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MARTENSENSCHE POLARKOORDINATEN 
AUF FLÄCHFNSTÜCKEN SCHWÄCHERER REGULARITÄT 

Einführung 
Die Martensenschen Koordinaten sind e es neue Art von Po-

larkoordinaten auf einem regulären Flächenstück. Sie haben 
in der Potentialtheorie Anwendung gefunden, (siehe [9]). 

Wir "beschreiben um einen festen Punkt P Q des Flächen-
stücks S eine Sphäre S^ mit einem hinreichend kleinen Ra-
dius 9 und betrachten die Familie der Kurven S^nS. Für die-
se Familie suchen wir die entsprechenden orthogonalen Trajek-
torien. Es zeigt sich, daß für hinreichend reguläre Flächen-
stücke S jede dieser Trajektorien sich dem Punkt PQ derart 
nähert, daß die entsprechenden Tangenten mit einem gewissen 
festen Richtungsvektor im Punkt P Q in der Tangentialebene sro 
den Winkel 0 "bildet. Das Zahlenpaar ($>»0) nennen wir Marten-
sensohe Koordinaten. Martensen definiert diese Koordinaten un-
ter der Voraussetzung, daß das Flächenstück S analytisch ist 
und "beweist die Existenz dieser Koordinaten unter Benutzung 
dieser Voraussetzung. Der Gegenstand dieser Arbeit ist es,die 
Existenz der Martensenschen Koordinaten unter schwächeren Re-
gularitätsbedingungen zu zeigen. Der Beweis stützt sich auf 
eine Analogie zu den gewöhnlichen Polarkoordinaten, deren 
Existenz "bei abgeschwächten Regularitätsbedingungen des Flä-
chenstücks S erstmals in der Arbeit [5] gezeigt wurde. 

Die nichtleere Menge S von Punkten des Euklidischen 
Raumes R^ mit der orthonormalen Basis e. (i=1,2,3) nennen 
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2 I.Cavrylczyk 

wir Flächenstück, wenn für jeden Punkt PCS eine Umgebung 
UCR^ derart existiert, daß der Durchschnitt der Mengen Un S 

2 
homoomorph mit einem gewissen offenen Bereich ¿¿CR ist,Wir 
betrachten die Durchschnitte ünS als Umgebungen auf S (sie 
werden induzierte Umgebungen genannt) und nennen die entspre-
chenden Homöomorphismen lokale Parametrisationen des Flächen-
stücks S. Wenn wir in Zukunft von der Umgebung U C F spre-
chen werden, so setzen wir stillschweigend voraus, daß U eine 
der Umgebungen ist, von der in der Definition des Flächenstücks 
die Rede war. 

Wir betrachten jetzt eine Umgebung U des Punktes PoeS. 
Eine lokale Parametrisierung dieser Umgebung ordnet jedem Hinkt 
(u1 .u^) e Q einen Punkt P€ S zu. 
Wir nehmen nun an, daß der Punkt P zu der Umgebung U ge-1 2 3 
hört, in dem die lokale Mappe (x ,x gegeben ist. Dann 
hat - wie bekannt ist - das Flächenstück S die folgende pa-
rametrische Darstellung: 
(1.1) xi = xi(u1,u2) (i=1,2,3). 

Anstelle der drei skalaren Gleichungen (1.1) können wir die 
eine Vektorgleichung 

(1.2) r=r(u1,u2) 

- wo r der Leitstrahl des Punktes P ist - betrachten. 
Wir sagen, daß das Flächenstück S in der Umgebung U ein 
reguläres Flächenstück der Klasse C31 ist, wenn man es in 
dieser Umgebung derart parametrisieren kann, daß die Funktio-
nen (1.1) der Klasse C31 sind und der Rang der Jacobi-Matri-
zen 

M = « 3 x 1 
flu*. 

(1=1,2,3* 3=1,2) 

gleich zwei in jedem Punkt PeU ist. Im weiteren setzen wir 
voraus, daß das betrachtete Flächenstück S in der Umgebung 

2 U der Klasse C ist. 
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Martensensche Polarkoordinaten 3 

2» Es sei P ein Punkt des Flächenstücks S, dem im 
1 X "X 

Koordinatensystem u die Werte u = u entsprechen. 
Im weiteren werden die griechischen Indizes die Werte 1, 2, 
die lateinischen Indizes die Werte 1, 2, 3 annehmen. Ohne 
Einschränkung der Allgemeinheit der Betrachtungen können wir 
nun u = 0 setzen, was sich immer durch eine lineare o ' 
Transformation des Koordinatensystems realisieren läßt. Um 
den Punkt PQ "beschreiben wir eine Sphäre Sy mit dem hin-
reichend kleinen Radius p und betrachten auf S die Fa-
milie der Kurven SnSp für 0<p<pr). Wenn wir anstelle der 
skalaren Gleichungen (1.1) die Vektorgleichung (1.2) betrach-
ten und den Abstand des Punktes Pe S von dem festen. Punkt 
PQ - angegeben im Sinne des P. - mit p bezeichnen, dann ist 
die Menge S n S^ durch die Gleichung 
(2.1) (r - r)2 = p2 

-wo r = r(0,0)-ist - erklärt. Daraus ergibt sich für die 
Familie SnS^ die Differentialgleichung 

(2.2) (r - *)rA du* = 0. 

Durch die Definition 
(2.3) F^ (r - r)r ̂  

nimmt (2.2) die folgende Form an: 

(2.4) F^ du* = 0. 

Aus unserer Voraussetzung folgt, daß diese Funktionen F. in 1 * 
der Umgebung des Punktes PQ der Klasse C sind. Aufgrund 
von P̂ CO',0) = 0 folgt, daß PQ ein singulärer Punkt ist. 
Indem man die Regularität des Flächenstücks benutzt, kann man 
zeigen, daß der Punkt PQ ein isolierter, singulärer Punkt 
ist. Aus der Theorie der Differentialgleichungen folgt, da3 
die Gleichung (2.4), in der die F^ für I u1 I + | u 2|>0 nicht 
gleichzeitig verschwindende Funktionen der Klasse C1 sind, 
eine Schar von Kurven SnSflt die auf dem Flächenstück S lie-
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I.Gawrylczyk 

gen, derart e r k l ä r t , daß durch, jeden Punkt P ^ PQ des F l ä -
chenstücks S genau eine Kurve v e r l ä u f t . 

_3. Wenn wir die notwendige und hinreichende Bedingung f ü r 
die Orthogonalität von Kurven und die Gleichungen ( 2 . 4 ) "be-
nutzen, erhal ten wir eine Dif ferent ia lgle ichung f ü r die zu 
SnSp senkrechten Trajekfcorien der folgenden Ges ta l t : 

( 3 . 1 ) (F^g 1 2 + F 2 g 2 2 ) d u 1 - ( P l g 1 1 + F 2 g 2 1 ) d u 2 = 0 

- wo g*^ den zum metrischen Tensor g umgekehrten Tensor 
d a r s t e l l t . Wenn wir 

(3.2) F ^ := F^g^ 

definieren, so erhal ten wir aus ( 3 . 1 ) die Gleichung 

( 3 . 3 ) F2du1 - F 1du 2 = 0 . 
u 

ü.us der Voraussetzung f o l g t , daß die Funktionen F in der 
Jmgetiung des Punktes PQ der Klasse C sind. Wegen F (0,o) = 
= 0 i s t PQ e in s'ingulärer Punkt. Aus der Theorie der D i f -
ferentialgleichungen f o l g t , daß die Gleichung ( 3 . 3 ) » in der u. t p 
i i e F p f ü r |u | + |u |>0 nicht g l e i c h z e i t i g vierschwindende 
Funktionen der Klasse C sind, eine Schar von zu den S n S j , 
orthogonalen Tra jektor ien , die auf S l i egen ,derar t e r k l ä r t , 
laß durch jeden Punkt P£ S , der verschieden von PQ i s t , ge-
nau eine Trajekto-rie v e r l ä u f t . Um die Art des singulären Ririk-1 2 bes zu untersuchen, formen wir ( 3 . 3 ) um. Wenn wir F (u ,u ) 

1 2 nach Potenzen von u und u entwickeln, erhalten wir 

: 3 . 4 ) . 
V ( u \ u 2 ) = ( a ^ 1 ) , .u 1 + ( ö 2 F \ . u 2 + f ^ u 1 , u 2 ) 

F 2 ( u 1 , u 2 ) = ( a ^ 2 ) , , U1 + ( a 2 F 2 ) 0 . u 2 + f 2 ( u 1 , u 2 ) 

v o dü := " n r i s t -du 
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Martensensche Polarkoordinaten 5 

Aus den Definitionen (3.2) und (2.3) erhalten wir 

V * = V * « " + t z - f c s n « " + = 
= * Cr-f)r6(ige;i + (r-r)r63H gö* = 

= + (r-r)rg^g^ + ( r - ^ r ^ g 6 * , 

und hieraus 

(3.5) C^F*). = <r£ . 

Indem wir dieses Ergebnis in (3.4) einsetzen, ergibt sich 

(3.6) F1(u1,u2) = u1 + fl(u\u2) 

F2(u1,u2) = u2 + f?(u1,u2) 

was es erlaubt, die Gleichung (3.3) in einer für die weiteren 
Untersuchungen günstigeren Form aufzuschreiben: 

f 3 7 , du2 ^ + 
lJ 1 ~ 1 1 3 • du1 u1 + f^(u , u ) 

L e m m a 3.1. Die Funktionen f^ und f 2 sind in der 
Umgebung des Punktes (0,0)'der Klasse und f^(0,0) = 
= f2(0,0) = 0. 

B e w e i s . Aus (3.6) folgt 

(3.8) 31f1 = aiF1-1; 3 ^ = 3 ^ ; 31f2 = 31F2; 32f2 = 3 ^ - 1 . 

X 
Aus der Stetigkeit von 3^ F - die aus der Voraussetzung folgt 
- ergibt sich die Stetigkeit der partiellen Ableitungen 1. 
Ordnung der Funktionen f^ und f2. Das Verschwinden der 
Funktionen f^ und f 2 im Punkt (0,0) folgt sofort aus 
(3.6). 
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6 I.Sawrylczyk 

L e m m a 3.2. Unter obigen Voraussetzungen folgt die 
Gleichung 

[3^1 + l ^ i + \.+ |32f2 
(Iu11 +1u2|) — 0 (|u1| + Iu2|) 

' I I < C. \ • > C. ' ' C. C-' „ lim = 0. 

B e vi e i s. Wie aus den Gleichungen (3.6) folgt, gilt: 

= g ^ g " - - Cr-ftr^g" -tf = 

= (r-f)(rö g w + r^a^g") = (r-f)ä^ Ugg6*) = (r-ftd^r*. 

V/eil |r-r| nicht kleinerer Ordnung als 
Iu1| + I u2| ist.er-

halten wir, daß die Ableitungen d^f^ wenigstens der gleichen 
Ordnung sind, woraus die These des Lemmas folgt. 

Die Gleichung (3.3) können wir in der Form eines Glei-
chungssystems (siehe [8]) aufschreiben: 
(3.9) # - I» • 

Unter Berücksichtigung von (3.6) erhält" man: 

(3.10) = u1 + f ^ u V ) ; = u2 + f2(u1,u2). 

Auf der Grundlage der bewiesenen Lemmas können wir den folgen-
den Satz formulieren: 

S a t z 3.1. Das Gleichungssystem (3.10) erklärt eine 
Schar von orthogonalen Trajektorien zu der Schar SnS^ auf 
dem Flächenstück S derart, daß durch einen hinreichend nahen 
Punkt Pe S, der verschieden ist von PQ, genau eine Kurve 
der Schar verläuft. Jede Trajektorie nähert sich dem Punkt PQ 
mit einer einseitigen Tangente, die mit einem festen Rich-
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Martensensche Polarkoordinaten 7 

tungsvektor im Punkt PQ auf der Tangentialebene n o den Win-
kel 0 (Os$0<2iiT) bildet. Der singuläre Punkt ist also in 
diesem Falle ein Knoten. 
Dieser Satz folgt unmittelbar aus einem gewissen Satz der Theo-
rie der Differentialgleichugen [10]. 

4. Wir untersuchen nun das System (3 .9 ) . «Venn der Parame-
ter auf der gesuchten Trajektorie so gewählt wird,daß für den 
Punkt PQ t =0 gilt, dann ist u.\o) = 0. Die Tatsache, daß 
wir neben der ersten Anfangsbedingung 

0 . D u*(0) = 0 

noch eine zweite Bedingung 

(sß -0 

benötigen - trotzdem wir es mit einem System von Gleichungen 
1. Ordnung zu tun haben - folgt daraus, daß PQ ein singulä-
rer Punkt ist, für den wir Lösungen erhalten ([6]). 

Wir bezeichnen mit P einen auf der orthogonalen Tra-
jektorie liegenden Punkt mit den Koordinaten (t) ,û (t)) , 
(t>0), und mit PQ den Knoten mit den Koordinaten x1(0,0). 
Dann ist der Abstand 0 des Punktes P von P„ - im Sinne des 
3 o R^ - durch- die folgende Formel gegeben: 

(5.1) ?(t) = ( £ [ x ^ 1 ^ ) , ^ ) ) - xi(0,0)] 2 V / 2 . 

S a t z 5.1. Die Ableitung der Funktion p (t) ist stetig 
und positiv für t = 0. 

B e w e i s. Wir bemerken, daß für Lösungen u (t) des 
Gleichungssystems (3.9) die 

f ^ = F* ( u W 2 ( * ) ) 
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8 I.Gawrylczyk 

im Punkt P s t e t i g s ind . Das f o l g t aus der Voraussetzung, 
2 X daß S der Klasse C i s t und daraus, daß u ( t ) a l s eine 

im Punkt PQ ihre Ableitung besitzende Funktion s t e t i g i s t . 
Setzen wir nun voraus, daß der t a n g e n t i a l e Vektor zu e iner b e -
l i e b i g e n orthogonalen T r a j e k t o r i e im Punkt P e in E i n h e i t s -
vektor i s t , d . h . : 

( 5 . 2 ) ^ ^ = 1 

wobei g ^ die Koordinaten des metrischen Tensors im Punkt 
PQ s ind . Diese Voraussetzung i s t s i n n v o l l , wei l man die Län-
ge 1 durch eine entsprechende Änderung der Parametrisierung 
der Kurve s t e t s r e a l i s i e r e n kann. Die Ableitung der Funktion 
( 5 . 1 ) i s t gegeben durch: 

Z [ x i ( u \ t ) , u 2 C t ) ) - * * C 0 f 0 ) ] f 4 # 

( g [ ^ ( ¿ O O . u ^ t ) ) - x^O.O)] ^ 

Nach Anwendung des Satzes von Lagrange nimmt s i e die folgende 
Form an 

¿ / 3 * 1 ä u X \ fix1 d u * 

a ? ' d t Ä t W d t A o < 0 
dt / 3 j ix o \ ^ /n ' i 

f y / 3 x i \ 
& W ' d t J e i t J 

1/2 

Hieraus f o l g t : 

l i m d 
t — o 3 ® V1 = 1 Vau51 

, N 2 M/2 
du 
d t ' t = 0 , 

Nach Quadrat"bildung und entsprechender Umgruppierung der e i n -
zelnen Gl ieder e rha l ten wir unter Benutzung von ( 5 . 2 ) 

( 5 . 4 ) l im U = 1 . 
t 0aT; 
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Martensensohe Polarkoordinaten 9 

Zur Ermittlung des Wertes der Anleitung im Punkt t = 0 
"benutzen wir in (5.1) den Satz von Lagrange und anschließend 
die Definition der Anleitung. Wir erhalten 

W KV ( t ( 3 * 1 du*V V 2 

und nach Berücksichtigung der Anfangsbedingung (4.2) und der 
Voraussetzung (5.2) ergibt sich 

Aus den Gleichungen (5.4-) und (5.5) f o l g t die These des 
Satzes. 

S c h l u ß f o l g e r u n g 1: 

a ' f t Po s i 'b^ v f ür a l l e t , die hinreichend nahe "bei t = 0 
l iegen. 

b) 9=9 ( t ) i s t stet ig und streng monoton wachsend für 

c) Die Umkehrfunktion t = t ( 9 ) is t stet ig und streng mono-
ton wachsend im Interval l [ 0 » ? ( t o ) ] und besitzt die Ab-
leitung 

r* a.\ dt 1 

dt 

S c h l u ß f o l g e r u n g 2. 
Das System (3.9) hat die Gestalt 

n\ duX _ lr - r ] 
( 5 ' 7 ) TT' F (r-i) dr r j dt 

mit den Anfangsbedingungen 

(5.8) ^ ( P ) ) 9 = 0 = 0f ( f £ ) = 0 = a \ 
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Tatsächlich erhalten wir unter Benutzung von (5.3) in der 
Form 

dp _ r - r dr 
dt = ) r _ . | - dt 

und der Beziehung (3.9) 

du* _ du* . dt _ pA. |r - r I . 
df dt d? ( r - £) — 

dt 

Wenn wir in (5 .1 ) t = 0 setzen, erhalten wir . p = 0. Daraus 
aber 

( * % w ) 9 s 0 = 0 

und mit H i l f e von (4 .2 ) , (5 .6 ) und (5.5) ergibt sich 

(du*\ ( duA /'dt \ X 

6. Wir formen nun das Gleichungssystem (5«7) ums Den Vek-
tor r - r = PP„ können wir in der Basis ( r . ,n) r . : = : 

3u 
r1 x r 2 r "i n:= — g:= det g . auf die folgende Art und Weise 

-vfF1 L ^ J 

L1 A 2 

-i? 
darstel len: 

r - r = a r . + f>v2 + fn 

Wir mult ip l iz ieren beide Seiten skalar mit r ^ j ^ j n und be-
nutzen die Definit ionen (2 .3 ) und (3 .2 ) . Daraus ergibt sich 

a = F 1 , (3 = F 2 , f = ( r - r ) n . 

Wir erhalten also 

(6 .1 ) r - r = F* r^ + f n 

und nach Berücksichtigung von (3 .9 ) 

= f n* 
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Martensensche Polarkoordinaten 11 

Nach Multiplizieren beider Seiten mit r - r erhalten wir 

[(r-r) -f'n](r-r) = ff (r-*) 
» 

und daraus 

Cr-r)|f = (r-f)2 - m ( r - r ) = (r-i)2-f2 = ? 2- f2. 

Unter Berücksichtigung von (5.7) folgt 

(6.2) d U " 1 ^ dp - 9 t2 ' 
1 - k 

mit den Anfangsbedingungen (5.8), wobei auf der rechten Seite 
in (6.2) 9 keine unabhängige Veränderliche (wie auf der lin-
ken Seite) darstellt, sondern eine Funktion zweier Variabler 
ist: 

(j = | r(u1 ,u2) - r | . 

Wir bemerken nun, daß mit einem gegebenen System krummliniger 
1 2 

Koordinaten (u ,u ) auf dem Flächenstück S eine Basis r in 
der Tangentialebene im Punkt PQ verknüpft ist. Unab-
hängig von der natürlichen Basis r^ (die im allgemeinen nicht 
orthonormal ist) legen wir in 7rQ eine orthonormale Basis e^ 
fest. Dann können wir den Einheitsvektor a(0), der in 
liegt und mit ê  den Winkel 8 bildet, in der folgenden Form 
darstellen 

¡1 ¡1 (6.3) a(0) = cos 0 «e + sin0*e = cos0 (e t^) + sinö (e • r^) , 

i wobei e die Koordinaten des Vektors e in der Basis r, 
p. A * sind. Nach Durchführung einiger elementarer Umformungen erhal-

ten wir die Koordinaten des Vektors a(0) in der Basis r^ in 
der Form 

- 389 -



12 I.Gawrylczyk 

(6.4) 
a \ B ) 

a2(0) 

"1 o aj cos 0 

o? n 
= a cos 0 + 

g ai 

WS 

a* sin 6, 

sin 0 

wo a* die Koordinaten des Vektors [a(8)]g_0 = e bezeichnen. 
Wir schreiben (6.2) in der folgenden Form auf 

(6.5) du 
d? 

f V . u 2 ) 

/ 1 o I r(u ,u ) - r|• 1 -

(r(u\u 2)-r) 2 

Wir sehen, daß 9 = 0 ein singulärer Punkt des Systems ist, 
weil r (u^(0), u2(0)) - r = 0 ist» Nach Einführung der Defi-
nition 

f V , u 2 ) : = 

erhalten wir 

(6.6) 

A u 1 . u 2 ) 

Aus der Theorie der Differentialgleichungen ist bekannt: 
Wenn ein Punkt mit den Koordinaten (90»i? »ff) innerhalb eines 
gewissen Bereiches d'' liegt, der in dem geschlossenen Be-

il 1 
reich D enthalten ist, in dem die F der Klasse C sind, 

2 1 / I i dann existiert ein Bereich D C D und die Lösung u = ip (o) , 
2 1 0 3 

die in D die Bedingungen u = q A für ? = 9 0 erfüllt. Die-
se Lösung hat die Form 

(6.71 
X % ( o\ „2\ 
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Martensensche Polarkoordinaten 13 

Wir "betrachten. 9 0 als eine gegebene Zahl und rp, q2- als 
Parameter, die verschiedene Werte annehmen können, aber sol-
che, die innerhalb vod D liegen. Dann können wir die all-
gemeine Lösung des Systems (6.6) in der Form 

(6.8) u* = ip*(p, fl1,rj2) 

aufschreiben, wobei gilt 

(6.9) 

(6.10) 

<P*(CM1,r}2> = 0 

<p*(p0,r?1,n2) = 1* 

Aber die u aus (6.8) erfülleja das System (6.6) .Daraus folgt 

.a 
(6.11) 

Aus der Bledinguni; (5.8) folgt, daß 

„1 _2 
(6.12) = a*(6) 3p 

wobei e (8) Funktionen sind, die durch die Gleichungen (6.4) 
erklärt sind. Wir führen die folgenden Bezeichnungen einr 

(6.13) 0*(e fl\l 2) u i Ä S f M - a 1 » ) . 3p 

L e m m a 6.1. Die Funktionen *P sind der Klasse C in 
der Umgebung des Punktes (0,$ . . 

B e w e i s . Die Stetigkeit der Ableitungen 
folgt aus den Formeln (6.4). Weiter haben wir 

3$ 
86 

da 
d0 

d$x = -32 Ap.t?1
tr?2) =3iT (dt 

(6.14) 3fj 3p dq* W / u ^ v W . - i 2 ) 

= 3 ? 
1 |r -rl Ir-rl 

C r ( r - r ) 
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14 I.Gawrylczyk 

Wenn wir die Definitionen (2.3) und (3-2) "benutzen,ergibt sich 

V 1 + C « ) P 6 l | g W + ( r - ^ r ^ g 6 * 

und insbesondere 

(6.15) (3UF^) u , . =(Tm\ 

Darüber hinaus 

(6.16) F* ( » 1 (0 ,r i\? 2 ) , ip 2 (0 t i f\ i? 2 ) ) = P^(0,0) = 0. 

Wenn man (6.1) von beiden Seiten mit n mult ip l iz iert ,erhält 
man f = ( r - r ) n und daraus 

(6.17) T ( V ( 0 , 9 \ 7 2 ) , <P2(0,71,Q2)) = jr (0 f0) =0 

sowie 

= V Q + C ^ ' Q j i - ( r - * ) ^ . 

Insbesondere 

(6.18) 3 ^ ( ^ ( 0 , ^ .r?2), ^ (O . r j 1 , ? 2 ) ) =3^r(0,0) = 0. 

Wenn wir die Beziehungen (6.14) ,(6.15) ,'(6.16) , (6.17) und (6.18) 
kombinieren, erhalten wir 

(3 f^ \ 1 ^ 

in der Umgebung des Punletes PQ. Aus der Existenz stetiger par-
7! f ^ 

t i e l l e r Ableitungen f o l g t also die Existenz der stetigen 
3uH u 

dv> 

part ie l len Ableitungen j^v Aus ä e m Satz über die Existenz der 

Ableitungen der Lösung eines Systems von Differentialgleichun-
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Martensensche Polarkoordinaten 15 

gen nach, den Koordinaten des Anfangspunktes [11] und aus der 
Formel (6.19) folgt'die Stetigkeit der partiellen Anleitungen 
(6.14). Diese Anleitungen können wir jetzt in der folgenden 
Form aufschreiben: 

(6.20) _ J _ rf* ^ 
V = * ' 

9f$1 $2«. x L e m m a 6.2. Die Jacobi-Matrix — N ^ 1 , wo die <P 
1 2 

durch die Formeln (6.13) definiert sind, ist im Punkt (^ ) 
verschieden von Rull, wobei I f?'11 +1 r}2! < i für hinreichend klei-
ne 6 gilt. 

B e w e i s . Wir definieren 

a2i»1(o.p1,q2) .aVco.nV?2) 3f1 
3'Î1 

. 3f1 
• d n

2 

3f2 
a rf1 

. 3f2 
, dq2 

Nach den entsprechenden Umformungen erhält die Determinante 
die folgende Gestalt 

A = + 2H 
(92-T2)2 (?2-J2)2 

2r2 9̂ 7"' 
2s2 •K -( r - n 

xr.^r* h*V 2 9 r „ -u + 

' c ^ - t 2 * " ^ ( T ^ F ) 3 ^ 

+ 4 ( 7 ^ ) 3 p W r ' + 2 j j h f r qi r,1,3 > 
Dabei sind K und H entsprechend die Gaußsche und die mitt-
lere Krümmung der Fläche, die H ^ die Christof felschen Symbo-
le. Es folgt hieraus, daß A in der Umgehung des Punktes PQ 
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16 I.Gawrylczyk 

nicht verschwindet, da das er s te Glied in A unendlich größerer 
Ordnung i s t a l s die re s t l i chen (F^ und ¡¡T sind wenigstens der 
gleichen Ordnung wie 9 ) . Man kann zeigen, daß 

(6.21) * 4 s > 0 f ü r I r}1 I + I rj2l > 0. 

S a t z 6 . 1 . Für jedes be l ieb ig kleine 6 > 0 e x i s t i e r t 
ein tf>0 so , daß jedem Punkt 0 aus dem Interva l l |0 - 0k(f ge-
nau ein System von Zahlen rj entspricht : 

(6.22) r j * = r j * (8 ) . 

Die 1 e r f ü l l e n die Gleichung 

(6.23) = 0 

und die Ungleichungen 

(6.24) l 7 * - < ? V e 

X 
wo die $ durch die Formeln (6.13) de f in ier t s ind. Die Funk-

A 
tionen (6.22) sind der Klasse G im jedem Punkt 8 . 

B e w e i s . Wir d i f ferenzieren die Gleichungen (6.23) 
nach 0 , wobei wir beachten, daß die 17* durch die Formel. (6.22) 
erklärte Funktionen s ind. Damit erhalten wir 

r f i p ^ , 3 0 * d j + dd>% dn 2 _ 0 ( ° « 2 5 ) Tö^ + 1 1 —r + T I F T T ~ u * 3 rj1 d0 3rr d 0 

Um ^ ^ zu ermitteln, genügft e s , die Gramerschen Formeln zu 
benutzen, was s ich unter Ausnutzung von (6.19) und (6.21) f o l -
gendermaßen aufschreiben läßt : 

d e 
(6.26) 
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Aus (6.10) f o l g t 

, . , 1 für X = V 
(6.27) 3 9 

3r?v [ 0 " X t V 

Aus der Definit ion (6.13) und den Beziehungen (6.4) und (6.27) 
erhalten wir 

(6.28) - f g l = 9 q ( U 1 s in6 - a* cos 6 

und analog dazu 

(6.29) = 9 0 ^Ä 2 Sin 0 * Äa cose ) . 

Aus der Existenz der Anleitungen -j-^- in jedem Punkt 9 f o l g t 
die Stet igkeit der Funktionen ^ ( 9 ) in jedem Punkt 0 . 

S c h l u ß f o l g e r u n g : Die Funktionen (6 .8 ) , die 
allgemeine Lösung des Systems (6.6) sind, kann man in der 
folgenden Form aufschreiben: 

( 6 . 3 0 ) u a =ip (p , r? 1 ( 0 ) , i?2 (0 ) ) . 

7. Wir führen die folgende Bezeichnung ein 

(7.1) i>\p,0) : = / ( 9 ,7 1 ( 6 ) , q2(9)) 

und betrachten die folgende Transformation 

(7.2) ua = 0 * ( p ,9 ) 

die im folgenden Bereich erklärt is t 

(7.3) 0 £ 9o; 0 4 6 < 2Tt , 

wo p. eine hinreichend kleine, posit ive Zahl i s t . Wir setzen 
v oraus 
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(7.4) = paa(9) + R^Cp.e) , 

wo R das Restglied in der Taylorentwicklung ist. Diese An-
nähme ist möglich, weil die Anleitungen und ^ im ge-
schlossenen Intervall <0, ? > existieren. 

x 
L e m m a 7.1, Die Funcionen fl (9,0) sind der Klasse 

C im folgenden Bereich 

(7.5) 0 < 9 < 9q ; O<0 < 2it . 

an* B e w e i s . Die Stetigkeit der folgt aus der For-
% 1 2 mel (6.11), in der die Funktionen f (u ,u ) aufgrund der 

X 1 2 
Voraussetzung stetig sind. Die ip (9 >9 »>? ) - "betrachtet als 
Funkfcionen ihrer drei Argumente - sind ebenfalls stetig ( [8]) 
und die Stetigkeit von rf (0) folgt aus dem Lemma 6.3.Um die 

Ao* 
Stetigkeit von -ĵ - zu untersuchen, differenzieren wir die Lö-
sungen des Systems (6.30). Die erhaltene Formel 
(n ^ Sf* _ 3<Pa d V 

J T - J ^ ä ö 

enthält die auf der Grundlage des Satzes aber die Ableitungen 
der Lösungen eines Differentialgleichungssystems nach den 
Koordinaten des Anfangspuntes ( [113) in bezug auf alle Variab-

Q i/j X 
len stetigen Funkfcionen Die Stetigkeit der j^-folgt un-
mittelbar aus den Formeln (6.28) und (6.29), 

S c h l u ß f o l g e r u n g . Die Funktionen R ($>,8) 'i 
sind Funktionen der Klasse C im Bereich, der durch die Un-
gleichungen (7.5) erklärt ist. Diese Schlußfolgerung folgt un-
mittelbar aus der Formel (7.4). 

L e m m a 7.2. Die Transformation (7.2) ist singular im 
Punkt PQ(O,0). 

B e w e i s. Wir führen -die Bezeichnung ein 
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(7.7) 4(0,0) : = 'P i,.t vae;„.( 

-o V30 )9m 

an 
3? 

Unter Berücksichtigung von (6.12) erhalten wir 

aA (0 ) . 

Wenn wir die Beziehungen (6.30) und (6.9) kombinieren, ergibt 
sich für "beliebiges 0 

Hieraus aber 

(7.9) 

^ ( o , 9 1 ( 0 ) , r?2(0)) = 0 

M _(ii!) - o vae o" \30 /p=o~ • 

Indem wir (7.8) und (7.9) in (7.7) einsetzen erhalten wir die 
These des Lemmas. 
Wir gehen zur Untersuchung des Vorzeichens der Jacobi - Matriz 
in der Transformation (7.2) in der Umgebung des Punktes r 
über. Dazu bemerken wir, daß wir, indem wir jedem Punktepaar 
(PQ,P) (P ist fest) auf dem Flächenstück die Länge der die 
beiden Punkte verbindenden Sehne zuordnen, einen metrischer. 
Raum mit der folgenden Metrik erhalten: 

9 (PQ,P) = |PQP| = lr(u\u2) - rl = (7.10) 
= r 

Demzufolge erlaubt uns die Definition der Konvergenz einer 
Punktfolge im metrischen Raum 

(7.11) (lim P = p ) = (lim | P PI = 0) 
P—P P—P 
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die Forderung nach der Konvergenz j e d e r Koordinate des Punktes 
P gegen die entsprechende Koordinate des Punktes PQ durch 
d i e Forderung nach der Konvergenz der en tsprechenden Met r ik 
gegen Nul l zu e r s e t z e n . 

L e m m a 7 . 3 . Dir durch d ie Formel ( 7 . 4 ) d e f i n i e r t e n 
Funkt ionen E "besitzen im Punkt PQ s t e t i g e Ableitungen 

B e w e i s . Unter Benutzung der D e f i n i t i o n ( 7 . 1 ) e r -
h a l t e n wir 

9 - 0 9 ? 9 - 0 3 ? 

Um d ie sen Grenzwert zu e r m i t t e l n , genügt e s , d ie D e f i n i t i o n 
de r Anle i tung und den Satz von Lagrange zu benutzen , wodurch 
wir dank der Beziehung (6 .12) d ie fo lgende Formel e r h a l t e n 

a a ( 0 ) - l i m - ^ ( o , ^ ( Q ) > ' ? 2 ( 9 ) ) -
\8V<?=o 9 - 0 ? 

= ' l im 4j-(<*9»0)i (0<Q£ < 1 ) , 
0 — 0 p - o 

Hieraus aber e r g i b t s i c h 

(7 .12) l im ^ = a*(8) - a a ( 8 ) = 0 
p —o ö9 

und darüber h inaus 

« • « > ( $ ) - . ' ( • ) . o . 
9=0 9=0 

Aus den Gleichungen (7 .12) und (7 .13) f o l g t d ie These des 
Lemmas. 

L e m m a 7 . E s g i l t 

wo d ie B Funkt ionen aus ( 7 . 4 ) s i n d . 
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B e w e i s . Aus der Definit ion der Ableitung und aus der 
Beziehung ( 7 . 9 ) ergibt sich 

m ( 3 2 r ' ~V7WJp= o 1 3R* 
( 7 ' 1 5 ) = J f f 0 9 = ^ o T T T ' 

* 

Diese Formel ermöglicht es , die Ermittlung des in der These 
des Lemmas auftretenden Grenzwertes durch die Berechnung der 

a V Ableitung ^ifdB ^ 9 = 0 z u ersetzen. 
Aus der Defini t ion ( 7 . 1 ) und der Beziehung (7.4-) f o l g t 

(7 16) - i ! o ? _ dat 
' ; apae ~ a?ae de • 

Auf grund der Schwierigkeiten, die die Berechnung der Ableitung 
a 2 o 3 
- mit sich br ingt , berechnen wir unter Benutzung von apae 

( 7 . 1 ) und der Beziehung ( 6 . 1 1 ) ' d i e Ableitung 

( 7 i 7 ) i ! i £ w2)) - M M L ^ . S R Y i l . , 
( 7 ' 363p " 30' V ~ 

Wenn wir die Beziehungen (6 .19 ) und (6 .27) berücksichtigen, 
ergibt s ich 

( 7 1 8 ) _ a / ( o , > ? 1 , n 2 ) . d ^ f j f ? ) 
( 7 ' 1 8 ) V 3 8 3 i 0 " a ^ « U r ^ - . / ^ y ) 

oder - unter Benutzung von ( 6 . 4 ) , (6 .28) und (6 .29 ) -

320*\ _ d a* _ 1 d ^ 
( 7 , 1 9 ) Vä03pJ " dfl~ - Y 0 ' d? 

p=o 

a-pA Die S t e t i g k e i t von —¡j , die aus der Voraussetzung des be-n 3«PM 
t rachteten Problems f o l g t , und die S t e t i g k e i t von —^ die aus 

W 
dem Satz über die Existenz der Ableitungen der Lösungen eines 
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Systems von Differentialgleichungen nach den Koordinaten des 
Anfangspunktes f o l g t , ergibt auf der Grundlage der Formel 
(7 .17) 

(7 .20) um 3ht - 1 illL* 
9—0 3639 = Po ' d 0 

Nach Vergleich der Beziehungen (7 .19) und (7 .20 ) können wir 
auf der Grundlage des Satzes von Schwartz ( [2]) die Existenz 
der beiden gemischten Ableitungen und deren Gleichheit im 
Punkt PQ schlußfolgern. Wir haben also 

(7 .21) 3 a V da'' 

Nach Einsetzen des so gefundenen Ergebnisses in die Formeln 
(7 .16) und (7 .15) erhalten wir die These des Lemmas. 

L e m m a 7 . 5 . Die Jacobi-Matrix der Transformation 
( 7 . 2 ) i s t posi t iv im Bereich, der durch die Ungleichungen (7.5) 
erklärt i s t . 

B e w e i s . Aus der Beziehung ( 7 . 4 ) erhalten wir 

D i , f l x . an'1 . o dal + I s l 
a ( 0 ) + 39" ; ? d T + J T 

2 ( B ) + I i i . + I i i 
a ( - ö ; 39 ' y de 30 

. 1,fl>. da2 2/QNda'' . 3R1 . da2 3R2 _dal . 
= a (0) j g - - a ( 0 ) j g - + i r • d F ~ "äö~ ' " d T + d0 a? de 39 

9 | 36 
3_R_ 
30 a 2 ( 0 ) + 3 H 

3? J 

und nach Einführung der Bezeichnung 
2 

W(6):= a 1 ( 8 ) J f - a 2 ( 6 ) f | -
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und unter Benutzung der Beziehung (6.4) und der Voraussetzung 
(5.2) ergibt sich. 

(7.22) w(0) = 
( VI), 

Auf der Grundlage der Lemmas (7.3) und (7.4) sowie der Stetig-
keit der Funktionen aus (6.4) und deren Ableitungen ergibt 
sich 

(7.23) = -1- > 0 
P — o 9 (Vg}0 

und weil wir 9>o vorausgesetzt haben, erhalten wir, daß 
A(p,0) positiv in jeder hinreichend kleinen Umgebung des 
Punktes P Q ist. 

S a t z 7.1. Wenn das Plächenstück S in der ursprüng-
2 

liehen, beliebigen Parametrisation der Klasse C ist, dann 
existieren die Martensenschen Koordinaten (?,9) derart,daß das 
Flächenstück S in der Repräsentation (9,0) der Klasse C 
ist. 

B e w e i s . Das Gleichungssystem (7.2), in dem die Funk-
tionen Cî  der Klasse C sind (Lemma 7.1) und deren Jacobi-
-Matrix innerhalb des Bereichs (7.5) von Null verschieden ist, 
ordnet jedem Paar (P,6) aus dem Bereich (7.5) einen Punkt des 
Flächenstücks S zu. 
Nach Einsetzen der Beziehungen (7.2) in die Gleichungen der p 
Fläche (1.1), die der Klasse C ist, erhalten wir eine Pa-
rameterdarstlelluhg des Flächenstücks S in den Martensenschen 
Koordinaten, die der Klasse C ist: 

(7.24) X 1 = x1 (3(?,8),n2(?,9)) = x^p.e). 

Die Transformation (7.2) erhält die Nichtsihgularität der Pa-
rameterdarstellung des Flächenstücks. Man kann dies durch eine 
Untersuchung des Ranges der Matrix 
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3x1 3x2 3x3 
3? 3 9 3? 

3x1 3x2 3 x3 

38 30 30 

zeigen. Wir haben 

acf , 0 ) 

ax1 

39 
3X1 

36 
Sx1 

3~i? 
an* 
3? 

3X1 
» X 3uj 

30* 
36 

3xä 

3 9 
3xä 

30 
ax1 ao* . 

dp » 
ax^ an* 

30 

3 X1 

a u1 

a x^ 
3 u1 3u* 

3^2 3Ql 
dp ae 

ao^ an' 
3? ae 

= 9 C x V l .ACP.0 ) . 
3 (u\u 2 ) 

Aus der Voraussetzung der Regularität des Flächenstücks in der 
ursprünglichen Parametrisation in der Umgebung des Punktes PQ 

fo( lgt, daß 

d i , j (1 < i < j <3)-äcüvö2 ) 

Die Jacobi-Matrix der Transformation is t in der Umgebung von 
P größer als Null. Demzufolge g i l t 

a c x 1 ^ ) t o 
=1 i,3 ( 1< i <3^3 ) 3 (9,0) 

in der Umgebung von P . 
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S a t z 7.2. Wenn ein Flächenstück S in der ursprung-
lichen Parametrisation der Klasse Cn+'' (n^1) ist, dann ist 
es in der Martensenschen Repräsentation (f>,0) der Klasse Cn. 

B e w e i s . Aufgrund der Voraussetzung stellen wir fest, 
daß die rechten Seiten des Gleichungssystems (6.6) hinsicht-

Q M 

lieh der Variablen u der Klasse C sind.Gleichzeitig sieht 
man, daß sie beliebig großer Regularitätsklasse bezüglich p 
sind, weil sie von p nicht abhängen. Aus dem Satz über die 
Ableitungen der Lösungen eines Systems von Differentialglei-
chungen ([8]) folgt, daß die rechten Seiten der Beziehungen 1 2 
(6.8) bezüglich der Variablen p , r̂  und q stetige partielle 
Ableitungen n-ter Ordnung besitzen. Wenn wir die durch (6.28) 
und (6.29) erklärten Punktionen betrachten, so stellen wir 
fest, daß die rechten Seiten der Beziehungen (7.2) der Klasse 
C n sind. 
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