 2 * o K 
i=0 1_zt 2 l + 1 r=1 (1-t ) (1-t ) . ..(1-t ) 

from which, putting z = 1 (what is admissible),we can obtain 
another identity. 

The above results enable us to give the following number-
-theoretical interpretations of p'(s,r). Namely, p'(s,r) is 
the number of partitions: 
(i) of s into r odd parts (with repetitions permitted); 
(i') of s into parts the maximal of which equals r and is 

the only part which appears an odd number of times in 
each of those partitions; 

(ii) of s-r into even parts not exceeding 2t; 
(ii1) of s-r into at most 2r parts each of which appears an 

even number of times;, 
(iii) of (s-r)/2 into parts not exceeding r, i.e., 

(2.10) p'(s,r) = P r ( ^ ) i 

(iii') of (s-r)/2 into at most r parts; 
(iv) of (s+r)/2 with the maximal part r; 
(iv') of (s+r)/2 into r parts. 

In fact, the interpretation (i) follows from (2.2) and 
(2.1), while (ii) follows from (2.9) and (2.8); (ii) in turn 
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10 Z.Skupien 

implies (iii) and (iv). Furthermore, each of interpretations 
marked by an undashed symbol, that is, (i),.(ii), (iii), and 
(iv), is equivalent to that marked by the same symbol with a 
dash, for both of them concern so-called conjugate partitions. 
Recall that two conjugate partitions of a number n can be 
represented by one Ferrers-Sylvester' diagram which is an array 
of n dots with rows representing parts in one of the two 
partitions and with columns ̂ corresponding to parts in the re-
maining one. 

Regarding the formula (2.10), note that 
oo 

5= % = ^ L PT,(s)tS 1 (1-t) (1-t ) . ..(1-t ) 8 = 0 r 

with pr(0) := 1, r = 1,2,..., i.e., Fr(t) is the generating 
series for pr(s). Hence, for r = 1, 

(2.11) Pl(s) = 1 for s = 0,1,... 

For r>2, Fp(t) can be decomposed into partial fractions, 
each of which can be expanded into power series with complex 
coefficients, in general. Hence pr(s) can be obtained. Thus 
Rademacher fe] found that, for sssO, 

(2.12) p2(s) = [a/2] + 1, 

(2.13) P3(s) = [s(s + 6)/12] + 1, 

where brackets denote integer parts. 
For increasing r such formulae can also be found but 

they get more and more involved. For instance, we have 
» m 1/24- . 1/8 . 25/144 . 1 9*2+17X+25 , 1 1+*2 ,1/8 ,1/8 _ 
F*(t) = ^ 1-z 3 ^ (1-x2)2 + 1«c 1«2" 
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Partitions and graphs 11 

4 X (2k+l)x2k
 + 1 2 (2^ - x ^ -1b k=0 ltJ k=0 \ . / 

Now one can obtain p^(s) as the coefficient of x s in the 
above expansion of ^(tl) : 

(2.14) p4(s) = [s(i2+15s+63+9 1 + ̂ 1 ) S)/144 + 1. 

In fifties of 19th century J.J.Sylvester developed a spe-
cial method in order to compute the so-called denumerants, 
i.e., the numbers of partitions of a given integer into spe-
cified parts, e.g., he obtained (cf. [11]) that Po(s) (in his q • X O 
notation A 0

X ~ ) i s "the nearest integer to (s + 3) /12, what 
is compatible with (2.13). 

Now we shall represent the simplest method of evaluation, 
usedbyEuler already. It consists in deriving recurrence for-
mulae. So substituting the. series (2.9) into (2.7) one ob-
tains 

S (p'(s,r)ts -p'(s,r)ts+2r -p'(s,r-1)ts"H) = 0. s=r v ' 
s+r even 

Hence, taking the coefficients of ts, we have the following 
formula of recursion 

(2.15) p'(s,r) = p'(s-2r, r) +p'(s-1, r-1) 

with initial condition (2.4). The same result can be obtained 
by putting (2.2) into (2.5). 

3. Counting graphs 
We are interested in calculating 

(3.1) Vk(n,h) s= p'(n-h, h+k+2) 

which, according to Section 1, for parameters n, h, and k sa-
tisfying (1.2), is the number of maximal graphs with deficiency 
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12 Z.Skupleg 

ls+2 and with, n vertices of which exactly h are of degree 
n-1. Therefore we change variables in (2.15) putting 

!

s = n-h 
r = h+k+2, 

where n, h, k e Z . Thus we obtain 

p'(n-h, h+k+2) = p'(n-h-2(h+k*2) , h+k+2) + p'(n-h-1, h+k+1) . 

Hence, by (2.15) and (2.4), 

(3.2) <Pk(n,h) = <Pk(n-2(h+k<-2),h) + (Pk(n-2,h-1) for k=const.eZ 

with initial condition 

(3.3) <Pk(n,h) = 0 

if and only if h ^ Z or n+k is odd or neither n^2h+k+2>h 
nor n = h = -k-2 holds true. Furthermore, <Pk(-k-2, -k-2) - 1. 

The problem (3.2), (3.3) is clearly equivalent to the 
following one: 

<Pk(n,h) = <P k(n-2( h+k+2) ,h) + (n-1,h) for h=const. e Z 
with initial condition 

<Pk(n,h) = 0 if n+k is odd or neither n>2h+k+2>h nor n = 
S h = -k-2, and 

>Pk(h, h) = 1 with k = -h-2. 
Put 

(n-k-2)/2 
(3.4) f,(n) = 2 <fk(n,h). 

* h=0 K 

Then, according to Section 1 and the formula (3.1)» ^¿i11) 
the number of isomorphism types of maximal graphs on n ver-
tices and with the deficiency k+2, provided that 0<k<n-2. 
It is easy to see that, by the recursion formula (3.2), 

(3.5) fk(n) = q>k(2n+k+2, 2=k=£)_ ^ ^ ^ 2 ^ 2 , - 1 ) . 
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Parti t ions and graphs 13 

Moreover, s ince (p^Xnjh.) > c , t h e r e f o r e , "by (3.4-) and (3 .3 ) , 
f ^ ( n ) wi th k e N i s non-zero only i f n+k i s even and 
0 < k < n - 2 . In g e n e r a l , f^Cn) t 0 k e { - n - 2 , - n , <-n+2, . . . ,n-2] 
and n e N = [ 0 , 1 . . } . 

I n o rde r t o s i m p l i f y the r ecur rence equa t ion (3 .2 ) we put 

n+k+2 a , h+k+2 = 17 (with £ £ Z ) 

and 

( 3 . 6 ) 7) != i ^ - k - 2 , r j -k-2) » 

Then t h e problem ( 3 . 2 ) , ( 3 .3 ) reduces t o t h e r ecu r r ence equa-
t i o n 

(3j.7) 7) =• 7 ) + «P(§-2, ' ( w h e r e Z) 

wi th i n i t i a l c o n d i t i o n 

( 3 . 8 ) <l<(0,0) = 1 , 

and, f u r t h e r m o r e , ^(£,(7) = 0 i f f r? ^ Z or £ i s odd or neither 
£ > 2 q > 0 nor £ =17 = 0 . 

Hence i t ¡follows t h a t we a c t u a l l y may cons ide r (J> as t h e 
f u n c t i o n of two v a r i a b l e s on ly . So, by ( 3 . 6 ) , 

( 3 . 9 ) <fk(n, h) (n+k+2, h+k+2) , 

and, by ( 3 . 4 ) , 
(n-k-2)/2 (n+k+2)/2 

('3.10) f . ( n ) = S (p(n+k+2, h+k+2) = 2 ] 0-(n+k<-2, 7 ) . h=0 fj =k+H 

Moreover, by (3 .5 )and ( 3 . 9 ) , or by (3 .10) and ( 3 . 7 ) , we ge t 

(3 .11) f k ( n ) = <K2n+2k+4, (n+k+2)/2) - cp(n+3k+4, k+1) . 

Fur thermore , ( 3 . 6 ) , ( 3 . 1 ) , and ( 2 . 1 0 ) , we have 

<Kf .»?) = 1 - k - 2 ) = p'GS-«?. O = P C(§- 2i?) /2) . 
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14 Z.Skupien 

Hence, by ( 2 . 1 1 ) , ( 2 . 1 2 ) , ( 2 . 1 3 ) , and ( 3 . 8 ) , 

<P(?, 1) = 1 f o r % = 2 , 4 , 6 , . . . , 

(3 .12) < « ( I , 2) = f o r even ? > 0.* 

<I»C§ » 3) = [ ( ? 2 +12) /48 ] f o r even 4 . 

Using (2 .14) one can ge t t he e x p l i c i t formula f o r (J) (£ ,4) too. 
Consider ( 3 . 1 ) and ( 3 . 3 ) as the d e f i n i t i o n of <Pk(n,h) f o r 

any k , n e Z and h e R . Then, i n p a r t i c u l a r , "by ( 3 . 6 ) , 

<Kn, h) = cp_2(n, h ) . 

Moreover, t he formulae (3 .9 )» ( 3 . 1 1 ) , and (3 .12) imply t h a t 

i f k (n ,h ) = h + k - J ) , 

f k ( n ) = tp^(2n+2k-j+2, ( n + k - 2 j - 2 ) / 2 ) - (p j(n+3k-j+2, k - j - 1 ) , 

(p^(n, - k - 1 ) = 1 f o r n = - k , -k+2, - k + 4 , . . . f 

<Pk(n, - k ) = [(n+k+2)/4] f o r n = - k - 2 , - k , 

<Pk(n, -k+1) = [((n+lr<-2)2+12)/48]for n = - k - 6 , - k - 4 , - k - 2 , . . . 

Observe t h a t , "by ( 3 . 1 1 ) , ( 3 . 1 2 ) , and ( 3 . 3 ) , 

f 0 ( n ) = (2n+4, (n+2) /2) - 1 f o r even n > - 2 , 

f ^ n ) = ty (2n+6, (n+3) /2) - [ (n+7) /4] f o r odd n ^ - 7 , 

f 2 ( n ) =(p(2n+8,(n+4)/2) - [(n2+20n+112)/48] f o r even n > - 1 4 t 

Moreover, i t f o l l o w s t h a t 

f ^ n ) = f Q (n+1) - [ (n+3) /4 ] f o r odd n > - 3 , 

f 2 ( n ) = f 1 ( n + 1 ) + [ (n+8) /4] - [(n2+20n+112)/48] f o r even n > - 8 , 

= f 0 ( n + 2 ) - [ (n 2+20n+64)/48] f o r even n > - 4 . 

The formulae (3 .9 ) and (3 .10) express bo th <pk(n,h) and 
f k ( n ) by means of the v a l u e s <K5,f?) of t he f u n c t i o n An 
e f f e c t i v e t a b u l a t i o n of ip (I,1?) can be performed using r e c u r -
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rence formula ( 3 . 7 ) t o g e t h e r with ( 3 . 8 ) . The noil-zero v a l u e s 
<K§»?) f o r £ ^ 24 (and consequent ly r?412) a r e g iven i n t h e 
coord ina te system 0 i n Table 1 . I n t h i s t a b l e t h e v a l u e s 

i|)(4n, n) ^ 2 ^(2n,r?) = fQ(2n-2) + 1 (with neN) 

a re put i n t o smal l s q u a r e s . Fur thermore , above t h e l i n e q= £ 
t h e r e a re numbers 0 ,1 , . . . , 1 0 which a re not t h e v a l u e s of i|> . 
Any of them, 3c say , corresponds t o a p o i n t , say 0^, which 
i s t he n e a r e s t of the d i s t i n g u i s h e d p o i n t s on t h e l i n e q = 
Then, when we t r a n s l a t e t h e o r i g i n e 0 of t h e coordinate s y s -
tem 0 t o 0^, we o b t a i n a new coord ina te system, O ^ ' 1 ? ' 
s ay , i n which, according t o ( 3 . 6 ) , t he v a l u e s g iven i n the 
Table 1 can be read of f as t he v a l u e s of ip-̂ .. 

Table 1 

Table 2 g ives a l l non-zero v a l u e s c£ f k ( a ) f o r 2<k+2<n<25 
and k < 1 0 . Th|e v a l u e s l y i n g on t h e l e f t oi t h e s loped l i n e 
can be ob ta ined from Table 1 us ing the formula ( 3 . 1 0 ) . Table 
2 g ives t h e numbers of maximal graphs of o rde r n ^ 25 and 
wi th d e f i c i e n c y ]$+2, where 0 C k < 1 0 . 
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Table 2 

\n 2 4 6 8 10 12 14 16 18 20 22 24 
k\ 3 5 7 9 11 13 15 17 19 21 23 25 

0 1 2 4 6 10 14 21 29 41 55 76 100 
1 1 2 4 7 11 17 25 36 50 70 94 127 
2 1 2 4 7 12 18 28 40 58 80 111 
3 1 2 4 7 12 19 29 43 62 88 122 
4 1 2 4 7 12 19 30 44 65 92 
5 1 2 4 7 12 19 .30 45 66 95 
6 1 2 4 7 12 19 30 45 67 
7 1 2 4 7 12 19 30 45 67 
8 1 2 4 7 12 19 30 45 
9 1 2 4 7 12 19 30 45 

10 1 2 4 7 12 19 30 
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