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MARTENSENSCHE POLARKOORDINATEN
AUF FLACHFNSTUCKEN SCHWACHERER REGULARITAT

Einflhrung

Die Martensenschen Koordinaten sind € ¢e neue Art von Po-
larkoordinaten auf einem regularen Flichenstiick. Sie haben
in der Potentialtheorie Anwendung gefunden, (siehe [9]).

Wir beschreiben um einen festen Punkt Po des Flachen-
stiicks S eine Sphére -S9 mit einem hinreichend kleinen Ra-
dius ¢ und betrachten die Familie der Kurven S,n S. Fir die-
se Farilie suchen wir die entsprechenden orthogonalen Trajek-
torien., Es zeigt sich, daB fir hinreichend reguldre Fléchen-
sticke S jede dieser Trajektorien sich dem Punkt Po derart
ndhert, daB die entsprechenden Tangenten mit einem  gewissen
festen Richtungsvektor im Punkt PO in der Tangentialebenes%
den Winkel B bildet. Das Zahlenpaar (9,9) nennen wir larten-
senthe Koordinaten. Martensen definiert diese Koordinaten un-
ter der Voraussetzung, daB das Fliachenstiick S analytisch ist
und beweist die Existenz dieser Koordinaten unter Benutzung
dieser Voraussetzung. Der Gegenstand dieser Arbeit ist es,die
Existenz der Martensenschen Koordinaten unter schwicheren Re-
gularitatsbedingungen zu zeigen. Der Beweis stitzt sich auf
eine A4nalogie zu den gewdhnlichen Polarkoordinaten, deren
bxistenz bei abgeschwdchten Regularitdtsbedingungen des Flid-
chenstiicks S erstmals in der Arbeit [5] gezeigt wurde.

4. Die nichtleere Menge S von Punkten des Euklidischen

Raumes R3 mit der orthonormalen Basis ey (i=1,2,3) nennen
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2 I.Cawrylczyk

wir Fléachenstiick, wenn fir jeden Punkt P€S eine Umgebung
Uc R3 derart ex1st1ert daB der Durchschnitt der Mengen Un S
homéomorph mit einem gewissen offenen Rereich [AC R2 ist,.Wir
betrachten die Durchschnitte UnS als Umgebungen auf S (sie
werden induzierte Umgebungen genannt) und nennen die entspre-
chenden Hom$omorphismen lokale Parametrisationen des Fléchen-
stiicks S, Wenn wir in Zukunft von der Umgebung UC R3 spre-
chen werden, so setzen wir stillschweigend voraus, daB U eine
der Umgebungen ist, von der in der Definition des Fl&chenstiicks
die Rede war,

Wir betrachten jetzt eine Umgebung U des Punktes POGS.

Eine lokale Parametrigierung dieser Umgebung ordnet jedem Punkt
(u1 ,u2) €Q einen Punkt P€S zu,
Wir nehmen nun an, daB der Punkt P zu der Umgebung U ge-
hért, in dem die lokale Mappe '(x’] ,x2,x3) gegeben ist. Dann
hat - wie bekannt ist - das Fliéchenstiick S die folgsnde pa-
rametrische Darstellung:

(1.1) xt = xi(u",ua) (i=1,2,3).

Anstelle der drei skalaren Gleichungen (1.1) kénnen wir die
eine Vektorgleichung

(1.2) T = r(u1,u2)

- wo r der Leitstrahl des Punktes P ist - betrachten.
Wir sagen, daB das Fldchenstiick S in der Umgebu.ng U ein
reguldres Fldchenstiick der Klasse cl ist, wenn man es in
dieser Umgebung derart parametrisieren kann, daB die Funktio-
nen (1.1) der Klasse C® sind und der Ra.ng der Jacobi-Matri-
zen

M= “ a_x]' H (i=1,2,33 2=192)

dur

gleich zweli in jedem Punkt P€U ist. Im weiteren setzen wir
voraus, daB das betrachtete Fléchenstiick S in der Umgebung
U der Klasse C‘?‘ ist.
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Martensensche Polarkoordinaten 3

2. Es gei P ein Punkt des Flidchenstiicks S, dem im
Koordinatensystem u? die Werte u? = %1 entsprechen.
Im weiteren werden die griechischen Indizes die Werte 1, 2,
die lateinischen Indizes die Werte 1, 2, 3 annehmen. Ohne
Einschrénkung der Allgemeinheit der Betrachtungen kdnnen wir
nun 91 = 0 setzen, was sich immer durch eine 1lineare
Transformation des Koordinatensystems realisieren ldaBt. Um
den Punkt P beschreiben wir eine Sphére SQ mit dem hin-
reichend klelnen Radius 9 und betrachten auf S die Fa-
milie der Kurven Sr\SQ fir 0<@<g,. Wenn wir anstelle der
skalaren Gleichungen (1,1) die Vektorgleichung (1.2) betrach-
ten und den Abstand des Punktes Pe€ S von dem festen Punkt
P_ - angegeben im Sinne des P3 - mit ¢ bezeichnen, dann ist

(o]

die Menge SrWSQ durch die Gleichung

(2.1) . (r - £)% = ¢°

- wo o = r(0,0)-ist - erkldrt. Daraus ergibt sich fir die
Pamilie Sl\SQ die Differentialgleichung

° A
(2.2) (r - r)r/1 du” = 0.

Durch die Definition

(2.3) F, := (r=-Dr

A 2

nimmt (2.2) die folgende Form an:

(2.4) F, du* = 0.

z

Aus unserer Voréussetzung folgt, daB diese Funktionen Fa in
der Umgebung des Punktes PO der Klasse 01 sind. Aufgrund
von F1(030) = 0 folgt, daB P, ein singulérer Punkt ist.
Indem man die Regularitdt des Flichenstiicks benutzt, kann man
zeigen, daB der Punkt Po ein isolierter, singuldrer  Punkt
ist. Aus der Theorie der Differentialgleichungen folgt, da3
die Gleichung (2.4), in der die F, fir lu'l +|u®|>0 nicht
gleichzeitig verschwindende Funktionen der Klasse ¢ sind,
eine Schar von Kurven Sr\SP, die auf dem Fl&ichenstiick S lie-
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4 I,Gawrylczyk

gen, derart erklﬁrt, daB durch jeden Punkt P # P, des Fla-
chenstiicks S genau eine Kurve verliuft.

3. Wenn wir die notwendige und hinreichende Bedingung fiir
die Orthogonalitédt von Kurven und die Gleichungen (2.4) be-
nutzen, erhalten wir eine Differentialgleichung fir die zu
SnS senkrechten Trajektorien der folgenden Gestalt:

4

2 11

(3.1 (F181 + ngzz)du1 - (Fqg + Fzgm)du2 =0
- Wo gav den zum metrischen Tensor gav umgekehrten  Tensor
darstellt. Wenn wir

(3.2) Lol Flg)'p'

definieren, so erhalten wir aus (3.1) die Gleichung

(3.3) r?au’ - Flau? = o.

fus der Voraussetzung folgt, dall die Funktionen F¥  in der
Jmgebung des Punktes P der Klasse ¢! sind. Wegen F“«Lo)z
=0 ist PO ein singuldrer Punkt. Aus der Theorie der Dif-
ferentialgleichungen folgt, da8 die Gleichung (3.3), in der
iie FY fir |u1l+|u2|>0 nicht gleichzeitig  vlerschwindende
funktionen der Klasse C sind, eine Schar von zu den Sr\S?
orthogonalen Trajektorien, die auf S 1liegen,derart erklédrt,
iaB durch jeden Punkt PE S, der verschieden von Po ist, ge~
nau eine Trajektorie verlduft. Um die Art des singulédren Punk-
tes zu untersuchen, formen wir (3.3) um, Wenn wir F (u1,u2)

nach Potenzen von uj und u2 entwickeln, erhalten wir

Flul,u®) = @,F7), u' + (0,81, w® + £,(0,0%)

-]

1]

'3.4)
F2(ul,u?)

1l

-(0,,1?2)0 ul + (989, «u? + £,(u,u%)
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Martensensche Polarkoordinaten 5

Aus den Definitionen (3.2) und (2.3) erhalten wir

d

T

62 ° 62 ° 6A
uF T (r—r)rG“g + (r—r)rsayg

62 .
g8  * (r-r)rGPs

62

62 2

g + (z-B)zg2, g"

p

A [ ] 2.
::d'Pl + (r—r)répg + (r-r)rsaug6 '

und hieraus
A, _ &%
(3.5) @,FD, =06, .
Indem wir dieses Ergebnis in (3.4) einsetzen, ergibt sich

F1(uj,u2) ul o+ fq(uj,ua)

(3.6)

F2(uj,u2) u2 + f2(uj,u2)

was es erlaubt, die Gleichung (3.3) in einer fiir die weiteren
Untersuchungen glinstigeren Form aufzuschreiben:

2 u2 + f (uq,uz)
du 2 !
du u o+ fq(u su’)
Lemma 3.1. Die Funktionen f1 und f2 sind in der
Ungebung des Punktes (0,0) ‘der Klasse ¢! und f1(0,0) =
= £,(0,0) = 0.

Bewedis. Aus (3.6) folgt
1_4. _ 1, _ 2. N 2

Aus der Stetigkeit von 3y F2 ~ die aus der Voraussetzung folgt
- ergibt sich die Stetigkeit der partiellen  Ableitungen 1.
Ordnung der Funktionen f, und f,. Das Verschwinden der
Funktionen £, und f, im Punkt (0,0) folgt sofort aus
(3.6). )
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6 I.Gawrylczyk

Lemma 3.2, Unter obigen Voraussetzungen folgt die
Gleichung

0,240 + Ja,e,] + [2,£5] + [958,

lin
172
(1ul+]4?]) =0 (uall + 162D

Beweis., Wie aus den Gleichungen (3.6) folgt, gilt:

_ 3._ 2._ _3 6A _ A -
ayf/I -auF d‘u = 3u (r r)r6g d.y. =
N 6A 4 (.o 62 4 (pod 62 _ g1 _
gpég (r r?r6yg (r r)rﬁa“g J“
64

61y 62y _

0 N ° 2
- + = - . .

(r r)(rﬁpg rb,aug (r r)a“(rGg (r r)aur
Weil |r-r| nicht kleinerer Ordnung als |u1| + |u2| ist,er-
halten wir, daB die Ableitungen.aufz wenigstens der gleichen
Ordnung sind, woraus die These des Lemmas folgt.

Die Gleichung (3.3) kOnnen wir in der Form eines Glei-
chungssystems (siehe [8]) aufschreiben:

‘ A
2

(3.9) & =r.

Unter Beriicksichrigung von (3.6) erhilt man:

(3.10) -%%j =ul+ fq(uq,qa)g %%E-= u® + fa(uﬁbuz).
Auf der Grundlage der bewiesenen Lemmas konnen wir -den folgen-
den Satz formulieren:

S atz 3.1. Das Gleichungssystem (3.,10) erklidrt eine
Schar von‘orthogonalen Trajektorien zu der Schar Sr\S9 auf
dem Fldchenstiick S derart, daB durch einen hinreichend nahen
Punkt Pe S, der verschieden ist von Po’ genau eine  Kurve
der Schar verliuft. Jede Trajektorie ndhert sich dem Punkt Po
mit einer einseitigen Tangente, die mit einem festen Rich-
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Martensensche Polarkoordinaten 7

tungsvektor im Punkt Po auf der Tangentialebene n, den Win-
kel 6 (0OgO<2mM) Dbildet, Der singuldre Punkt ist alsc in
diesem Falle ein Knoten,

Dieser Satz folgt unmittelbar aus einem gewissen Satz der Theo-~
rie der Differentialgleichugen [10].

4, Wir untersuchen nun das System (3,9)., Wenn der Parame-
ter auf der gesuchten Trajektorie so gewdhlt wird,daB fiir den
Punict P t=0 gilt, damn ist u’(0) = 0. Die Tatsache, daB
wir neben der ersten Anfangsbedingung

(4.1) ul(o) =

noch eine zweite Bedingung

). -

bendtigen - trotzdem wir es mit einem System von Gleichungen
1. Ordnung zu tun haben - folgt daraus, daf P0 ein singula-
rer Punkt ist, fir den wir oo! Ldsungen erhalten ([6]).

5. Wir bezeichnen mlt P einen auf der orthogonalen Tra-
aektorie liegenden Punkt mit den Koordinaten xl(u (%), u (tﬂ
(t>0), und mit P, den Knoten mit den Koordinaten x (O 0).
‘Dann ist der Abstand 9 des Punktes P von P  ~ im Sinne des
R3 - durch- die folgende Formel gegeben:

1/2
(5.1 9(%) = (Z] [t ("), 02(t) - x%(0,0)] )

Satz 5.1. Die Ableitung der Funktion 0 (t) ist stetig
und positiv fir +t = O.

Bewe ils, Wir bemerken, daB fiir Losungen uz(t) des
Gleichungssystems (3.9) die

@t | () ,ul(s))
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8 I.Gawrylczyk.

im Punkt Po stetig gind. Das folgt aus der Voraussetzung,
daB S der Klasse C° ist und daraus, da8 ua(t) als eine
im Punkt Po ihre Ableitung besitzende Funktion stetig ist.
Setzen wir nun voraus, daB der tangentiale Vektor zu einer be-
liebigen orthogonalen Trajektorie im Punkt Po ein Einheits-
vektor ist, d.h.:

(5.2) (ém)alau = 1

wobedl ély die Koordinaten des metrischen Tensors im Punkt
Po sind, Diese Voraussetzung ist sinnvoll, weil man die L&n-
ge 1 durch eine entsprechende Anderung der Parametrisierung
der Kurve stets realisieren kann. Die Ableitung der Funktion
(5.1) ist gegeben durch:

3

Y [ u2) - xio,0)8x @t
5.3 H=HE du |
. ' % i 1/2
(; [xi@’(t) ,ua(t)> - xl(o’o):lz)

H

Nach Anwendung des Satzes von Lagrange nimmt sie die folgende
Form an

t % (axi duz)a >1/2
i=1 aul dt 8it

Hdieraus folgt:

3 . 2 \1/2
i A
t —0 i=1 \Qu =0

Nach Quadratbildung und entsprechender Umgruppierung der ein-
zelnen Glieder erhalten wir unter Benutzung von (5.2)
ae _

o lim = 1.
(5.4) ;i

3, .
Z<3xl . du1> ,<axl dﬁ)
49 _ =1 dut % JBys \au* % /5 0<8,<1.
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Martensensche Polarkoordinaten 9

Zur Ermittlung des Wertes der Ableitung %%l im Punkt t =0
benutzen wir in (5.1) den Satz von Lagrange und anschlieRend

die Definition der Ableitung. Wir erhalten

3 i N2 \/2
d s (%) _( <3x du> )
= = lim 5~ = Z, - ==
/s 0 t—=o ¥ =1\ ¥ /40

und nach Beriicksichtigung der Anfangsbedingung (4.2) und der
Voraussetzung (5.2) ergibt sich

u)’l/2 o

(5;5) (%%)tzo = ((élu)ala

Aus den Gleichungen (5.4) und (5.5) folgt die These des
Satzes.
SchluBfolgerung 1:

&) & 15t positiv fiir alle t, die hinreichend nahe bei t= 0
liegen.

b) 9=9¢(t) ist stetig und streng monoton wachsend fir
Oététo. »

c) Die Umkehrfunktion + = t(9) ist stetig und streng mono-
ton wachsend im Intervall [O,?(to)} und besitzt die Ab-
leitung

ot
2ig)-
.

(5.6) as _

SechluBfolgerung 2.
Das System (3.9) hat die Gestalt

e S P
(5.7) du” _ p
e g

mit den Anfangsbedingungen

2 au® 2
(5.8 (@) g2 = 0 (5%")»:0 S
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10 I.Gawrylczyk

Tatsidchlich erhalten wir unter Benutzung von (5.3) in der
Form

d¢ . r-%  dr
&7 p_p

und der Beziehunzg (3.9)

du? duz dt A |r - f'

de ~at "dp T

Wenn wir in (5.1) t = O setzen, erhalten wir.¢ =0, Daraus
aber

(ux'(?)) ¢=0 =0

und mit Hilfe von (#.2), (5.6) und (5.5) ergibt sich
(d_ul_) i} (gu_*> (QL) _ 2
de o»_ dt R d9v° - *

§.'Wif formen nun das Gleichungssystem (5.7) um: DenaVek—
S _ TP .. . . . .o r .
tor r - r = PP, konnen wir in der Basis (rz,n) T, i= EET 5
r, X
n:= a2 g:= detl:g,/L ] auf die folgende Art uynd  Weise
- Veg' b
darstellen:

r-r =ar, +pr, +yn.

Wir multiplizieren beide Seiten skalar mit TysTpyl und Dbe-
nutzen die Definitionen (2.3) und (3.2). Daraus ergibt sich

a=§', p=1r°%, ¢= (r-Bn.
Wir erhalten also
o . A
(6.1) r~-r ='F T, +1n
und nach Beriicksichtigung von (3.9)
° dr

r-r=a3g* 7o
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Martensensche Polarkoordinaten 11

Nach Multiplizieren beider Seiten mit r-T erhalten wir

[(x-2) -gnl(r-2 = L (z-D

und daraus

-HE = -0 -z -1 = (-0 -1 =92 - 12,

Unter Bertcksichtigung von (5.7) folgt

du 1 _F
(6.2) TRk

mit den Anfangsbedingungen (5.8}, wobei auf der rechten Seite
in (6.2) ¢ keine unabhéngige Verdnderliche (wie auf der lin-
ken Seite) darstellt, sondern eine Funktion zweier Variabler
ist:

¢ = |I'(u1,u2) ":E'I-

Wir bemerken nun, daB mit einem gegebenen System krummliniger
Koordinaten (uq,u2) auf dem Fl&dchenstiick S eine Basis r in
der Tangentialebene ﬂo im Punkt Po verknipft ist. Unab-
hangig von der natilirlichen Basis Ta (die im allgemeinen nicht
orthonormal ist) legen wir in T eine orthonormale Basis ey
fest, Dann kdnnen wir den Einheitsvektor a(B8), der in ELS
liegt und mit e, den Winkel 6 bildet, in der folgenden Forr
darstellén

(6.3) a(8) = cos @ .? + sine-% = cos®B (?ltrl) + sin 6 (%avrl),

wobel e1 die Koordinaten des Vektors ﬁ in der Basis T,

sind. Nach Durchfﬁhrung'einiger elementarer Umformungen erhal-
ten wir die Koordinaten des Vektors a(f8) in der Basis T, in
der Form
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12 I.Gawrylczyk

3 0
a1(9) &1 cos® - <—22—> 8* sin 6,
Vg

-] g [
8% cos B + (—ﬂ> a* sin 8
\C
el

wo &~ die Koordinaten des Vektors [a(B)]e =0 = e bezeichnen.,
Wir schreiben (6.2) in der folgenden Form auf

(6.4)

a(8)

1,1 .2

du F "(u ,u%)

6. [0 = 1
© g 1 m.uﬁ,}

|J:'(u1,u.2 T
(r(u’]'u) 172

Wir sehen, daB ¢ = O ein singuldrer Punkt des Systems ist,
weil r(u1(0), u2(0)) - 2 =0 ist, Nach Einflhrung der Defi-
nition

A u?) Py ,u2)
|r(u1,u2) T (u ,u )
(r(u yu % r)
erhalten wir
(6.6) g‘; f (u ,ua).

Aus der Theorie der Differentialgleichungen ist bekannt:

Wenn ein Punkt mit den Koordinaten (%’64’52) innerhalb eines
gewissen Bereiches Dq liegt, der in dem geschlossenen  Be-
reich D enthalten ist, in dem die Fﬂ' der Klasse 01 sind,
dann existiert ein Bereich D°C D' wnd die Losung ut = npx(q),
die in D° die Bedingungen u?* = p* fir ¢ =9, erfiillt. Die-
se Losung hat die Form

(6.7) cut = 0% (p,9,,8 7).
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Martensensche Polarkoordinaten 13

Wir betrachten §° als eine gegebene Zahl und rz", rz2 als
Parameter, die verschiedene Werte annehmen kdnnen, aber sol-
che, die innerhslb vod D1 liegen, Dann kdnnen wir die all-
gemeine Lidsung des Systems (6,6) in der Form

(6.8) ut = 92 (9, 0,09

aufschreiben, wobei gilt

L}
(e}

(6.9) o 0,7, 12

(6.10) ‘PZ( §°’ Q1"l2>

it
-~
.

Aber ‘die u* aus (6.8) erfiillep.das System (6.6).Daraus folgt

2 1
(6.11) AN
Aus- der Bedingunz (5.8) folgt, daB
(6.12) a'f'a(o’a'g"’a) = &*(8)

wobel a.“(e). Funktionen sind, die durch dle Gleichungen (6.4)
erklirt sind, Wir fiihren die folgenden Bezeichnu.ngqn ein:

‘ 2 1 2
(6.13) o (8,1",0°) := ”“’a'+") - &*(@).
Lemma 6.,1. Die Funktionen CD:{ sind der Klasse 01 in
der Umgebung des Punktes (B,Qq,Qa)'.

1 2
Beweis. Die Stetigkeit der Ableitungen %6—= -ii-%—

folgt aus den Formeln (6.4). Weiter haben wir

20% _ 22 % (0,10 _2¢" <3i1> L.
arzv 8q” (X’ aq’ 3u" ull:(PP(o’rz“.qa)

o[, -2 |r -2 Co2a |p -]
= 1 F + B9
b G A v,

- 391 -
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14 I,Gawrylczyk

Wenn wir die Definitionen (2.3) und (3.2) benutzen,ergibt sich

A a ° .
auF =du + (r_r)r6pg52 + (r-r)rsapgm

und insbesondere

(6.15) @, FM) =4t
u u“awu(o,r[',rlz) M

Dariiber hinaus
(6.16) Fz(wq(o,rf.qe),f(o,ré“,qz)) = F(0,0) =0.

Wenn man (6,1) von beiden Seiten mit n multipliziert,erhilt
man = (r-T)n und daraus

(6.17) 7 (¢'0, 7,13, 020, ,13) =7(0,0) =0

sowie
8“3‘ =T ent (r-i')'np_.: (r=1) Dy e

Insbesondere
6.18)  8,7(0"Co,n",0%), 93(0,0",0) =3,1(0,0) = o.

Wenn wir die Bezlehungen (6.14),(6.15),(6.16),(6.17) und (6.18
kombinieren, erhalten wir

2
at 1 er
(6.1 ) = d-
i | <3u“> a=gio,g'yn?)  Fo ¥

in der Umgebung des Punktes Po. Aus der Existenz stetiger par-

a
tieller Ableitungen af folgt also die Existenz der stetigen

gt
2"

partiellen Ableitungen 3rz—" Aus dem Satz iiber die Existenz der

Ableitungen der Lésung eines Systems von Differentialgleichun-
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Martensensche Polarkoordinaten 15

gen nach den Koordinaten des Anfangspunktes [11] und aus der
Formel (6.19) folgt die Stetigkelt der partiellen Ableitungen
(6.14), Diese Ableitungen kSmnen wir jetzt in der folgenden
Form aufschreiben:

A K
90 1 2 3¢
(6.20 —_— = d .
) an’ P ¥ o’ .
: 1 @2 ’
Lemma 6.2, Die Jacobi-Matrix -2 d’,] ¢ , wo die o*

durch die Formeln (6,.,13) definiert sind, 131? 1.1?1 Punkt (Q o )
verschieden von Null, wobeil |f2 |+|Q |<d fiir hinreichend klei-
ne d gilt.,

Bewels, Wir definieren

210,141 ;32W4(0.n1.r22) 2] ;ﬁ
an'3g an=ag a' 7 ang?
A::Ldl]—’gg— = = R
37,1 132¢0200,q1,02) 02020,07 02 | |2g? | 2£2
antag TR angt e

Nach den entsprechenden Umformungen erhdlt die Determinante
die folgende Gestalt

92 927. 92 aM 9272
A= —*+—— + 2H - Fl oo 2
(92_12)2 (92_72)2 (?2 _32)2 3 (92_7._2)2

K -

921 Y 927 2 _p
-~ —— 5, BF[ v g -2 F"F" b, +
S o 02 -1 A

ap 1]
2FF r;lruz"’

2 v 2
b L 3 FEE T gy + 2 i
@=-79 CaEl
Dabei sind K und H entsprechfnd die GauBsche und die mitt-
lere Krimmung der Flidche, die P'IV die Christoffelschen Symbo-

le. Es folgt hieraus, daB A in der Umgebung des Punktes P,
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16 I.Gawrylczyk .

nicht verschwindet, da das erste Glied in A unendlich gréerer
Ordnung ist als die restlichen (Fv“ und ¢ sind wenigstens der
gleichen Ordnung wie ¢ ). Man kann zeigen, dall

21,2 1 ar Iotl 4 102]>
(6.21) W ?2>o fiip n'l+1in 0.

Satz 6.1, Flir jedes beliebig kleine £€> 0  existiert
ein §>0 so, daB jedem Punkt 0 aus dem Intervall |0 - 6l<d ge-
nau ein System von Zahlen rz" entspricht:

(6.22) 0*= n*(8).

Die n* erfiillen die Gleichung

(6.23) d*- o
und die Ungleichungen

(6.24) In*-7l<e

wo die CDZ' durch die Formeln (6.13) definiert sind. Die Funk-
tionen (6.22) sind der Klasse ¢l im jedem Punk: 0 .

Bewedls., Wr differenzieren die Gleichungen (6.23)
nach 6 , wobei wir beachten, daB die n* durch die Formel (6.22)
erklirte Funktionen sind, Damit erhalten wir

20 20 a1 . 20t an?
602 -~ — —rz_ + .—n = O.
(6.23) ae * aq1 ae e as

14
Um %16_ zu ermitteln, genigt es, die Cramerschen Formeln zu
benutzen, was sich unter Ausnutzung von (6.,19) und (6.21) fol-

gendermaBen aufschreiben 1l&aBt:

an' 2<a_<1>_d 1302, 0% 51 1,991 _
9 \ To a2 26 01 % "2/ T

a|
1]
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Aus (6,10) folgt

day
6.2 A A
(6.27) i o v a4y

Aus der Definition (6.,13) und den Beziehunzen (6,4) und (6.,27)
erhalten wir

1 -] g 02.
(6,28) dn _ 5 (—a 1 sinb - (£> a c¢os 9)
de 9o \/E o

und analog dazu

2 g 0
(6429) e G—é 2 sin B + <__M> a” cos 6> .
2] 90 _«g- o

Aus der Existenz der Ableltungen g—%ﬁ in jedem Punkt 8 folgt
die Stetigkeit der Funktionen n (9) in jedem Punkt 6 .

SchluB8Bfolgerun g: Die Funktionen (6.8), die
allgemeine Ldsung des Systems (6.6) Sind, kann man in der
folgenden Form aufschreiben:

foY

(6.30) ut =¢ (p,078), 2%8)) .

7. Wir filihren die folgende Bezeichnung ein
(7.1) a*(9,0) = ¢* (9,7'(8), n(®))
und betrachten die folgende Transformation
(7.2) uw? = 0% (9,0)
die im folgenden Bereich erklart ist

(7.3) 0<9<g; O<b<oam,

wo ¢, eine hinreichend kleine, positive Zahl ist, Wir setzen
voraus '
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2
(7.4) a*(5,0) = 9a*(®) + ’%y,0),
wo Ra das Restglied in der Taylorentwicklung ist, Diese An~
’ . A 2t
nshme ist mdglich, weil die Ableitungen %%— und gyg im ge~
[}

schlossenen Intervall <0,9> existieren.
Lemma 7.1. Die Funktionen Q%(9,8) sind der Klasse

L im folgenden Bereich

C

(7.5) 0<9p<y9, ; 0<B<2m,

2
Bewedlis, Die Stetigkeit der %%— folgt aus der For-

mel (6.11), in der die Funktionen fz(uq,uz) aufgrund der
Voraussetzung stetig sind. Die wl (Q,Qﬂ,qa) - betrachtet als
Funktionen ihrer drei Argumente - sind ebenfalls stetig ([8])
und die Stetigkeit von n*(8) folgt aus dem Lemma 6.3.Um die

A
Stetigkeit von vl zu untersuchen, differenzieren wir die Ld-

sungen des Systems (6.30). Die erhaltene Formel

2pt _ ap* an¥

enthdlt die auf der Grundlage des Satzes iber die Ableitungen
der Losungen eines Differentialgleichungssystems  nach den
Koordinaten des Anfangspuntes ([11]) in bezug auf alle Varisb-

2 u
len stetigen Funkbionen % Die Stetigkeit der $1folgt un-

mittelbar aus den Formeln (6.28) und (6.29),

SechluBfolgerung. Die Funktionen RZ(Q,G)
sind Funktionen der Klasse ¢ im Bereich, der durch die Un-
gleichungen (7.5) erklirt ist, Diese SchluBfolgerung folgt un-
mittelbar aus der Formel (7.4).

Lemma 7.2, Die Transformation (7.2) ist singuldr im
Punkt P_(0,6).

Bewe is, Wir filhren die Bezeichnung ein

- 396 -
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(5 e ).
()., GF),.

Unter Beriicksichtigung von (6.12) erhalten wir

(7.7 A (0,8)

A
(7.8) %>9=o= a*(0).

Wenn wir die Beziehungen (6.30) und (6.9) kombinieren, ergibt
sich flir beliebiges 6

¢ (0,770, %8)) =

Hieraus aber

(7.9) ( l)p = ( )90

Indem wir (7.8) und (7.9) in (7.7) einsetzen erhalten wir di:
These des Lemmas,

Wir gehen zur Untersuchung des Vorzeichens der Jacobl -Matriz
in der Transformation (7.2) in der Umgebung des Punktes P _
iiber, Dazu bemerken wir, daB wir, indem wir jedem Punktepaag
(PO,P) (Po ist fest) auf dem Fliachenstiick die Liange der die
beiden Punkte verbindenden Sehne zuordnen, einen  metrischern

Raum mit der folgenden Metrik erhalten:

(1 1.2 s
70y | For® = PPl = lz(u',u) - 2] =

| =(s"0n'c8) ,n28) ,0%p'(8) , n20)) - £ = .

Demzufolge erlaubt uns die Definition der Konvergenz einer
Punktfolge im metrischen Raum

(7.11) (lin P = P) = (lim |PP| =
P—vPo P-—P

- 397 -
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die Forderung nach der Konvergenz jeder Koordinate des Punktes
P gegen die entsprechende Koordinate des Punktes PO durch
die Forderung nach der Konvergenz der entsprechenden Metrik
gegen Null zu ersetzen,
Lemma 97,3, Dir durch die Formel (7.4) definierteg
Funktionen rR* besitzen im Punkt Po stetige Ableitungen %%;
Beweis. Unter Benutzung der Definition (7.1) er-

halten wir

2 2
1in & < 1am A 2o,
Um diesen Grenzwert zu ermitteln, geniigt es, die Definition
der Ableitung und den Satz von Lagrange zu benutzen, wodurch

wir dank der Beziehung (6.12) die folgende Formel erhalten

28 _<§ﬂ> 1in 9 (08),0°0)) - *0,00 @) ,030))
3 ¢=0 9—=0 9

20
=f3_£noa—9-(q9,9); (o<a<1),

Hieraus aber ergibt sich

a

(7.12) 1im & - @) - a*@) =0

g-009¢
und dariber hinaus

2 2

aR _fae¢” _ A 3

(7.13) <—39—> _<39) a" (@) = 0.
¢=0 ¢=0

Aus den Gleichungen (7.12) und (7.13) folgt die These des
Lemnas, ,
Lemma 7.4. Bs gilt
2
.1 9R” _
(7.1%) - sy d0 = O

wo die R* Funktionen aus (7.4) sind.

- 398 ~
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Bewe is. Aus der Definition der Ableitung und aus der
Beziehung (7.9) ergibt sich

) ar* (ar?

A
- R
3990) = o=

f=o

=%im——a_‘o

-
Qr

90

¢
Diese Formel ermdglicht es, die Ermittlung des in der These
des Lemmas auftretenden Grenzwertes durch die Berechnung der

2
Ableitung 33_261% im Punkt ¢ = 0 2u ersetzen,
Aus der Definition (7.1) und der Beziehung (7.4) folgt

3%* _ %' au?
(7.16) 2996 = 3926 <5 *

Au.fgru.n'd der Schwierigkeiten, die die Berechnung der Ableitung
227

dpab
(7.1) u.nd der Beziehung (6.11) ‘die Ableitung

‘mit sich bringt, berechnen wir unter Benutzung von

2 2
Q" a1 2 aw(?,n,n)dn<3f>

Wenn wir die Beziehungen (6.19) und (6.27) beriicksichtigen,
ergibt sich

2 M 1 2 v
9] 3¢ (0 ) an’[a3f
(718)< ) =_ul_vrl_.d9< ) 4 2
9%%9) an’ auf/ * = ¢* (00" n")
oder - unter Benutzung von (6.4), (6.28) und (6.29) -
2 v P
470 d a 1 an
(7.19) <-——> = 3=~ = . .
a8a a8 dae
Yoo %
A
Die Stetigkeit von g—'fu s die aus der Voraussetzung des be-
u

trachteten Problems folgt, und die Stetigkeit von % die aus

dem Satz iliber die Existenz der Ableitungen der Ldsungen eines
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Systems von Differentialgleichungen nach den Koordinaten des
Anfangspunktes folgt, ergibt auf der Grundlage der Formel
(7.17)

(7.20) lim

Nach Vergleich der Beziehungen (7.19) und (7.20) konnen wir
auf der Grundlage des Satzes von Schwartz ([2]) die Existenz
der beiden gemischten Ableitungen und deren Gleichheit im
Punkt Po schluBfolgern, Wir haben also

(7.2 Gﬂfgéz = <QEQ§Z - dat
3006p-o \0B00h-o 4B

Nach Einsetzen des so gefundenen Ergebnisses in die Formeln
(7.16) und (7.15) erhalten wir die These des Lemmas,

Lenmmna 7.5, Die Jacobi-Matrix der Transformation
(7.2) ist bositiv im Bereich, der durch die Ungleichungen (75)
erklirt ist.

Bewe is, Aus der Beziehung (7.4) erhalten wir

301 agql 1 R’ ., aal , R’

1 oo a0 | 4 |2® % i9aw * G0
A(?,g).—— =? . =

0% 392 2,0y . OB | ,da° . 3R®

% 26 a”(8) * 9= %48 * 78

2 .2 1

2 da aR da dR da

=a(9) —a(e)de +T . ag " 39 * 46 +

I 2
IR ar'| 2 IR
HElo e - )

und nach Einfiihrung der Bezeichnung

2
w(®):= a' @) P - 2°(OO B
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und unter Benutzung der Beziehung (6.4) und der Voraussetbzung
(5.2) ergibt sich

(7.22) w(8) = —2 .
(e,

Auf der Grundlage der Lemmas (7.3) und (7.4) sowie der Stetig-
keit der Funkbtionen aus (6.4) und deren Ableitungen ergibt
sich

ACQ,B) 1
(7.23) 1im 289,7) - A 5
g0 9 V&,

|

und weil wir 9>o vorausgesetzt haben, erhalten wir, daB
8(9,6) positiv in jeder hinreichend kleinen Umgebung des
Punktes P ist,

Satz 7.1. Wenn das Flédchenstiick S in der urspring-
lichen, beliebigen Parametrisation der Klasse ce ist, dann
existieren die Martensenschen Koordinaten (9,8) derart,dal das
Flichenstiick S in der Représentation (9,8) der Klasse G
ist.

Beweis, Das Gleichungssystem (7.2), in dem die Funk-

tionen S)l der Klasse C1 sind (Lemma 7.,1) und deren Jacobi-
-Matrix innerhalb des Bereichs (7.5) von Null verschieden ist,
ordnet jedem Paar (9,0) aus dem Bereich (7.5) einen Punkt des
Fléchenstiicks S5 zu.
Nach Einsetzen der Beziehungen (7.2) in die Gleichungen der
Fldche (1.1), die der Klasse C~ 1ist, erhalten wir eine Pa-
rameterdarstiellung des Flichenstiicks S in den Martensenschen
Koordinaten, die der Klasse ¢l ist:

(7.24) = = =t (do,0, 0Xg,0) = xH(p,0).
Die Transformation (7.2) erhdlt die Nichtsingularitédt der Pa-

rameterdarstellung des Fladchenstilicks. Man kann dies durch eine
Untersuchung des Ranges der Matrix
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ax’l ax2 ax3
a9 a9 a9
ax! ax° X0
a8 28 28
zeigen, Wir haben
axt  2xt axt 20t . 2x® 2!
N 29 30 aut 39 ' aut 26
a 9 = . =1 . =
P axy  Axd axt 2 . 3axd "
ag 28 dur 99 ' ut 28
axt axt a0’ 29t
1 2 a6 1.3
= du du . f =——'——zlg§x,l 'X) -A(?,e).
. . : u',u
axd  3xY 202 202 ’
dul vl a9 a6

Aus der Voraussetzung der Regularitét des Fléchenstiicks in der
urspringlichen Parametrisation in der Umgebung des Punktes P0
folgt, dal

Ax,x9) o o,
. 3 1,3 (1<1i<i<3) 3(u'yu®)
Die Jacobi-Matrix der Transformation ist in der Umgebung von

Po groBer als Null, Demzufolge gilt

a(xi,Xj) 0
1.3 (1<1<3¢3 2 (0, 0 *

in der Umgebung von PQ,
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Satz 7.2. Wenn ein Flichenstiick S in der urspring-
lichen Parametrisation der Klasse %' (n=1) ist, dann ist
es in der Martensenschen Repridsentation (9,0) der Klasse ch

Bewels. Aufgrund der Voraussetzung stellen wir fest,
daB die rechten Seiten des Gleichungssystems (6.6) hinsicht-~
lich der Variablen u? der Klasse C% sind,.Gleichzeitig sieht
man, daB sie beliebig groBer Regularitédtsklasse Dbezliglich ¢
sind, weil sie von ¢ nicht abhéngen. Aus dem Satz iber die
Ableitungen der Losungen eines Systems von Differentialglei-
chungen ([8]) folgt, daB die rechten Seiten der Beziehungen
(6.8) beziiglich der Variablen ¢, rz,1 und Q2 stetige partielle
Ableitungen n-ter Ordnung besitzen. Wenn wir die durch (6.28)
und (6.29) erkliérten Funktionen betrachten, so stellen wir
fest, daB die rechten Seiten der Beziehungen (7.2) der Klasse
¢ sind.

LITERATURVERZEICHNIS

([1JMe Biernack i: Geometria rézniczkowa t.1,2. Warszawa 1955,

[2])GM, Fichtenholaz: Rachunek rézniczkowy i catkowy 1. War-
szawa 1964, .

[ 3]A. Goe t z: Geometria rdéizniczkowa. Warszawa 1965,

[4]s. Gotl ghb: Rachunek tensorowy. Warszawa 1966,

{518, Go1agb: Sur les coordonnees polaires sur une surface, Ann,
Soc.Polon,Math., 12 (1933) 87-107.

[ 61Ss Go 1 ab: Metody geometrii rézniczkowej w teorii potencjatu.
in book: Metody geometrii w fizyce i technice., Warszawa 1968,

[ 71 Be®e K ar a u: OceEOBH TeOpu: nopepxuocre#t B  TeH30pHOM
M3AOXEHHNU, y., L« MOCKBa - Jlenunrpan 1947. '

L é] E. Ka m k e: Differentialgleichungen, Losungsmethoden und Lésun-~
gen. Band 1: Gewdhnliche Differentialgleichungen, Leipzig 1951,

[9)]E.Martensen: Potentialtheorie., Stuttgart 1968,

[10]0. Per r on: Math, 2, 15 (1922) 121-146,

[1M]W.W. St iepanow: ROwnania réiniczkowe, Warszawa 1956,

- 403 -



26 : I.Gawryleczyk

[12113.11. DI yxurx oBck u #%: Kiaccrueckazr rudpfepernuansHas
reOMeTPHA B TEHB30DHOM H3JOXeHEE. MockBa 1963.

[M3]P. Hartman, A. Vintner: Onthe problems of geodesics
in the small, Amer,J.,Math. 73 (1951) 132-148.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF SZCZECIN



