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L’ERREUR DANS LE CALCUL DES INTEGRALES DOUBLES
PAR LA METHODE DES BONS TREILLIS

§ 1. Introduction

Rappelons quelques notations fréquemment employées quand
il s’agit de bons treillis: Les coordonnées d’un point dans
l’espace euclidien &8 s dimensions seront désignées par une
lettre avec un indice inférieur allant de 1 & s; 1la meme
lettre soulignée désignera le point lui-méme. Le pavé

is’l (i=1,...,§)

0 x
sara désigné par Qs. Pour un point arbitraire h on poge

R(h) = max(1,|h1|).,. max (1, [bg|)-.

Si une fonction réelle f£(x) satisfait des conditions de
régularité et d’extension par périodicité que nous n’avons pas
besoin de rappeler ici (pour ces conditions et pour les trans-
formations de 1’intégrale permettant de satisfaire les con-
ditions de périodicitd, voir p. ex. [7]), cette fonction peut
etre développée en série multiple de Fourier

(1.1) 2(x) = TT cp exp (2xi hex),
bez =

oa le point désigne un produit scalaire et ou les coefficients
e . satisfont
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2 : SeKeZaremba

(1.2) lon | < Ko BB,

K, étant une constante qui ne dépend que de f et r atant
un entier positif; quand r » 2, la série est donc uniformé-.
ment et absolument convergente.

Pour obtenir une approximation de 1l’intégrale

[ 2 ax,

as
on choisit un entier positif m et un vecteur g a coordon-
nées entiéres. On désigne alors par plg) le minimum de R(h),
quand 2#9’:(0,0.'»,0) G'U

(1.3) g*h =0 (mod m).

On regarde l'expression

Bl
ML

B~

(% &)

comme une valeur approchée de l'’intégrale; les coordonnées de
m"" kg de‘(rraient atre réduites modulo 1, mais si l’on pense
& f comme étant donnée par (1.1), cela n'est plus ndcessaire.
On voit facilement (p. ex.[4], [7]) que si ¢, =0 des que
R(h) > p(g), la formule d’intégration est exacte. '
Dans le cas géndral, on trouve (EZ], (7D que 1l’erreur
d’intégration est bornée par E P T/(g), ou :

(g = ¥ R,

la somme se rapportant & tous les he 2® différents de 0 et
satisfaisant (1.3).
On sait que [7]

- 384110 n m)°
(1.4) () (g) ¢ 23— {log n) ,
&S oo1 (Log 205 To(g)”
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L erreur dans le calcul des intégrales 3

mais cette borne supérieure sst fortement exagérée. Comme la
recherche des bons t;eiliis_se réduisait & celle des g don-
nant la plus grande valeur possible de o(g) ([3],05], [7]),
il est important d’obtenir une borne supérieure plus précise
de P(r)(g) en fonction de plg) et plus particuliérement
une borne de sz)(g), car

27 (g) < p(g)”F B2 (g) (x> 2)

et cette derniere borne supérieure parait relativement sa-
tisfaisante quand on substitue a P(r)(g) une borne  su-
périeure satisfaisante de cette quantité.

Le probleme d’obtenir une borne supérieure de P(2)(§)
meilleure que (1.4) dans plus de deux dimensions présente des
difficultés sérieuses. Le cas de s = 2 est beaucoup plus
simple grace a la possibilité d’employer directement 1'algo-
rithme des fractions continues. Dans ce cas-la (mais seulement
dans ce cas) 1'exposant de log m dans (1.4) est le meilleur
possible; cependant nous allons réduire considérablement 1a
constante en nous servant d’un raisonnement complétement diffé-
rent et plus direct que celui qui avait donné (1.4). Grice a
une étud9 an peu plus approfondie de 1’engemble des solutions
de (1,3), on obtient dang les cas les plus importants des bor-
nes inférieures de P(Z)(gp et 1l’on arrive au résultaf suivant
dont l'application & la pratique est évidente.

On sait {6] que dans deux dimensions le rapport p(g): m
est le plus grand possible quand, en désignant par <un> ;la
suite des nombres de Fibonacci (u,]::u2 = 1y Uppp = U
(11=1,2,.‘.)) one pose

n+1 + Un

(1-5) n= unp §_=<']) un_'])’
ce qui donne plg) = u, 5, ou bien

(1.6) m = 2u.
ce gqui donne pig) = 2u, .
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D?ailleurs, dans deux dimensions, on peut toujours poser
2 -2
(1.7) | P2 (g) = 1% ¢ 10g n;

il se trouve que le coefficient ¢ a une borne inférieure po-
sitive universelle et une borne supérieure finie pour cer-
taines classes de treillis admettant des valeurs du module m
arbitrairement grandes., Il est donc naturel de regarder c comme
une mesure du rendemeht d’un treillis, Jusqu’ék présent, les
treillis definis par (1.,6) n’avaient guere attiré 1l’atten-
tion, mais on verra que, juge par ce critere, leur rendement
est supérieur a celui des treillis définis par (1.5).

. (2)

§ 2. Une majorante de P (g)

Nous nous bornons au cas ou le nombre d’éléments du dé-
veloppement de gy/m (avec g, = 1) n’est pas inférieur & 3.
Ceci n’est pas une restriction sérieuse, car si ce nombre est
inférieur & 3, m est trés petit a moins qu’au moins un élé-
ment de cette fraction continue ne soit relativement grand,
auquel cas [6] plg): m est| petit, ce qui rend aussi le treil-
lis peu intéressant. D’ailleurs, il n'y aurait aucune diffi-
culté & adapter le raisonnement qui suit au cas d’une fraction
continue composée d’un ou deux éléments.

Proposition 2.1. Soit g = <1, 52> avec
(52, m) = 4, le développement de g,/m en fraction continue
comportant au moins trois éléments. Alors

oy
J:_)(2) » T log n

12 p(g{z logt '

(2.01)

(e

i &= (1+VE).

Démonstrat ion. Désignons par byseeesb, les
éléments du développement de g,/m en fraction continue et

par Ak/Bk ses reduites successives; en particulier Bq = m.
Soit

(2,02) B 4$ b <Bgi B ShHy <B (k >2)
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L'erreur dans le calcul des intégrales 5

On a alors |h'2 - h,y| < B et d’aprés le théoréme de Lagrange
gur les fractions continues, pour toute paire d’entiers U et
t“’

|(h'2 -y, = (U =1")m |>|B_, 8y - A g m

Donc}: si hslk"l) = =-B, 4 8+ A 4D, Ih%k'1)| est une borne
inferieure des valeursg absolues deg differences entre les va-
leurs de h,, quand g satisfait (1.3) et by et b'2' gatis-
font (2,02). En tenant compte des quatre combinaisons possib-
leg des signes de h,I et hz‘ on trouve,quand k >1,

oo 2
1 4 1 27

(2.03) | %m ( )2< 2 (k )'2§ T{ég (g)2 "
02! % RUA Bk1h1_1 3 plg

£2®0(aod x)

Soit maintenant Pliz (g) la somme de R(Q_)M2 pour tous
les h satisfaisant (1.3) et tels que h, soit congruent mo-
dulo m & un nombre h pour lequel h2 h20 et Bk-’l £
€lhl<By. Quand k > 2, on obtient cette somme & partir de
{2,03) en substituant dans chaque terme de cette dernisre somme
1’expression

1
(|hy| + Am)®

LDM8

. _2 . N _2 »
a h2 . Le rapport de cette somme a h2 est

(2.04) S 1 -
1= +2m/|h2|)

Si 1’0on écrit la fraction continue de fagon a dviter que
le dernier élément soit égal a 1, on a B, < m/2,quand k<q-1,
et (2.04) est plus petite que
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& 1 21X 1 3= 1 _af
12.0(11»2;\) 2 2 ‘E(an)2 DY
Si k =q, on se contente de la majorante
S _1___x?
2= (1 +A) 6
On a donc, d'apres (2,03),
(2) 4
(2.05) P, (8 —"—= (k=2,...,a-1)
k20T a2 p(g)? e
ot
(2.06) 2 (g)< a
. gL — 5.
e - 9'19(§)‘2

. (2) (2)
Quand & P, (g), on remarque que ni p(g) ni P (§)

ne changent pas,quand on substitue m - 8o a 80 On  peub
donc supposer 85> n/2, ce qui entraline B,I =1, Alors P\2 (gQ
est la somme de RQQ)'a par rapport & tous les h satisfai-
sant h, = hy T 0 (mod m) et |h1l +*|h2|> 0. On trouve
donc

, = + R
-] 3m°  omt

-

(2) 4 S 4 4(“ 2 211? xt
(2.07) P, (g) =5 2. A (X - S i
7 18 me & k° * o

D'anrés (2.05), (2.06) et (2.07), il vient

(2) 2 4
(2.08) P (g)< (g-2/3)x 21;:2 . 71'4 .

12 p(g)®  3z° 9m

Il n'y a plus qu’a trouver une bonne majorante d8 q en
fonction de m, Bvidemment, quand q est donné, m es¥ le
plus petit si tous les éldments de la fraction continue_ \52"“
sauf le dermier sont égaux a 1, celui-ci étant égal a 2. 3a
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L'erreur dans le calcul des intégrales 7

tenant compte du fait que la premiére réduite est alors 'l/u.2
(ot (uk > désigne toujours la suite des nombres de Fibonacci)
et que si la derniere réeduite a pour déenominateur Us celui

de l'avant-derniere est u,_,, on trouve

un
(2.09) m = By>ug,oe

D?ailleurs, pour tout n [

.-1 o - -
(210)  u_ = 52E ~(-9 ) = S%an. (1+ ),

n

ou, comme précédemment, £ = %—(1 +V5).
Par guite

+1 o
log u = n log &- log V5 + log (’l s (-1)" 3 zn),

donc
n+l  ~en

n = (log u, + log V5 - log (’1 + (=1) 4 ))/log &<

< (log u + log V5 - log (1 - §—2n))/log§

et comme
log(1-a) > =a/(1 =0 (x>0),

on trouve finalement
-2n -2n, =1
(2.11) n <(log w, + log V5 +& (1-¢% ) )/log§.

Puisque dans nos hypothéses n>»5, on a
- - -1
E72B(1 - ¥72) < 0.07

et,puisque 1logV5<0.81, on en déduit

logm 0,82 , logm , 41
q*'2<Iogi"' 08 < gt "W
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8 S.KeZaremba

et
2,logm 2
Q- 3<Iog E "2'2‘
D’apres (2.08), il vient
(2) 4 4 4
(2.12) P “(g)< T _logm 23w 2ﬂ§ - @4.

12 p(g)° logk " 288 plg)® " o

Drailleurs, on a toujours p(g)<(2/5)m. On voit alors
que la somme des deux derniers termes est plus petite en va-
leur absolue que le second, On a donc a plus 'forte raison
1'inégalite (2.01).

En tenant compte des valeurs numériques de ™ et de logt,
on déduit de (2.01) l'inégaliteé suivante

-2
P(2)(§) <17 p(g)  log m;

(2.13)
en comparant ceci avec la majorante (1.4) de P(Zj(g) pré-
cédemment trouvée, on voit que le coefficient de p(g_)-2 log m
a été réduit par un facteur de plus de 10.

§ 3. Une classe remarquable de treillis

Comme nous l’avions remarqué au début, les treillis dé-
finis par (1.5) méritent tout particuliérement notre atten-
tion. Dans ce cas-la

(3.1) p(g)/m = u,_o/u, > 3/8

ce qui nous permet d’exprimer la mgjorante (2.13) en fonction
de m; il vient

P(2)

(3.2) (g) < 12002 log m.

Cependant, il nous a semblé utile d’examiner une classe
de treillis qui généralise celle dont il vient d’etre ques-
tion. On définit la suite <v, > par
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L'erreur dans le calcul des intégrales 9

Vo= 05 Vy= 15 Vo= bV o+ Y (k::0,1,2,...),

o b est un entier positif. On pose ensuite

(3.3) m=v g=¢1, v D

q' =2 g~1
On remarque que,quand b = 1, on a les nombres de Fibonacci
et les treillis définis par (1.5).

Proposition 3.1. Pour le treillisg défini par

(3-3)’
(3.4) plg) =b v

Q-2 *

Démonstration. Coci est une généralisation de
la propriété des treillis engendrés par les nombres de Fibo-
nacei qui était citée dans l’introduction. Le raisonnement qui
suit est une simple généralisation de la démonstration de
la Proposition 2.3 dans [6]. De la méme fagon on montre que,-
8l V4 ¢ <|h2| Vepo s (1.3) entraine R(h) > b Y4 vk+,|/vk+3 et
1’on remarque que, les roles de hq et h2 etant symétri-
ques, on peut supposer

2 2
(3.5 Vw2 > B2 2B Vg Vigpq/Vieys ¢

Dans ce cas, le plus petit entier égal ou plus grand que
cette borne inférieure b A vk+1/vk+3 de R(h) est au moins
b vq_z. En effet,

b2 v

a

Vi+1 - Vg-2
i
S Vee3 Ve,

b vq vk+1 b
: -bv v v
q k+3 q

=b v
Vi3 Q-2

la derniere inégalité étant une conséquence facile des pro-
priétés bien connues des fractions continues. D’ailleurs,

(b2 + 1)/b >'Vk+3/vk+2 > (b2+b+‘l)/(b + 1),
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Donc, en tenant compte de (3.5), on trouve:

2 3.
bvvv v, b v(b+13) b(b+1)3vk+3<
k+3 (b° +b + 1) k+2 (b +b + 1) Viesd

3 ,.2 2
(b +1)7 (v° + 1%,

(b°+b + 1)° b

des que b»2, tandis que le cas de b=1 avait été traité
précedemment, Donc p(g) 23 mais on a l’egalltel car
hy = vy_ps» by = b satisfait ?1 3).

Evidemment, les treillis du type considéré correspondant
a des valeurs relativement grandes de b mn’ont aucune impor-
tance au point de vue de l’analyse numeérique, puisque [6]
p(g) € m/b. Cependant, il vaut peut—ﬁtre la peine d’examiner
d’un peu plus prés le cas de b = 2, dans lequel le rapport
p(q): m n’est que légerement plus petit que dans le cas des
treillis construits a partir des nombres de Fibonacci, tandis
que les valeurs de q en rapport avec m sont nettement plus
petites, A cause de cela, on trouve la proposition suivante.

Proposition 3,2, Quand g est déterminé par
(3.3) avec h =2 et q >4,

p(?) 2 (log m 41 ,05) ___ x* 2n® | ot
(g)< 5+ v I,
12 q(g)° logn 18 a(g)® 3m° 9m
ou 7 =1 +V2,

Démonstration, Comme dans le cas général, on
a (2,08), mais en cherchant la valeur de gq, on doit se souve-

S

nir que si, pour faire g, > m/2, on substitue Vg = Vg-1 @
vq_1 = 85y OD. allonge le developpement en fraction continue de
g,/m, de sorte que Bq = v,, mais on a toujours Bc_11 = v 1<m/2

Pour trouver une majorante de q, qui est presque egale a sa
valeur, on remarque que

- G 0 ) s )
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et que par suite

k+1

q = (1og v_+ log (23/2) - 103(1 + (=1) 1?-21()) /log r}|<

q

2 - -1
<(log m + log (23/ ) + ’”21: (1 - rf\-%) ) /10g 7|<

logm + 1,05

< log p&

des que q > 4. En substituant cette majorante de q dans
(2,08), on trouve (3.6).

Comme dans tous les cas p(é)/m > 1/3, en subgtituant les
valeurs numériques de % et log7 dans (3.6), on trouve

P(2)

(3.7) (g) < 84m“2 log m,

Cecl parai& beaucoup plus avantageux que (3.2), mais ce
n’est qu'une comparaison de majorantes; en fait, les résultats
des calculs numériques reproduits & la fin montrent que tout
de méme les treillis formés & partir des nombres de Fibonacci
sont un peu plus avantageux, au moins quand m est dans 1'in-
tervalle pour lequel on & fait les calculs,

2
§ 4. Minorantes de P( )(g) (2)
I1 est difficile d*'obtenir une bonrne minorante de P (5L?
quand seulement m et p(g) sont donnés; cependant, on

obient sans difficultél la propositicn suivante

Proposition 4,1, Pour tout treillis g=<1,g,>
avec (g2, m) =1,

(4.1) P(Z)(g) > 402 1og m.

Demonstration, En nous servant &oujours des
notations introduites précédemment et en supposant g, >m/2,
nous nous bornons aux termes correspondant a h2 = * Bk (k =
= 15000,9-1), Comme
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i1 vient |hy |<m/By,q et R(h) € m B/B, 4, donc

-2 - -
R(1)™° > n™2 (B,,/B,)% > 202 1og (B, ,/B,).

Bn faisant la somme par rapport a k et en tenant compte des
deux signes possibles de h2, on trouve (4,1),

On croit qu?une minorante obtenue pour un cas special que
nous allons tralter est valable pdur un treillis arbitraire,
Cependant, en conjonction avec (3.2), la derniére proposition
confirme d’une fagon simple et elementa:l_re ue, comme nous
1’avions indiqué dans 1'introduction, m P (g)/log m est une
norme raisonnable du rendement d’un treillis,

Proposition 4,2, Si m= uq>5 et§=<1.,uq_1>
modulo m,

(4,2) P(Z)(_g_) > 17m~2 log m.

Démonstration, On commence & se borner de
nouveau aux termes correspondant a |h2| "Bk 1= Yy mais cette
fois on choisit le développement de g/m, ou tous les eléments
sont égaux 3 1., D?ailleurs, on verifie facilement que

k+1
uk uq_1 - uk_1 uq = ("'1) uq—k (k=0,1,...,q)

et 1’on obtient la valeur de h1 satisfaisant (1.3) et ayant
la plus petite valeur absolue si l'on.pose

k+1
(4.3) hy = (-1) g 580 hy,

de sorite que

(4.4) R(k) = u, u _

On vérifie que

(4.5) uk uq_k\<2uq_3 (k=2,3,...,q-2)
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L’erreur dans le calcul des intégrales 13

en remerquant que d’apres (2.10)
= (0T @™ (@ )T ) s

Soit
£(k) = gq—Zk + (-1)2 EZk-q;

11 vient

£ (k) = 2 log E(_gq-zk + (_1 )q §2k-q).

S§i q est impair, alors £'(k)< 0 et la suite <up Ug_ >
restreinte aux valeurs impaires de k est decroissante. Comme
k>2, le maximum correspond a =3 avec e u q-k = _3.
Mais uk q-k est invariant par rapport a la substitution de
g-k & k et k est pairyquand gq-k est impair, Le maximum
est donc valable pour tout k entier entre 2 et g-2,

Si q est pair, toujours d’apres (2,10),

uy age € (B4 87 2T L g
et la fonction de k dans le second membre est visiblement
décroissante tant que k < q/2 et invariante par rapport a
la substitution de q -~k a k; son maximum dans 1l’intervalle
[3, m = 3] est donc atteint a k = 3, mais alors q ~ 3 est
impair, d¢ sorte que l’inégalité ci-dessus devient wme égalite,
Qand & k=2 ou k=gq-=2,uu, 5= ,€2u_3(q=56..).
L?insgzalité (4,5) est donc satisfaite dans tous les cas, puis-
que uj =2, Deapres (4,3), il s’en guit que R(h)<2uc1 j,quand
|hzl = uk (k = 2,3,40.,0=2) et hy est donné par (4,3), Comme
Uy > 4ug_s (9 = 546400.), 11 vient

(4.6) R(p) 2> 80 2,

~Ona g-3 termes de ce genre., Une légere modification du
raisonnement du § 3 donme une minorante de q. Au lieude @.11)
on écrit
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q)(log ug + 10g V5 - log (1 + g-zq)) /log¥ >

>(log ug + log V5 = g-zq)/logg > (log ug+ 0.75)/logk

des que g>5. Donc
q - 3>(log m-9/4)1og k.
La somme des termes (4.6) est donc plus grande que
(8 log m - 18)/(m210g £) > (16,6 log m ~ 37.41 )n=2,

Il y a encore deux termes correspondant a k = 1!et k =
= n-1, pour lesquels R(h) = u4 Bgoq = Ugog <(2/3)m. En te-
nant compte des deux signes possibles dans chacun de ces deux
termes, on trouve

16/(9m?) > 1.77a"2,
En ajoutant ceci & la somme précédente, on arrive &
(16.6 log m - 35.64)m™2,

Mais chacun des vecteurs h donrzzant lieu & cette somme peut
encore otre doublé, Alors R(h)™  est divieé par 16 et 1’ad-
dition de ces termes muliiplie la somme par 17/16, donnant

(4.7) (17.6 log m - 37.82)m~2,

Pinalement, il y & les termes correspondant a hy=0 (mod m)
0.

ou h, =0 (mod m), mais non pas ! hy = h, = D’apres

(2,07), leur somme est plus grande .que
- -2
25 2/(302) > 6.5Tm .
Ajouté & (4,7) cela donne

(4.8) (17.6 log m - 31,25)m™2,
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uend q213, (4.2) est une conséquence immédiate de cette
minerante, terdis que pour 5 < g € 12 on 1l’obtient des ré-
sultats numériques cites & la fin,

5 5. Le cas ou (gy, m)>1; une classe de treillis parii-
culierement avantageux

si (g, m) = d, évidemment p(g)< m/d. Comme nous savons
obtenir p(g) > m/3 pour des valeurs de m .arbitrairement
grandes, les cas ou d>2 offrent peu d’intérét. Nous nous
bornerons donc au cas ou d = 2, mais notre raisonnement pour-
rait etre facilement geénéralise de fagon a traiter les cas ou
d>=2,

Proposition 5,1, Soit g = (1,g2> modulo

m avec (gy, m) =1, 81 g = <1, 2g,> modulo m=2m, on a
2) ~ 2) ~—
(5.1) P( )(_g_) = P( (g)/a +m? ®2,

Démonstration, Si
(5.2) gl =0 (mod %),

?_11 est necessairement pair, En posant E.] = 2h,, E2= hy, on
trouve que (5,2) est équivalent a (1,3), Ceci etablit une cor-
respondance biunivoque entre les solutions des deux congruen-
ces avec R(E) = 2R(h) a moins que E1 = 0, auquel cas R(h) =
_-;r‘ Rfn). On a donc

P(2) 1 o(2)

(@ =+ 2P (g)er,

du r est egal aux trois-quarts de la somme des termes de
p!? (g) * correspondent a h1 = 0., Dans ces termes, h, = km

(k = t1, ¥2, ,..) et leur somme est
2
2 :S xn
;2 = 3_m§ *
bome
r = (3/8) 22/ (3u2) =72 52,
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Nous avions remarqué que si 1l’on definit ¢ par (1.7),ce
parametre mesure, en un certain sens, le rendement du treil-
1is, Parmi les treillis engendres par des vecteurs g dont les
deux coordonnees sont relativement premieres par rapport a m,
ceux qui sont engendrés par g = <1, uq__1 > modulo u ont
Yraisemblablement le meilleur rendement mesuré de cette fagon,
Si 1’on passe au treillis engendreé par g= <1, 2uq_1 > modulo
m = 2ug, on 8 "d*apres (5.1)

P(Z)(é) =% (clogh-c log 2 +2)<E? ¢ log m,

puisque,@d'aprés (4.,2), ¢>17 et 17 log 2 > 11’2. Ceci montre
que le rendement des treillis engendrés par g modulo M est
(legerement) supérieur a celui des treillis engendrés par g =
=<1, u,> module m, Un raisonnement semblable montrerait que
le résultat de la comparaison serait le meme si 1l’on se ba-
sait sur P(n)(é) (n>2) au 1lieu de- P(2_)(§).. D’ailleurs
p(g)y @ = p(g):t m. On & donc toutes les raisons de préférer
g modulo @m a g modulo m, du moins tant qu’il s’agit d’in-
tégrandes développables en séries de Fourier; quand ce dé-
veloppement n'’est pas convergent, d’autres ensembles de points,
qui ne sont pas des treillis, peuvent 3}tre plus avantageux,

Revenant encore aux ftreillis, on remarque que les treillis
ou ni 81 ni g, ne sont relativement premiers par rapport
& m ne peuvent pas éfre avantageux. En effet, si (gh,gz,m)=
d, le treillis est équivalent au treillis engendreé par a~! g
modulo m/d. Si (g, &5 m) = 1, mais g, et g, ont chacun
un facteur commun plus grand que 1 avec m, au moins un de ces
facteurs est nécessairement égal ou plus grand que 3, ce qui
entraine p(g)/m<1/3,

§ 6. Résultats numériques .

Les résultats ci-dessous ont eté obtenus par J.M,St-Pierre
avec l’aide de 1l’ordinateur IBM 370 de l’Université de Sher-
brooke; quand au principe du calcul de P(2)(§), voir p. ex.

[5] ou [7].
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13
21
34
55
89
144
233
377
610
987
1597
2584

12
29
70
169
408
985
2378
5741

TABLE 1
=u, g = 1, g = Ug-1
g p(2)(g)
3 2,275
5 1,080
B 4,759 x 107
13 2,091 x 107"
21 8,975 x 1072
34 3,815 x107°
55 1,603 x 1072
89 6,685 x10™>
144 2,767 x107>
233 1,139 x 107>
377 4,662 x10™*
610 1,900 x 10~4
987 7,713 x 1072
1597 3,120 x10™7
TABLE 2
m = vy g1 =1, 8 = Vg
82 P(2)(§_)
5 5,562 x 107
12 1,224 x 10”1
29 2,570 x 102
70 5,213 x 107>
169 1,032 x 1072
408 2,008 x 1074
- 985 - 3,851 x10™2
2378 7,304 x10~6
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m? P(2)(§)/log m

35,35
33,25
31,35
30,29
29,42
28,80
28,29
27,89
27,56
27,28
27,05
26,85
26,67
26,51

n? 2(2)(g)/10g m

32,23
30,58
29,64
29,03
28,59
28,26
28,01
27,81
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