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OF VECTOR FIELDS

Introduction

The present paper contains results concerning the exis-
tence of a scalar product on the differentlation module of
some associative algebra over an associative commutative ring
with unity.

The first part of]this work is devoted +to the investiga-
tion of algebraic counterparts for the notions of contraction
and localization of functions from a differential structure.
We also investigate +the problem of inducing vector fields on
& differential subspace of a glven differential space and give
a description of orientation of a ring .together with an order
relation induced by this orientation.

In the second part of this work we consider a smooth de-
composition of unity in the ring and a scalar product defined
on the differentiation module Diff C of some associative
algebra ' C over an assocliative and oommutative xring with
unity. Sufficient conditions are formulated in order that
there exist a scalar product and a symmetric covariant de-
rivative on the module Diff C.

The obtained results and constructions are interpreted in
a differential space as well as in a differentiable manifold.
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2 M,Pustelnik

I. AN ALGEBRAIC THECORY OF INDUCED VECTOR FIELDS AND INDUCED
ORDERINGS OF THE RING

1. The operation of contraction

Let R be an assoclative and commutative ring with unity,
and let C te anbr'associative R-algebra. Assume that +the
ring R, treated as an R-algebra, is a subalgebra of +the al-

gebra C, Let A be any set 'of homomorphisms ps: C —~ R such
that p(r) = r for reR, For any a€ C .we define the
function A°(a) on the set A by ‘the formula

™ A%(a)(p) = p(@) for all peaA,

Then for all &, € C we have the formulas

2%a+ B) = A%(a) + A°(P)
(2) | £°Ca-B) = A°(a).2°%(p)
AO(I’) = Ty

where T, denotes the constant function with domain A, equal
to r for all peEaA, '

Let F(4,R) denotes +the .R-algebra of all functions
+:A — R, where for all peA '

(r+™H®@ = @ + 7' (®
(1Y@ = 1 @-1'®
(zet)(®) =127 (D).
Hence we have
(3) A°: C — F(4,R).

Let C, be a subalgebra of the R-algebra F(4,R). We shall
consider the homomorphism
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Generalized module of vector fields 3

() ' A: C—C,
such that ﬁ(a) = A(a) for all a€ C,

2, The cage of a real associative algebra

Let R be the field of real numbers, and le%t C be a
differential structure over a set M, C 1is clearly an asso-
ciative R-algebra, If we identify. real numbers reR with
constant functions on M: r(x) =r for all xeM, then R is
a subalgebra of the algebra C. With -every point XEM we
associate the homomorphism h(x): C —~ R defined by the for-
mula

a(x) for all a€ C,

(% h(x){a)

Then
h(x)(r)

r(x)=r for TrE€R,

Let E=hnf] = {h(x); x€M} c Hom (C,R) and let T, de-
note the topology on M induced by the set C of real
functions. Then we have the following theorenm,

Theoremn 1., The mapping h:t M ——E 1is one-to-one
iff (M, TC‘) is a Hausdorff space,

Proof. Let (M,T;) be a Hausdorff space and let
n(x,l) = h(xa), i.e. h(x,l)(a‘) = b.(x2)(a.) for all o € C, This
implies a(x,]) = a(x,) for every o, and by assumption it
follows that x, =x, (see (3] p.69). Now suppose that (M, Ty)
is not a Hausdorff space. Hence there are points X%, € M,
Xy = Xy such that for every functiona € C we have Ot(xq) =
= a(x,). This implies h(x,l)(a) = h(x,)(®), which means that.
the mapping h is not one-to-one. In the sequel we shall
assume that (M,‘UC) is a paracompact space, which guarantees
that h 1is one-~%c-one,

Let xeU€ Ty, Then h[U] = AcE, For any a€ C we obtain
from (1), the following equality

2°(@) (a(x)) = h(x)(a) = a(x),
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4 M,Pustelnik

1,e. 4°a)o h |U =ajU, or in the equivalent form
(6) 4%a) =a|U o b b[u] =a|n~[a] o 0”74 =a o n7|4,

Now the f‘ormulas (2) can be easily verified, Thus we have
for example

A%(a+p) = (@+p) o h™1|A =ao b |A+po b~ |a =A%C@)+4%(p)
and
A%z) =roh YA = Ty

Let U be a subset of M. In agreement with [3], by %
we denote the set of sl local C~functions defined on U, For
any ACE 1let

” Cp = {Po h—1|A5 pe Ch_q [A]}.

Thus ifa € C, then « | n~1 [A] e cjn~1 [Alcc _ and mo-

b~ (4]

aln™ [ o ™| 4=aonNsec,.

reover we have

From formulas (3) and (4), it follows that we can. define
a homomorphism R: ¢ — CA by the formula

(8) i(a) =ao b~ 4,
Then in particular for re¢R we have

(9) A(®) =T o 1A = Tpe

3. An algebraic theory of inducing vector fields
By Diff C we ghall denote the C-module of all differen-
tiations of the R-algebra C; i.e. the set of all R-linear maps
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Generalized module of vector fields 5.

X: C — C satisfying the condition X(@ep) = X(a)«p+a.X(P),
The operations in Diff C are defined as follows

(X+Y)(@) = X(a) +¥(a)  for X,Y€Diff C, o € C

(10)

(X)) () = @eX(a), for Xe€Diff C, o, € C,

Let A be any set contained in Hom (C,R) and let for
every Xe€ Diff C there exist exactly one element A (X)e Diff CA
such that the following diagram is commutative

e
(1) s l
c

Let (C) denote the family of all sets Ac Hom(C,R) satisfy-
ing the above condition and such that p(r) = refor reR and
p €A, Thus for every A€e(C),a € C we have

(12) A R@) = ).,
This implies
K (B@) = A(x() + v(@) = (@) + A(T@) =

= () (B() + 40 (B(®) = @@ +AOM)EW@) .
Now it follows from (11) that

(13) A(X+Y) =4 (X) +A(Y) .

In a similar way we verify that

(14) A (Bex) = A%(p) A (D),

hence in particular, for X,Ye Diff C, we have

(15) A(reX) = red' (X)
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6 M.Pustelnik

Hence we have the following theorem,
Theorem 2, For every Ae(C) the mapping
A': Diff C —= Diff C, 1is R-linear,

4, The case of vector fields over a differential space

First we shall prove the following lemma.
Lenmma 1, If ZeDiff Cy, peh [Vlc A, where Ve Ton
and if for f eCh_ﬂ[A]
(16) (501 V=0,
then
z2(p,0 b~ 4)(p) = o.

Proof, Let us put

-1 -1
I(B) = z(pon~'1a) o h|b™ [A] for ﬁech_,,m .

Then for any fyT €C 1 we have
b

(4)
Y(p+P=2 (p+o b4 o bln™ [4]=2(po b a*yo b0 nln )=

=2(po. b™1a)o nln~1[aA]+2¢ro b7 1A)o nIn~T[A)= T(p) +Y(P).
and

Y(Bep) = 2((pordo b7A o h[n7[A] =

1}

z2(po b=1IA +(to b~ a)+(po h™1|4)+z(to b IA) ohl~M[A)=

YR e+ PeY(T).

]
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Generalized module of vector fields | ?

T(re p)=2 ((x+ o 1~1|4)o n|n[a) = r-2(po h™14) o hIn~T[a] =
= rY(P).

This implies that Ye Diff C , and finally we have

b~ 4]

= ¥(Bo) b7'(2)) = (2(p,0 b71[8) o n|n [N (p)) =

(@]
[

2( o0 ™| 2)(p).

Let (C) = {AC E; n~1 [Ale 'cc} . Now we can prove the follow-
ing theorem.

Theorem 3, If A€(C), then for every XeDiff C
there exists exactly one A'(X) € Diff C, such that AOA®) =

A(x(a)) foracec,

Proof. First we shall define the element A'(X). Let
feC,, thus £ =po h_’IlA, where B € Ch 11 For an arbitrary

point pe A there exists a neighbourhood V€T, of the point
b~ (p) - and a function }€C such that

rlvar™[a) =plvan1[a].
Hence we can put
“17) A = (K1) o b7A)(@) for qeh[VInA.

In particular, ifa € C, then « |h‘1 (AlecC -1t ].Moreover,
h "[A -

alo )0 b7Ma =ao nM|aec,.

As 7 we can take the function o and V = h™T1[A]. Jence we
have -

(&' @ (A@W)) (@) = (X@o b7[2)(p) for ped;
that is ,
(18) A @A) = A(x@)).
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8 M.Pustelnik

Now let us take an arbltrax'y function o € CA and a point
peA, Let x=k1(p), U=k 1[A], then x€U and o ohlh~'[a] =
=pe GU (as well as a = ffo h 1|A€CA) There exists Ve 'tc
such that xeVCU, and there exists a function P € C such
that B|V = B 1V, which implies Blv = ({SIU)IV.

Let Z,2' be any elements of Diff C, such that the follow~
ing diagrams are commutative:

C Lﬁ C C __X_. o]
ﬁl l.fk and ﬁl l'A.
C, —2 ¢ o .z b
A A A A

In agreement with Lemma 1 we put {30= p- rﬁl U und we
obtain

0=2(p0 h™14)(p) =z(pe n7 a)(p) -2(BlU o 17| 1) (p):
which implies
z(po b [4)(p) =2(p 0 b4 (p) =2 (A(M) (») =4 X(P)) (p).
As a consequence we have
Z(@)(p) = A(x(M) (@), 2'(@)(p) = LE®) (p) .

Hence Z(a)(p) =Z'(Q)(p) for pelA - and Z(a) = z'(a) for
a€Cy, thus finally % = z'.

5. Oriented rings
‘Let, as before, R be a commutative and associative ring

with unity, under the operations + and . ., By orientation of
the ring R we shall understand any endomorphismé: ®,-) — (R,)
satisfying the following conditions

(a) €e(r+r') = 6~(r) whenever € ()= 0 or g () =c@=,

1
12 (®) €(0) =0, (1) £ 1.
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Generalized module of vector fields 9

The ring R together with an orientation will be called
an oriented ring.

The choice of orientation €& allows us to introducea "less
than" relation. < between elements of R, induced by the orien-
tation €. Namely, we define O<r  iff €(xr) =1, and next
r <rp iff 0<r, - 1 If ry<r, or ry =T, We write
Tq < Tpe We shall prove the following theorenm,

Theorem 4, If (R,E) is an oriented ring,then the
relation < induced by the orientation € is antireflexive,
antisymmetric, transitive and the following conditions are sa-
tisfied '

(1) ir O<1:',l and 0<r,, then O<r1-r2;
(ii) if 0<r, and 0<r,, then O0<r, +r,.
o {

(iii) if r,<r,, then’ rjtr<r,*r for any reR.

(iv) if ry<r, and O0<r, then r;.r<m,-r.

9

Proof, From (b) it follows that 0 =€ (0) = E(r-1).
Hence €(r-r) # 1, and it is not true that r<r. If r,l<r2,
then 6(r1-r2) =€ ((-’l)(rz-'-r,l)) = 6(-1)8(1'2—1'1) = €(~1)*1 =
= €(~1) # 1, thus it is not true that r2<r1. Assume in ad-~
dition that r2<r3. Phen by ¢a) we hsve & (r3 - r,]) =
=€ ((rB—rZ) + ‘(rz-r,l)) =€ (r3-r2) =1, i.e, r,‘<r3-.Thus the
relation 1is antireflexive, antisymmetric and transitive. Now
assume that O0<r, and 0<r,. Then & (r,]-rz) =5(r1) € (r2) =
= 1«1 = 1, Hence condition (i) holds., If O<r, and O0<r,,
than e(r,]) = 0 or else £ (r,]) =e(r2-) =1, This implies
e(r,l+r2) = 6(r2) =1, i.e. O<r,]+r2. Condition (iii) follows
from the identity (r,*r) -(r,|+r) = ry-r,, and condition @v)
follows from the identity T -Tyr = (rg-r,])r_ and from the
fact that € is an endomorphism.

Examnple, Let (R,+,*) be the ring of integers (or
real numbers) and let

€(x) = sgn x for x€R.
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10 M,Pustelnik

" The function sgn x 1is clearly an endomorphism of the
semigroup (R,.) and € [R] = {-’I,O,’I}. Besides that we have
(g) if segn x’ =0, then x' =0 and sgn(x*x’) = sgn x}

and similarly, if sgn x = sgn x =1, then - sgn (x+x') =1.

(b) sgn(0) = 03 sgn (1) =<1 # 1.

Hence the function sgn is an orientation of the ring R
and it induces in R a "leas~than" relation identical with
the usual "less-ﬁh,'an" relation between integers (real num-~
ber).

With a given ring R and a set A one can associate the
algebra ®R® of all functions defined on A with values in
R by defining in the’ usual way (pointwise) the operations of
addition, multiplication and multiplication by +the elements
of the ring R.

If (R,€) 1is an oriented ripng, then we can introduce in
R the "less—than" relation., This relation next allows us to
introduce in RA and analogous relation, called the "less-
~than" relation in RA ‘induced by €. We shall denote this re-
lation by the same symbol < without misunderstanding. We de~
fine it as follows :

(21) f<q'('¢‘<g) 1ff for every xcR we have f£(x)<g(x) (£(x)<g(x)).

If we denote by O the function 0, (i.e. the function
defined on A and taking everywhere the value O of the ring
R), then we can derive from Theorem 4 the following corollary.

Corollary. The "less-than" relation < induced by:
€ in RA, is antireflexive, antisymmetric and transitive,as well
as it satisfies the condlitions
((i') if 0<f, amd O<f,, then 0<f,+fy;

(ii') if O0<f, and O0<f,, then O<f, +f,;
(iii') if £,<f,, then £ +f<f +f for any fe RY;
(22) < . .\ 1o | 2
(iv') if f,]'<f2 and O<f,1 then f,].i‘<f2-f;
(v') if f£,<f, and O<re R, then Tef, <Tefy3
(vi') if 0<f; for 16{1,_....,1:} and O<fj(x)
\ for some je{’.l,.,._.,k}, then O<Ef +...+f,.
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Generalized module of vector fields 11

Proof, If O<f1 and O<f2, then for any x€A we
have O0<f(x) and O<f2(x) ,» hence from condition (ii) of
Theorem 4 it follows that O0<f,(x)f,(x); i.e. condition D)
holds. Similarly one can prove conditions (ii'), (iii') and
(iv'). If for any xe€A we have 'f,.l(x) < fz(x) and O<reR,
then rof,‘ (x) <r-f2(x) by condition (iv) of Theorem 4,Hence
condition (v') holds., Condition (vi') follows directly from
condition (ii) of Theorem 4 and from condition (ii').

II. ALGEBRAIC CONRDLITIONS FOR THE EXISTENCE OF A  SCALAR
PRODUCT AND A COVARIANT DERIVATIVE

1. Smooth decomposition of unity in a commutative ring

Let E denote a fixed subset of the set Hom (C,R) (see
I, § 1). Let: ACE be a set with the property that for every
p €A there is exactly one homomorphism

D Pyt Cyp —R
such that
(2) Py o 1= Do

For any n € CAandaeC, let

: p(a).p,(n) if pea
(3) A (D) (p) = A P

Hence we have obtained amn element (Aa)(n) belonging to
F(E,R).

We say that an element o 1n the R-algebra C 1is subject
to the set A, if for any function R €‘CA there exists exactly
one element B€ C such that [ = (Aa)(n) where

A4

%) f(p) = p(B) for pEE,
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12 _ M.Pustelnik

If a function.y ¢ E —— R has the property +that there
exists exactly one element fp e C such that ﬁ: ¢, then this
element will be denoted by [¢].

Let é(E) denote the set of all functions ¢ € F(E,R) sa-
tisfying the condition: +there exists exactly one element f3€'C
such that P = .

The oren 1.,1. If the set E(E) is closed under the
operations of addition, multiplication, and multiplication
by scalars in the R-algebra F(E,R), then the set C(E) of all
elements of the form [¢] , where ¢ € 8(E) 1s closed in the
R-algebra C, Hence C(E) is & subalgebra of the R-algebra
C and the map

(5) ¢ > [¢]: C(E) —> C(E)

is an isomorphism,

Proof, The first part of the theorem is obvious, Assume
that the set C(E).' is closed in the R-algebra F(E,R) and
let a,B € C(E), reR, Then a=[y}p=[y]where ¢yeC(E). We thus
have & =@ 5 =y.This implies .

(@+3) " (p) = p@+B) = p(a) +p(P) =a(p) +p(p) =4(p) +¥(p) =

(@+v)(p)

for peEE, Hence (@+p) = ¢ +y, By assumption, Q@ +v¥e 5(E)_,
that is

[¢ + v] = [¢]+[v].
Similarly one verifies that the foliowing equalities hold
[0 9] = [¢]-[w], [e-¢]=z-[e]:
Hence the map (5) is a homomorphism. If ¢ € C(E) and[¢]=0,

then 0 = @+ But 0(p) =p(0) =0 for peE, hence ¢ =0 (i.e.
it is the zero of the R~algebra F(E,R)). '
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Generalized module of vector fields 13

Let (R,€) lbe an oriented ring. Consider the family ®
of the set E with the property

(%) for everj A€l and for any pe A there exists exactly
E

one homemorphism of the form (1) such that (2) holds.

An indexed family (¢g; seS) of elements of C will be
called a smooth dacomposition of unity subject to the family
O, if there axists a function

gl—bAs: S —— 0"
such that

(1) s\éfs{p; peA Ap(e,) # O}: E;

(i) {szp(cps) # 0} is a finite set for peE.

(iii) for any indexed family (ngt s€8)e |Es C, there exists
5 s
exactly one element d € C such that

(6) f= 2 (ae)(n,)

(iv) 0<P, for ses

(v) 2 p(¢;) = 1 for pekE,
SES

A function s =4  satisfying conditions (i)~-(iv) will
be called a choice function for the given smooth decomposition
of unity.

Observe that in view of (i1i) +the definitioms of sgums
appearing in (iii) and (v) are well formulated. In fact, for
any peE the set of all se S for which (Ascps)(qﬂ)(p);‘ 0]
is, according to (1), contained in {s; p(cps)-pAs(qs) # O}C

C{s; p(<ps) £ 0}, and the latter is finite,
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14 M,Pustelnik

2. Smooth decomposition of unity in a differential space

Let (M,C) be a differential space. We shall assume that
the topological space (M, %) is paracompact and C-normal,i.e.
for any digjoint closed sets F and H there exists a € C
such that a |F= 1y @ |B=0y, a>0.

Let ug take an arbitrary set ACE. To every point
Xe h.-,][A]C M we associate the homomorphism hy (x) s C, — R
defined by the formula-

h,(x)(a) = a(h(x)), foraec,.

Next we denote pA=hA(x). In this way to every point peA there
corresponds a homomorphism p,: C, —=R whare pA(a) = a(p)
for ped andx€C,. For every €& C we have

(py o B)(p).= py(pon )= ((2™"a)(p) = pa~(p)) = p(p).

Hence

and equality (2), § 1, holds.
Next let @€ C, and let ACE e any get such that
=" [A]€ Ty For arbitraryn€ C, and peA we have

p(a) +py(n) =a (87 (p)y+n(p) = (o n™(a) ) (p).
Hence formula (1) in the previous paragraph takes the form

(@o n™Y8)+n)(p) for pea

(4a)(n)(p) = {
0 for peE-A.

If we put p=h(x) (where XeM) and U:h"][A], then
(Ofo(r?o h|m) (x) for xeU

(aa)(n) (b(x)) =
0 for xeM-U,
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Generalized module of vector fields 15

According to (4) § 1 we have

E(p) =p(B) =f (h_1(p)) , for peE,Ppec,

hence
5:/50}1—1.
In the differential space we have
Ba(x) = h(x)(p)=p(x) for x = b~ (p)em,
that is
ﬂ:{;oho

Now we can prove the following theorem. ,
Theorem 2. If suppaC U = b7 [U] and Ue Ty, then
the function o is subject to the set A (supp @ denotes the
support of the function a). .
Proof, Letne Cy, The function B defined by the for-
mula

a(x)+nlh(x)) £ U,
B(x) = (40)(p)(a(x) = x)-n(a(x)) for xe

0 for xe MU

belongs to C, In fact, since n e hiUe CU’ there exists an
open neighbourhood VCU of the point x and a function
7 €C such that

g1V = (qo [0}V =no h|V.

Hence for yeV we have f(y)=0(y)-$(y)=(a+7)(y). This im-
plies BV = (x+})|V, wherea-7€C. Now if xeM-TU, then
X ¢ supp @ = supp@ . Hence there exists an open neigh-
bourhood W of the point x, disjoint with the set supp « ;
that is, p/W =o| W, where o is the function identically equal
%o O on M, Thug the function P is a local C-function; that

is, Be CM=C (see [3]). Moreover we have
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16 MJ,Pustelnik

Btp)=(pon™)(p) = (AW)(n)(p) for p=h(x)e A.

qusequently B= (Aa)(n). If we also have pq= (Aa)(n), then
= f,. This implies Po H'=P,oh”! i.e. fp=p,. - In this
way the uniqueness of the choice of the function [ is proved.

Now agsume that a function ¢: E —= R has the property
that there exists a function p € C such that fszkp, li0e 9=
=f3o h=1. Moreover assume that there exists another function
P'eC such that ¢ =Poh™1, Then po b1 =fo b™1, i.e. B =p
Hence we have proved that the function (3 is unique. Accord-
ingly,

C(E) ={cp; w: E—~=RAQo hec}cF(E,R)

Similarly we can define the set C(E). of all functions of
the form [¢], where ¢ € C(E). Prom the definition of [¢] it
follows that [¢] = ¢oh.

Hence

c(8) ={9oh; e 8@} = c.

Incidentally we can notice that the definition of the set C(E)
implies that C(E) is closed in the algebra F(E,R) with res-
pect to the operation of addition, multiplication, and mul-
tiplication of functions by scalars. ,

Now we shall formulate the basic theorem of this section.

Theorem 2,2. If the topological space (M, ‘tci) is
paracompact and C-normal, and if a family Oc2F has the pro-
perty that the family % = {h"1 [A]; A€ Ot} is an open covering
of the set M, then there exists a smooth decomposition of unity
subject to the family (.

Proof, Let ¥ = {BS: se S]. If the topological space
is paracompact, there exists an open covering ¥ = Vs; SES
of the set contained in % and locally finite (hence point-
wise finite - see [4],(5]). The topological space (M,Ty) is
normal as well, so that the covering ‘d) contains an open sub-
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Generalized module of vector fields 17

covering 'z {WE" ; ses} of the set M, which in turn con-
tains an open subcovering W) = {Ws: s€ S} such that

— b=
WSC WSC WSCVS.

For any seS the sets W_ and M-W' are digjoint and

8
closed, hence there exists a function f eC such that fszo,
f (x) for xew and fs(x)_o for XEM-—WE;. Therefore

supp £y cw CV . The sum %:st is well defined ( ¥ is a
8
locally finite famlly) and belongs to C. Moreover, };s £,(x)>0
: s

for x€M, since W) is a covering of the set M.
The family (tpsz g€ S) of functions of the form

/ s s for se€S
s€

is a smooth decomposition of unity subject to the family .
In fact, since & = {h"'[A]: Ad%}':{Bs: se'S}, we infer
that

(1) U{p, pEA /\p(cp )£ O} SL)GS{p, h—,](p)eBs/\cps@-"'(p)) # O}D

s€S
DU'{; nl(p)ew }DE,
8€S 8
because ) is a covering of the set M.

(ii) Let p€E. Since supp ¢,CV, for seS, and the family
%) is locally finite, it is pointwise finite and
{s: p(o.) # O} = {s: ws(h'_/l(p)) # 0} is a finite set.

(i11) Let se S. Since supp 9 CV CB, = n"'[As],the function

Pg ig subject to the set A .

Consider an arbitrary indexed family (Q : seS)e [P CA .
For every g€S there exists exactly one function {SBEC such tha‘b
1 ~1

By = (g ws)(fzs). Moreover supp B, Csupp (psnsupp(rgs"hlh (A])cv,.
As the family W) is locally finite, for any xeM there exists
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a neighbourhood U such thai the set of those indices séS,
for which l.’)s(y) #0 for some y€U, is finite. Suppose that
this set is {S']""’Sk} . Let us put

. k
@)) | B(z) = S%:S Bs(2) = i4§1ﬁsi(z), for z€U.

Hence the function f3is a local C-function on the set M, i.e,
feC, The function (is uniquely determined, In fact, let £
as well satisfy equation (7). Then

. . - -1
B4 =S;Sﬂs’ il.e. /51 =foh =§sﬁs°h .
But
B = sgs By = s%;s fgo b

f, and pon™loh =f ok oh, Hence

This implies {31
p= Bqe
Condition (iv) follows directly from the definitions of the
functions fs and Pge

| ) e
(v 2 2009 = Lo (7)) =

= 2 (5,(07@) / 2 2,67 @) = 1,
SES SES

gince for any p€E the above sums have a finite number of
components,

3, Scalar product on a C-module of vector fields

et V Dbe =z C—module, where C is an arbitrary
associative R-algebra (see Chapter I, § 1). By a scalar pro-
duct on V we understand every bilinear map

(8) g: VxV—C
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satisfying the conditions
(L) g(X,¥) = g(¥,X) for X,Ye€V
(ii) +the map X+ g(X,+) is an isomorphism of V onto V*.

The bilinear map (8) satisfying condition (i) only, is
called a generalized scalar product on V,

A generalized scalar product g on Diff C 1is said %o be
¢-positive definite (briefly: positive), where C is an R-
algebra and £ - an orientation of the ring R, if for any pe E
we have

p(g(x,x) > o,

where p(X(a)) # O for some @ € C,
Similarly, a generalized scalar product g on Diff Cy is
said to be € —positive definite, if for any pe A we have

Dy (S(th)) >0,

where p, (X(a)) # 0, for some & € .C,.

Theorem 3,1, If g is a scalar product on Diff
Cps where A€(C) (see Chpt.I § 1) and G(E) is a closed
set in the algebra F(E,R), then for every furction o subject
to the set A, the function

(9 X, 1) —[(ae) (g (&' (X),4' (D)) ]

is a genéralized scalar product on Diff C.

P ro of. The additivity of the map (9) with respect to
both variables is obvious. From condition (i)'it follows that
the map (9) satisfies the same condition. ,

To show that (9) is homogeneous observe first that from
formula (3) § 1 of this chapter and from formulas (1) and (4)
§ 1, Chpt.I it follows that the following identity holds:

(10) (L) (A(B) = B-(Aw)(1,) for a,pe .
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Hence by. formula (2), § 3 Chpt.I we have

(4a) (g4 (BX),4" (1)) = (A0) (A(®) gt (X),4' (D)) =
= (A (A(p) -(a0) g0’ (0),4' (D)) =Badd(1)-Caa) (g0 (X) ,
A =Ban(1 el @, £ M) =20 (U@, (D)) .
According to Theorem 1.1 we have
[aa) @ acp-xy a0 ()] =[B] [ao) (28’ (®,4' ()] =
=p-[a0) (g(& @4 @],

Now we shall formulate a theorem of basic importance for
the construction of scalar product on the C-module Diff C,

Thaorem 3.2, If & c (C), EcHom (C,R), Pt B ES
is a smooth decomposition of unity subject to the family &,

and if the function s i—->A is a choice functiom for this
decomposition, then the correspondence

(1) a0 | 0. (g (850 el

is a positive definite scalar product on Diff C', under g the
assumption that 1% is a positive definite scalar product on
Diff CA for se€S,

s

Proof, If se€S, and X,YeDiff C, then A(X),
A (Y)€ Diff C,, Hence n = B (g @), A (Y)) belongs to cA .

According to condition (iii) § 1 appear:.ng in the definition
of smooth decomposition of unity, there exists exactly cne ele-.
ment € C such that the equality (6), § 1 holds.Thus we have

p= [sgs (4 9,) (SAS(A'S<X> , A;oo))] .
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From Theorem 3,1, it follows that the function
(X,Y) — [(Asws) (sAS(A's<X> ,A's<x)))]

is a generalized scalar product on Diff C, From Theorem 1.1 it
follows that the "ilinear map (4) is a generalized scalar pro-
duct on Diff C, It remains to show that the map (4) is posi-
tive definite.

Let us take any p€E and let p(X(G)) £ O for some Q€ C.
From condition (ii) of the definition of smooth decomposition
of unity it follows that the set {s: o €A AD(Y,) # o? is fi-

nite,

Suppose that this set 1is {s,],...,sk} . .Let rzsi =

= gA (A x, A (X)) for i=1,...,k. Since p(X(d)) £#0 and
51

p(@) =5, (o)) =5, (1, 3, @)) #o.
1 1

and since the scalar product SA is positive definite on

Sy
Diff CA by assumption, we obtain PA ‘(’?s )>Ofor i=1,...,k,

51
This implies

P<L§5(As(ps) <gAS (%) ,As(x)))D =

- (2 (s _(£500,8,(0)) (03 =

gI (\A l(Psl> ‘(Qsi>(P)> ) 121 p(“)si).pAs. 6751) >0,

because p((ps') >0 for i=1,e...,k, by the definition of the
set s,],...,%k} and by condition (iv) of the definition of
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smooth decomposition of unity. This concludes the proof. of
the theorem.

Theoremn 3.3. If there is a family & c (C) (where
C=C(E), EC Hom (C,R), (R,€) is an oriented ring) such that
there exists a smooth decomposition of unity subject to the
family O/, and if for every A € (! there exists a positive
definite scalar product on Diff CA’ then there exists a po-
sitive definite scalar product on Diff C.

If, moreover, the R-algebra C has the property that every
positive definite scalar product on Diff C 1is a scalar pro-
duct, and if the ring R 1is diadic, then there exists a co-
variant derivative on Diff C. (The ring R 1is s3aid to be
diadic if for every re€R there is exactly one element peR
such that o =p+p).

Proof, The first part of the theorem is a direct con-
sequence of Theorem 3.2. The second part follows from the
first by Theorem 9.4 of paper [’l].
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