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I n t r o d u c t i o n 
The p re sen t paper con ta ins r e s u l t s concerning the e x i s -

tence of a s c a l a r product on the d i f f e r e n t i a t i o n module of 
some a s s o c i a t i v e a lgebra over an a s s o c i a t i v e commutative r i n g 
with u n i t y . 

The f i r s t p a r t of[ t h i s work i s devoted t o t h e i n v e s t i g a -
t i o n of a l g e b r a i c coun t e rpa r t s f o r the no t ions c£ c o n t r a c t i o n 
and l o c a l i z a t i o n of f u n c t i o n s from a d i f f e r e n t i a l s t r u c t u r e . 
We a l so i n v e s t i g a t e the problem of inducing v e c t o r f i e l d s on 
a d i f f e r e n t i a l subspace of a given d i f f e r e n t i a l space and give 
a d e s c r i p t i o n of o r i e n t a t i o n of a r i n g . toge ther with an order 
r e l a t i o n induced by t h i s o r i e n t a t i o n . 

I n the second p a r t of t h i s work we cons ider a smooth de-
composition of u n i t y i n the r i n g arid a s c a l a r product de f ined 
on the d i f f e r e n t i a t i o n module Diff 0 of some a s s o c i a t i v e 
a lgebra C over an a s s o c i a t i v e and commutative r i n g with 
u n i t y . S u f f i c i e n t condi t ions ' a r e fo rmula ted i n order t h a t 
t h e r e e x i s t a s c a l a r product and a symmetric covar ian t de-
r i v a t i v e on the module Diff C. 

The obta ined r e s u l t s and c o n s t r u c t i o n s are i n t e r p r e t e d i n 
a d i f f e r e n t i a l space as we l l as i n a d i f f e r e n t i a b l e mani fo ld . 
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2 M.Pustelnik 

I . AN ALGEBRAIC THEORY OF INDUCED VECTOR FIELDS AND INDUCED 
ORDERINGS OF THE RING 

1 . The opera t ion of con t rac t ion 
Let R "be an a s soc i a t i ve and commutative r ing with un i ty , 

and l e t C "be an|y a s soc i a t i ve R-algebra . Assume t h a t the 
r ing R, t r e a t e d as an R-algebra , i s a subalgebra of the a l -
gebra C. Let A be any s e t ' o f homomorphisms p: C —» R such 
t h a t p ( r ) = r f o r r € R . For any a € C we def in» the 
f u n c t i o n A°(a) on the s e t A by the formula 

(1) A°(aQ(p) = p(a) f o r a l l p 6 A. 

Then f o r a l l a , fS € C we have the formulas 

' A ° ( a + /3) = A°(a) + A0CP) 

A°(a.0) = A0(.a)'A°(P) (2) 

A°(r) = r A' 

where r^ denotes the constant f u n c t i o n with domain A, equal 
t o r f o r a l l p e A. 

Let F(A,R) denotes thè R-algebra of a l l f unc t ions 
f i A — R , where f o r a l l p e A 

( r + r ' ) (p ) = TCP) + r ' ( p ) 

c r - r ' )Cp) = r ( p ) - r ' ( p ) 

( r . r )Cp) = r . t ( p ) * 

Hence we have 

(3) A°: C 

Let C. 

F(A,R). 

be a subalgebra of the R-algebra F(A,R). We s h a l l 
consider the homomorphism 
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Generalized module of vector f ie lds 3 

O ) At C — 0A 

such that A ( a ) = A ( a ) f o r a l l a £ 0. 

2. The oase of a r ea l assoc ia t i ve algebra 
Let E ."be the f i e l d of r ea l numbers, and l e t C be a 

d i f f e r e n t i a l structure over a set I v i . C i s clearly an asso-
c i a t i v e R-a lgebra . I f we i d e n t i f y r ea l numbers r e R with 
constant funct ions on M: r ( x ) = r f o r a l l x e M , then R i s 
a subalgebra of the algebra C. With evàry point z £ M we 
associate the homomorphism h(x).: C —• R de f ined by the f o r -
mula 

( 5 ) h ( x ) ( a ) = a ( x ) f o r a l l a e C. 

Then 

h ( x ) ( r ) = r ( x ) = r f o r r e R. 

Let E = h[m] = { h ( x ) i x £ M ] c Horn (G,R) and l e t ty de-
note the topology on M induced by the set C of r ea l 
funct ions . Then we have the f o l l ow ing theorem. 

T h e o r e m 1. The mapping h: M —• E i s one-to-one 
i f f (M, TQ.) i s a Hausdorff space. 

P r o o f . Let (M,"CQ) be a Hausdorff space and l e t 
hCx^) = h ( x 2 ) , i . e . h ( x ^ ) ( a ) = h ( x 2 ) ( a ) f o r a l l a e c . This 
implies a ( x^ ) = a ( x 2 ) f o r every a , and by assumption i t 
f o l l ows that x^ = x 2 ( see [ 3 ] p .69 ) . Now suppose that ( M , ^ ) 
i s not a Hausdorff space. Hence there are points x^ ,x 2 £ M, 
x ĵ = x 2 such that f o r every funct ion a £ C we have a ( x ^ ) = 

This impl ies h(x/|)(ct) = h (x 2 ) ( oc ) , which means that 
the mapping h i s not one-to-one. In the sequel we sha l l 
assume that (M,T ) i s a paracompact space, which guarantees 
that h i s one-tc-one. 

Let x e U £ T c . Then h[u] = A c E . Por any a e C we obtain 

from ( 1 ) , the f o l l ow ing equal i ty 

A° (a ) (h (x ) ) = h ( x ) ( a ) = a ( x ) , 
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M.Pustelnik 

i .e . A°(a)o h | U = ct| U, op in the equivalent form 

(6) A°(a) = a | U 0 h~1| h[u] = a|h~1[A] o h~1|A =a o h"1|A. 

Now the formulas (2) can be easily verified. Thus we have 
for example 

A°(a+/3) = (a+|j) o h"1|A =ao h"1|A + |Jo h~1 |a = A°(a)+A°(p) 

and 

A° (r ) = r o h~1|A = rA . 

Let U be a subset of M. In agreement with [3], by C|y 
we denote the set of e l l local G-functions defined on U. For 
any A C E let 

(7) °A = ' h"1|Ai 0 —1 r -if* 
A hn [A]J 

Thus i£a € 0, then a | h~1 [A] € c|h~1 [A] C C and mo-
h-n[A] 

reover we have 

a | h~1 [A] o h"11 A = a o h~11A e CA. 

Prom formulas (3) and (4 ) , it follows that we can.define 
a homomorphism 1.1 C CA by the formula 

(8) i ( a ) = ao h~1|A. 

Then in particular for r eR we have 

(9) A(r) = r o h_1|A = rA . 

3. An algebraic theory of inducing vector fields 
By Diff C we s|hall denote the C-module of a l l differen-

tiations of the E-algebra C; i .e . the set of a l l R-linear maps 
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Generalized module of vector fields 

X: C — C satisfying the condition X(a.p>) = X(a) • (H a.x((5). 
The operations in Diff C are defined as follows 

f (X+Y)(a) = X(a)+Y(a) for X,Y€Diff C, a £ G 

X)(a) = ̂ 'X(a), for X e Diff c, e c. 
(10) 

L c*p-

Let A "be aiiy set contained in Horn (C,R) and let for 
every X € Diff G there exist exactly one element A' (X)e Diff C^ 
such that the following diagram is commutative 

C • C 
(11) A I I i 

* A' (X) 1 A A 

Let (C) denote the family of all sets Ac Hom(C,R) satisfy-
ing the above condition and such that p(r) = r e for r£R and 
peA. Thus for every Ae(C),a e C we have 

(12) A'(x) (1(a)) = A(x(a)). 

This implies 

A(X+Y) ( l (a ) ) = l(x(a) + Y(a)) = &(x(a)) + &(y(cx)) = 

= A'(X)(l(a)) + A'(Y) (1(a)) = (A'(X) +A'(Y)X4(a)) . 

Now it follows from (11) that 

(13) A'(X+Y) =A(X) +A'(Y) . 

In a similar way we verify that 

(14) A'(|J.X) = A°(P).A'(X), 

hence in particular, for X,YeDiff C, we have 
(15) A (r»X) = r .A' (X) 
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6 M.Pustelnik 

Hence we have the following theorem. 
T h e o r e m 2. Fov every A 6 (C) the mapping 

A' : Diff C — Diff CA is R-linear. 

4-, The case of vector fields over a differential space 
First we shall prove the following lemma. 
L e m m a 1. If' Z 6 Diff CA, pe h [ v ] C A, where Ve 

and if for fie 0 „ 
' 0 h"1 [A] 

(16) P o I V = 0 , 

then 

Z((5oo h
_1|A)(p) = 0. 

P r o o f . Let us put 

Y(|J) = Z((Joh"1|A) o h|h~1 [A] for fi £ 0 . . 
h |AJ 

Then for any fb.T £ C . w e have 

h [A] 

Y(F>+f)=Z ((lb+f)o h ~ 1 | A o h|h~ 1 [A]=Z((5o h~1|A+7"o h~ 1 |A)o h|h"1[A]= 

=Z((io; h ~
1 | A ) o h|h~ 1 [A]+Z(yo h ~ 1 | A ) o h l h ~ 1 [ A ] = Y((l) + Y ( f ) , 

and 

Y((5«i) = z((|J.r>o h " 1 | A o h | h ~ 1 [ A ] = 

= Z((5o h~1|A .(To h"1|A) + ((3o h~1|A).Z(io h"1 |A) o hlh-1 [A] = 

= Y(|i).r+ / i ' K T ) . 

and 
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Generalized module of vector f i e l d s 7 

Y(r«|J)=z((r«/3)o h ~ 1 | A ) o h | h ~ 1 [ A ] = r«Z(|3o h ~ 1 l A ) o h l h ~ 1 [A] = 

= r - Y ( p ) . 

T h i s i m p l i e s t h a t Y e D i f f C ,, , and. f i n a l l y we h a v e 

I T 1 [A] 

0 = Y(|30) h - 1 ( p ) ) = (Z((300 h ~ 1 | A ) o h | h " 1 [ A l ) ( h " 1 ( p ) ) = 

= Z((3oo h " 1 | A ) C p ) . 

L e t (C) = | A C E ; h - 1 [A]e T c } . Now we c a n p r o v e t h e f o l l o w -

i n g theorem« 

T h e o r e m 3 . I f A € ( C ) , t h e n f o r e v e r y X £ D i f f C 

t h e r e e x i s t s e x a c t l y one A'(X) e D i f f G^ s u c h t h a t A (X)(A(a)) = 

= A(x(ct)) f o r a e O . 

P r o o f . F i r s t we s h a l l d e f i n e t h e e l e m e n t A ( X ) . L e t 

f e C , , t h u s f = Bo h~ I A , where /} £ C . F o r an a r b i t r a r y 
A h " 1 [ A l 

p o i n t p e A t h e r e e x i s t s a n e i g h b o u r h o o d V 6 o f t h e p o i n t 
h""^(p) ' a n d a f u n c t i o n - f e e such t h a t 

f | v n h"1 [A] = (i | v n h~1 [A] . 

Hence we c a n p u t 

( 1 7 ) A ' ( X ) ( f ) ( q ) = ( x ( r ) O h _ 1 | A ) ( q ) f o r q £ h [ V ] n A . 

I n p a r t i c u l a r , i f a € C , t h e n a |h~ [A] £ C . . M o r e o v e r , 

h _ 1 [A] 

a I h~ 1 [A] o h ~ 1 1 A = a o h - 1 1 A £ C A . 

As f we c a n t a k e t h e f u n c t i o n a and V = h - 1 [ A ] . ^Hence we 

h a v e 

(A' ( X ) ( i ( a ) ) ) ( p ) = ( x ( a ) o h ~ 1 l A ) ( p ) f o r p f c A ; 

t h a t i s 

(18) A ( X ) ( A ( a ) ) = i ( x ( t t ) ) . - 431 -



8 M.Pustelnlk 

Now let us take an arbitrary function a £ C^ and a point 
p e A . Let x = h~1(p), U = h~1[A], then x e U and a ohlh"1[A] = 
= (as well as a = |3o h."11A e 0 A) . There exists v 6 x

c 

such that x e V c U , and there exists a function (5 £ C such 
that (5|V = P|V, which implies plv = (j5|U)|V. 

Let Z ,Z' be any elements of Diff C^ such that the follow-
ing diagrams are commutative: 

In agreement with Lemma 1 we put |3 = p~ |il U und we 
obtain 

0 = Z((5qo h~1|A)(p) =Z(p« k~1| a)(p)-Z(p>|u o h~ 1U)(p) < 

which implies 

Z(|io h-1|A)(p) =Z(|loo h~1lA)(p) = z(a(|5)) (p) =1 X((J))(p). 

As a consequence we have 

Z(a)(P) = i(x(P>)) (p), z'(a)Cp) = i(x(j5))(p) . 

Hence Z(a)(p) = z'(a)(p) for p e A - and Z(a) = Z'(a) for 
aeC A, thus finally Z = Z'. 

5. Oriented rings 
'Let, as "before, E be a commutative and associative ring 

with unity, under the operations + and • . By orientation of 
the ring R we shall understand any endomorphism £ : (R, •) —(R,0 
satisfying the following conditions 

(a) £(r+r')=£Cr) whenever £ (r) = o or e (r') = £ (r)=1, 
(19) i 

(b) £(0) = 0, £ (-1) ̂  1. 
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Generalized module of vector fields 9 

(20) 

The ring R together with an orientation will toe called 
an oriented ring. 

The choice of orientation e allows us to introduce a "less 
than" relation. < "between elements of R, induced toy the orien-
tation £. Namely, we define 0 < r iff £ (r) = 1, and next 
r / ) < r 2 iff 0 < r 2 - r̂ .. If r ^ < r 2 or r^ a r 2 we write 
r1 ^ r2* P r o v e the following theorem. 

T h e o r e m 4. If (R,£) is an oriented ring,then the 
relation < induced toy the orientation £ is antireflexive, 
antisymmetric, transitive and the following conditions are sa-
tisfied 

(i) if 0<r / ] and 0 < r 2 , then 0 < r / ) T 2 ; 

(ii) if 0<r / l and 0 < r 2 , then 0 < r 1 + r 2 > 

(iii) if r^ < r 2 , then' r ^ + r < r 2 + r for any r e R . 

(iv) if r ^ < r 2 and 0 < r , then r,jT<r 2«r. 

P r o o f * From (to) it follows that 0 = £ (0) = £ ( r - r ) . 
Hence £(r-r) ^ 1, and it is not true that r < r . If r /j<r 2, 
then 6(r 1-r 2) = £ ( ( - 1 ) ( r ^ ) ) = £ ( - D e C r ^ ) = e ( - 1 ) « 1 = 
= £(-1) ^ 1» thus it is not true that Assume in ad-
dition that r 2 < r ^ . ®h&n toy (-a) we have £ (r^ - r^) = 
= £ ((r^-r2) + (r^r^)) = £ (r^-r2) = 1, i.e. r ^ r ^ . T h u s the 
relation is antireflexive, antisymmetric and transitive. Now 
assume that 0 and 0 < r 2 . Then £ (r^«r2) =£(r/|) 6 (r 2) = 
= 1-1 = 1. Hence, condition (i) holds. If O ^ r ^ and 0 < r 2 , 
than £(r^) = 0 or else £ (r^) = e ( r 2 ) = 1. This implies 
s(r 1+r 2) = £ ( r 2 ) = 1, i.e. O C r ^ + r ^ Condition (iii) follows 
from the identity (r2+r) - (r^+r) = r 2-r^, and condition (iv) 
follows from the identity r 2 r -r^r = (r2-r^)r and from the 
fact that £ is an endomorphism. 

E x a m p l e . Let (R,+,») toe the ring of integers (or 
real numbers) and let 

£ (x) = sgn x for x e R . 
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10 M.Pustelnik 

The f u n c t i o n sgn x i s c l e a r l y an endomorphism of t h e 
semigroup ( R , 0 and £ [R] = { - 1 » 0 , l j . Bes ides t h a t we have 
(a ) i f sgn x ' = 0 , t h e n x ' = 0 and sgn(x+x') = sgn x ; 

and s i m i l a r l y , i f sgn x = sgn x ' = 1 , t h e n • sgn (x+x') =1. 

(TO sgn(0) = 0 ; sgn ( - 1 ) = - 1 * 1 . 
Hence the f u n c t i o n sgn i s an o r i e n t a t i o n of t he r i n g R 

and i t induces i n R a " l e s s - t h a n " r e l a t i o n i d e n t i c a l wi th 
the u sua l " l e s s - t jban" r e l a t i o n "between i n t e g e r s ( r e a l num-
b e r ) . 

With a g iven r i n g R and a s e t A one can a s s o c i a t e t he 
A 

a l g e b r a R of a l l f u n c t i o n s d e f i n e d on A wi th v a l u e s i n 
R "by d e f i n i n g i n the | u s u a l way (po in twise ) t he operat ions of 
a d d i t i o n , m u l t i p l i c a t i o n and m u l t i p l i c a t i o n by t h e e lements 
of the r i n g R. 

I f (R,£) i s an o r i e n t e d r i n g , t h e n we can i n t roduce i n 
R t h e " l e s s - t h a n " r e l a t i o n . This r e l a t i o n next a l lows us t o A 
i n t roduce i n R and analogous r e l a t i o n , c a l l e d t h e " l e s s -

A 
- t h a n " r e l a t i o n i n R induced "by We s h a l l denote t h i s re -
l a t i o n "by t h e same symbol < without misunders tand ing . We de -
f i n e i t as f o l l o w s 
(21) f<gj(jf <g) I f f for every x e E w e have f (x) < g(x) (f (x) < g(x)) . 

I f we denote "by 0 t h e f u n c t i o n ( i . e . the f u n c t i o n 
d e f i n e d on A aiid t a k i n g everywhere t h e v a l u e 0 of the r i n g 
R) , t h e n we can de r ive f rom Theorem 4- t he fo l lowing coro l l a ry . 

C o r o l l a r y . The " l e s s - t h a n " r e l a t i o n < induced "by 
A 

£ i n R , i s a n t i r e f l e x i v e , an t i symmetr ic and t r a n s i t i v e , a s well 
as i t s a t i s f i e s t he c o n d i t i o n s 

' ( i ' ) i f 0 < f 1 and 0 < f 2 , t h e n 0 < f / ) . f 2 ; 

( i i ' ) i f and 0 < f 2 , t h e n 0 < f 1 + f 2 } 
-,A 

(22) 
( i i i ' ) i f f 1 < f 2 , t h e n f 1 + f < f 2 + f f o r any f e E A ; 

( i v ' ) i f f 1 ' < f 2 ^ 0 < f l t h e r L f - T f < f 2 , f » 
( v ' ) i f f ^ < f 2 and 0 < r e R , t h e n r « f / j < r « f 2 ; 
( v i ' ) i f 0 < f i f o r i € ( l , . . . , k ] and C X f ^ x ) 

f o r some 0 e { l , „ . . , k } , t h e n 0 < f 1 + . . . + f k . 
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Generalized module of vector fields 11 

P r o o f . If 0 < f 1 and 0 < f 2 , then for any x € A we 
have 0<f(x) and 0<f 2(x), hence from condition (ii) of 
Theorem 4 it follows that 0 <f^ (x)«f2(x) \ i.econdition (i') 
holds. Similarly one can prove conditions (ii')» (iii') and 
(iv'). If for any x € A we have f^x) < f2(x) and O C r e R , 
then r.f^ (x) <r«f2(x) "by condition (iv) of Theorem 4>Hence 
condition (v1) holds. Condition (vi') follows directly from 
condition (ii) of Theorem 4 and from condition (ii' ). 

II. ALGEBRAIC CONDITIONS FOR THE EXISTENCE OP A SCALAR 
PRODUCT AND A COVARIANT DERIVATIVE 

1. Smooth decomposition of unity in a commutative ring 
Let E denote a fixed subset of the set Horn (C,R) (see 

I, § 1). Let: A C E "be a set with the property that for every 
p 6 A there is exactly one homomorphism 

(1) PA» C A — R 

such that 

( 2 ) p A o £ = p . 

For any rç e C A and a e C, let 

(3) (AaKrçXp) = 
P(a)-PA(i?) if p £ A 

0 if p e E-A. 

Hence we have obtained an element (Aa)(r?) belonging to 
F(E,R). 

We say that an element a in the R-algebra C is subject 
to the set A, if for any function rj £ C^ there exists exactly 
one element /3 e C such that fi = (Aa)(rj) where 

(4) /3(p) = p(|J) for p £ E. 
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12 M.PusteInik 

I f a f u n c t i o n ip s E — R h a s t h e p r o p e r t y t h a t t h e r e 
e x i s t s e x a c t l y one e lement ß e C such t h a t jS = ip, t h e n t h i s 
e lement w i l l "be denoted "by [if]. 

Le t C(E) denote t h e s e t of a l l f u n c t i o n s <pe F(E,R) s a -
t i s f y i n g t h e c o n d i t i o n : t h e r e e x i s t s e x a c t l y one element ß e c 
such t h a t ß - tp. 

T h e o r e m - 1 . 1 . I f t h e s e t C(E) i s c l o s e d under t h e 
o p e r a t i o n s of a d d i t i o n , m u l t i p l i c a t i o n , and m u l t i p l i c a t i o n 
by s c a l a r s i n t h e R - a l g e b r a F ( E , R ) , t h e n t h e s e t C(E) of a l l 
e l emen t s of t h e fo rm [(p] , where <p e C(E) i s c l o s e d i n t h e 
R - a l g e b r a C, Hence C(E) i s a s u b a l g e b r a of t h e R - a l g e b r a 
G and t h e map 

(5) <P ' [<P] : 8(E) — C(E) 

i s an i somorphism. 
P r o o f . The f i r s t p a r t of t h e theorem i s obvious. Assume 

t h a t t h e s e t 0(E). ' i s c l o s e d i n t h e R - a l g e b r a F(E,R) and 
l e t a , ß e C(E) , r e R . ' Then a>[ip]iß = [v]wheie <py e 0 ( E ) . We t h u s 
have OL - m T h i s i m p l i e s 

(a+/5)"( P ) = p(a+[3) = p ( a ) + p ( ß ) = a ( P ) + j j ( p ) = cp(p) +m»(p) = 

= (cp+vXp) 

f o r p € E , Hence (a + /J)"= <p + ^ . By a s s u m p t i o n , cp + 4>fiC(E), 
t h a t i s 

[<P + Y] = | > ] + I > ] ' 

S i m i l a r l y one v e r i f i e s t h a t t h e f o l l o w i n g e q u a l i t i e s h o l d 

[ > • * ] = [ < p ] - M , <p] = • 

Hence t h e map (5 ) i s a homomorphism. I f ip e C(E) and[<p] = 0 , 
t h e n Ö = cp . But 0 ( p ) = p ( 0 ) = 0 f o r p f c E , hence <p = 0 ( i . e . 
i t i s t h e ze ro of t h e R - a l g e b r a F ( E , R ) ) . 
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Let (R,£) fee an oriented ring. Consider the family (I 
of the set E with the property 

for every Ae& and for any peA there exists exactly 

one homomorpLiam of the form (1) such that (2) holds. 

An indexed family (<pg; s e S) of elements of C wil l be 
called a smooth dacomposition of unity subject to the family 
0i, i f there exists a function 

s i—A : S —• s 

such that 

( i) sVs(P } p 6 A s A p ( < f > s ) * ° } = E j 

( i i ) { stp(<pa) 4 o j is a f in i te set for peE. 

( i i i ) for any indexed family (o : s e S ) e P CA there exists 
3 seS 

exactly one element P e c such that 

(6) /3= S C V s ) C ? 3 ) 

(iv) f o r 3 6 s 

(v) Zl p(^a) = 1 for peE. 
se s 3 

A function s l—*-A_ satisfying conditions ( i ) - ( iv ) wil l 
9 

be called a choice function for the given smooth decomposition 
of unity. 

Observe that in view of ( i i ) the definitions of sums 
appearing in ( i i i ) and (v) are well formulated. In fact , for 
any peE the set of a l l s e S for which (A_ cp ){q ) (p)^0 {3 S fl i 

s f p( a ) -p. (n ) / cue . | 3 As 3 J Cja; pC<Pa) 4 Oj, and the la t te r is f i n i t e . 
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14; M.Pustelnik 

2 . Smooth decomposition of unity in a differential apace 
Let (M,C) be a differential space. We shall assume that 

the topological space ( M , ^ ) is paracompact and C-normal,i.e. 
for any disjoint closed sets F and H there exists a 6 C 
such that a l F s l j , , a|H=0H, 

L«t us take an arbitraiy sat ACE. To every point 
x eh."''[A] CM we associate the homomorphism h A (x ) : CA — E , 
defined by; the formula-

h A (x) (a) = a ( h ( x ) ) , f o r a e C A . 

Next we denote pA=hA(x). In this way to every point p§A ttiere 
corresponds a homomorphism" pA : C A — R where pA(ct) = a (p) 
for peA a n d a e C ^ » For every /3 e C we have 

( p A o A ) ( p ) . = pA((5o h-1|A)= ( (h" 1 U)(p) ) =(5(h- 1(p)) = p((i). 

Hence 
P A ° £ = P. 

and equality ( 2 ) , § 1, holds. 
Next le t a e c , and l e t ACE be any set such that 

_ A 

h [A]6IQ . For arbitrary 17 e CA and peA we have 

p(a)*PA(7) = a (h~1(p)>-Q(p) = (Coto h"1|A)-r2)(p). 

Hence formula (1) in the previous paragraph takes the form 

f ((cto h^lA) -1?) (p) for peA 
(Aa)(r?)(p) = 

[ 0 for peE-A. 

If we put p = h(x) (where XeM) and U=h~' l[A], then 

' (a .(i? o In ¡IT)) (x) for x e U 

for xeM-U. 
(Aa)(r|)(h(x)) = 
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Generalized module of vector f ields 15 

According to ( 4 ) § 1 we have 

j i ( p ) =p(j3) =/3 ( i r 1 ( p ) ) , f o r p e E . p e C , 

hence 

/3 =/3oh~1. 

In the d i f f e r e n t i a l space we have 

£ ( h ( x ) ) = h(x) ( (5) = (5(x) f o r x = h~1 ( p ) e M , 

that ia 

[i =ftoh. 

Now we can prove the f o l l ow ing theorem. 
T h e o r e m 2.1. I f supp a C U = h~1 [u] and Ue t^ . then 

the funct ion a i s subject to the set A (supp a denotes the 
support of the funct ion a ) . 

P r o o f . Let q e CA . The funct ion [i de f ined by the f o r -
mula 

, f a ( x ) TjChCx)) f o r x e U, 
|3(x) = (AoO (r?) (h (x ) ) = 

0 f o r x e M-U 

belongs to C. In f a c t , since Q • h lUeC^, there ex i s t s an 
open neighbourhood VCD of the point x and a funct ion 
f e e such that 

= (r? o h|u)| V = q o h|V. 

Hence f o r y e V we have /3 ( y ) = a ( y ) ' f ( y ) = (a • f ) ( y ) . This im-
p l i e s = ( a . ^ ) |v , where a-fec. Now i f x e l l - H , then 
x 4- supp a = supp <X . Hence there ex i s t s an open neigh-
bourhood W of the point x, d i s j o i n t with the set supp a ; 
that i s , (5|W = o | W, where o i s the funct ion identically equal 
to 0 on M. Thus the funct ion (3 i s a l o ca l C-funct ion; that 
i s , lie C =C (see [ 3 ] ) . Moreover we have Iff -* 

- 439 -



16 M.Pustelnik 

jj(p) = (/5o iT 1 ) (p ) = (Aa)(.7)(p) f o r p = h( x) e A. 

Consequently ¡5= (AaH7) . If we a l so have ft^ = (Aa)(n), then 
0 = fy. This implies /3o tí" = p^ 0 h. i . e . (3= fy. In t h i s 
way the uniqueness of the choice of the func t ion fi i s proved. 

Now assume tha t a func t ion ip s E R has the property 
that there e x i s t s a func t ion [i> 6 C such tha t $ = i . e . cp = 
= f ioh . Moreover assume tha t there e x i s t s another func t ion 
/3'ec such tha t <p = fi'o h _ 1 . Then ¡i o h~1 = (j'o h" 1 , i . e . |3 = ¡i'. 
Hence we have proved tha t the func t ion ($ i s unique. Accord-
ingly, 

C(E) = |cp ; cp: S - * f i A t f o h e c | c F ( E , R ) 

Simi lar ly we can def ine the se t C(E) of a l l functions of 
the form [ip], where cp e C(E). From the d e f i n i t i o n of [cp] i t 
follows tha t [cp] = <poh. 
Hence 

C(E) = |cp 0 l i j cpeC(E) |= C. 

Inc identa l ly we can not ice t h a t the d e f i n i t i o n of the se t C(E) 
implies t ha t C(E) i s closed in the algebra F(E,R) with r e s -
pect to the operat ion of add i t ion , m u l t i p l i c a t i o n , and mul-
t i p l i c a t i o n of func t ions by s c a l a r s . 

Now we s h a l l formulate the bas ic theorem of t h i s s e c t i o n . 
T h e o r e m 2 .2 . If the topologica l space (M, Tcj) i s 

paracompact and C-normal, and if a family Olc has the p ro -
perty tha t the family & = h-"'[A] } A e O í ^ i s an open covering 
of the se t M, then there e x i s t s a smooth decomposition of uni ty 
subject to the family (X . 

P r o o f . Let S = s e s j . If the topologica l space 
i s paracompact, there e x i s t s an open covering 00 = | v g ; s e Sj 
of the se t contained in i? and l oca l l y f i n i t e (hence p o i n t -
wise f i n i t e - see [4] , [5] ) . The topologica l space (M,Td) i s 
normal as wel l , so tha t the covering TO contains an open sub-
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Generalized module of vector f i e lds 17 

covering W = jwg j s e S j of the sat M, which in turn con-
tains an open subcovering iW = |wgs se S such that 

i c w ' c i ' c v . 
s s a s 

For any s e S the sets W„ and M-W' are dis joint and S o 
closed, hence there exists a function f„feC such that f„?0, _ S 9 
f ( x ) = 1 fo r x f l 0 and f a ( x ) = 0 f o r x£M-W' . Therefore 3 S 8 H 
supp f c W' C V . The sum E f„ is well defined ( 10 is a S a S s £ S S 
local ly f in i te family) and belongs to C. Moreover, U f ( x ) > 0 

s£S 3 

for x£M, since 3)0 is a covering of the set M, 
The family (<p: s e S ) of functions of the form 

(f> = f / 2 f f o r a € S 
3 3 ' s € S 3 

is a smooth decomposition of unity subject to the family 01 . 
In fact , since % = ^ h ~ 1 [ A ] : A € Ot j- = ^ Bg : s e s j , we infer 

that 

( i ) U [ P Î Pe V p ( <f3) * °} = W { P ; ti~1(p)EBA A ipg(tf1(pj) 4 o ] : 

U ( p ; h " 1 ( p ) e w a b E , 
s e s I 8 J s e s 

because 370 is a covering of the set M. 

( i i ) Let p € E . Since supp cpg G Vg fo r s e S , and the family 
is local ly f in i te , i t is pointwise f in i te and 

(as p(«pa) 4 o } = { s : <P s0r1 (p) ) V o } is a f in i te set. 

( i i i ) Let s eS . . Since supp < i > a C V a C B s = k [Ag ],the function 
(p„ is subject to the set A . 3 S 

Consider an arbitrary indexed family (i? : s £S )£ P C. . 
S S £ S «g 

For every seS there exists, exactly one function |3.eC such that o 
= (ASVS ) (f?s). Moreover supp /3g Csupp </)0nsupp(/?a°h|h'[A])cVg. 

As the family 10 is local ly f in i t e , f o r any x e M there exists 
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18 M.Pustfilnik 

a neighbourhood U such that the set of those indices seS, 
for which /3_(y) / 0 for some y£I3'f is f inite . Suppose that 

r this set is js^ , . . . jS-̂ j- . Let us put 

k 
(7) /3(z) = £ /3 (z) = E p ( z ) , for zeU. s e s s 1=1 s i 

Hence the function is a local C-function on the set M, i . e . 
/iec. The function (3 is uniquely determined. In fact, let (? ^ 
as well satisfy equation (7) . Then 

= S ? s Ps* U e ' ^ = A o h~1 = Ils/S8 oh"1. 

But 

" —1 n —1 This implies = fi, and |5oh oh = p^oh oh. Hence 
(b= 

Condition ( iv ) follows directly from the definitions of the 
functions f and cp_, s s 

(v) S g p«pB) = E ^ C p ) ) = 

= £ ( f s (h~1 (p) ) / z f s ( h - 1 ( P ) ) ) = 1, 
ses ' sis 

since for any p e E the above sums have a finite number of 
components. 

3. Scalar product on a 0-module of vector f ields 
Let V be a C-module, where C is an arbitrary 

associative R-algebra (see Chapter I , § 1). By a scalar pro-
duct on V we understand every bilinear map 

(8) g: V * V — C 
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Generalized modulé of vector f i e lds 19 

satisfying the conditions 

( i ) g(X,Y) = g(Y,X) for X,Y£V 

( i i ) the map XI—^g(X,0 is an isomorphism of V onto V . 

The "bilinear map (8) satisfying condition ( i ) only, is 
called a generalized scalar product on V. 

A generalized scalar product g on Diff 0 is said to "be 
£-positive definite (br ie f ly : positive), where C is an R-
algebra and £ - an orientation of the ring R, if for any pe E 
we have 

P ( g ( x , x ) ) > 0, 

where p(x(a) ) i 0 for some a e C. 
Similarly, a generalized scalar product g on Diff G^ is 

said to be £-positive definite, i f for any peA we have 

PA (g (X fX) )> 0, 

where pA (x (a ) ) ^ 0, for some a £ CA. 
T h e o r e m 3.1. If g is a scalar product on Diff 

CA, where Ae (C ) (see Chpt.I § 1) and C(E) is a closed 
set in the algebra F(E,R), then for every fmiction a subject 
to the set A, the function 

(9) (X,Y) — [ (Aa) (g(A' (X) ,A' (Y ) j ) ] 

is a generalized scalar product on Diff 0. 
P r o o f . The additivity of the map (9) with respect to 

both variables is obvious. From condition ( i ) i t follows that 
the map (9) satisf ies the same condition. 

To show that (9) is homogeneous observe f i r s t that from 
formula (3) § 1 of this chapter and from formulas (1) and (4) 
§ 1, Chpt.I i t follows that the following identity holds: 

(10) (Aa ) ( i (£ ) ) = fJ-(Aa)( lA ) fo r a,(3e G. 
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20 M.Pustelnlk 

Hence by. formula ( 2 ) , § 3 Ohpt.I we have 

(Aa ) ( g (A ' ( p .X ) ,A ' ( Y ) ) ) = (Aa) (a((5) • g (a' (X) ,A' (Y ) ) ) = 

= (AoO(i (W) - (Aa) g(A' (X ) ,A ' (Y ) ) ) = (J<Aa)(1A) . (Aa) (g(A' (X) , 

A' (Y)-)) = fl (Aa) ( l A . g ( A ' (X) , A' (Y ) ) ) = ji . (Aa) (g (a'(X) ,A' (Y)) ) . 

According to Theorem 1.1 we have 

[(Aa) (g(A'((b.X) ,A' (Y ) ) ) ] = [P ] [ (Aa) (g (a' (X) ,a' (Y) ) ) ] = 

= (5. [ (Aa)(g(A' (X) ,A' (Y ) ) ) ] . 

Now we shal l formulate a theorem of basic importance f o r 
the construction of scalar product on the C-module Dif f C. 

T h e o r e m 3.2. I f (SL c (0) , EC Horn (C,R) , (p s s ,6S s 
is a smooth decomposition of unity subject to the family OL, 
and i f the function s i — i s a choice function f o r this 
decomposition, then the correspondence 

(11) (X,Y) -

is a positive. definite scalar product on Dif f C, under the 
assumption that gA i s a positive definite scalar product on 
Diff CA f o r s e S. 

3 

P r o o f . I f s e S , and X .YeD i f f C, then A'g(X), 
A'S(Y) 6 Di f f CA. Hence q B = S A ( a^ (X ) , A'g(Y)) belongs to CA . 

s s 
According to condition ( i i i ) § 1 appearing in the def init ion 
of smooth decomposition of unity, there exists exactly aae ele-
ment /3£ 0 such that the equality ( 6 ) , § 1 holds.Thus we have 
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Generalized module of vector fields 21 

Prom Theorem 3 .1 . i t follows that the function 

(X,Y) 

i s a generalized sca la r product on Diff C. From Theorem 1.1 i t 
fol lows that the " ¡ i l inear map (4) i s a generalized scalar pro-
duct on Diff C. I t remains to show that the map (4-) i s p o s i -
t i v e d e f i n i t e . 

Let us take any p e E and l e t p(x(a)) ji 0 f o r some a e C. 
From condition ( i i ) of the de f in i t ion of smooth decomposition 
of unity i t fol lows that the set | s : o eA sAp(cpg) t 0T i s f i -
n i t e . 

Suppose that t h i s set i s { S 1 » • • • » s i c | • •c,e't; ^ s . = 

= gA ^ _ (X) ,A's _ (X)) , f o r i = 1 , . . . , k . Since p (x(ci)) 4 0 and 

P ( * ( « ) ) = PA g (&(*<*))) = p A g ( A ^ C X ) ( i S i ( a ) ) ) * o. 

and since the s ca l a r product g^ i s pos i t ive de f in i te on 

Diff C 

This implies 

!» by assumption, we obtain p. |(n ) > 0 f o r i = 1 , . . . , k , 

because 
set 

S s (A s ^) (g A s (A ' s CX) ,A s CX)^ 

k
 / \

 k 

•S ((vO ikH= S »W'^W>o-
se p ^ s \ > 0 fo r i = 1 , . . . , k , by the dé f in i t ion of the 
| s 1 t . . . , i k J and by condition ( iv ) of the dé f in i t ion of 
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22 M.Pustelnik 

smooth, decomposition of unity. This concludes the proof, of 
the theorem. 

T h e o r e m 3.3. If there is a family <91 c (C) (where 
C =0(E), EC Horn (C,R), (R,£) is an oriented ring) such that 
there exists a smooth decomposition of unity subject to the 
family 01, and if for every A £ a there exists a positive 
definite scalar product on Diff CA, then there exists a po-
sitive definite scalar product on Diff C. 

If, moreover, the R-alge"bra C has the property that every 
positive definite scalar product on Diff C is a scalar pro-
duct, and if the ring R is diadic, then there exists a co-
variant derivative on Diff C. (The ring R is said to "be 
diadic if for every r.£ R there is exactly one element pfcR 
such' that r =p+p). 

P r o o f . The first part of the theorem is a direct con-
sequence of Theorem 3«2. The second part follows from the 
first "by Theorem 9.4 of paper [l]. 
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