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L'ERREUR DANS LE CALCUL DES INTÉGRALES DOUBLES 
PAR LA METHODE DES BONS TREILLIS 

§ 1. Introduction 
Rappelons quelques notations fréquemment employées quand 

il s'agit de bons treillis: Les coordonnées d'un point dans 
l'espace euclidien à s dimensions seront désignées par une 
lettre avec un indice inférieur allant de 1 à s; la même 
lettre soulignée désignera le point lui-même. Le pavé 

0 x̂ ^ < 1 (i = 1, ...,s) 

sara désigné par Qs. Pour un point arbitraire h. on pose 

R(h) = max( 1, | h^ | ) ... mai (1, |Ji | )•. 

Si une fonction réelle f(x) satisfait des conditions de 
régularité et d'extension par périodicité que nous n'avons pae 
besoin de rappeler ici (pour ces conditions et pour les trans-
formations de l'intégrale permettant de satisfaire les con-
ditions de périodicité, voir p. ex. [7])» cette fonction peut 
être développée en série multiple de Fourier 

(1.1) f(x) = TT ch exp (2xi h*x), 
tez — 

où le point désigne un produit scalaire et où les coefficients 
c. satisfont 
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2 S.K.Zaremba 

(1 .2) | c h | $ K r E ( h ) " r , 

K r é tan t une constante qui ne dépend, que de f et r é tan t 
un e n t i e r p o s i t i f ; quand r > 2, l a sé r i e e s t donc uniformé-
ment et absolument convergente. 

Pour obtenir une approximation de l ' i n t é g r a l e 

J f ( x ) dx, 
Qs 

on cho i s i t un e n t i e r p o s i t i f m e t un vecteur j; à coordon-
nées e n t i è r e s . On désigne a lo r s par p(g) l e minimum de R(h|), 
quand h 4 0 = < 0 , . . . , 0 > et 

(1 .3) g«h = 0 (mod m). 

On regarde l ' e x p r e s s i o n 
a-1 

comme une yaleur approchée de l ' i n t é g r a l e ; l e s coordonnées de 
m-'' kg devraient ê t r e r édu i t e s modulo 1, mais s i l ' o n pense 
à f comme é tan t donnée par ( 1 . 1 ) , cela n ' e s t plus nécessaire. 
On vo i t faci lement (p . ex . [4] , [7]) <iue s i c^ = 0 dJès que 
R(h) > p(g)> la formule d ' i n t é g r a t i o n es t exac te . 

Dans le cas général , on trouve (C2], [7 l ) que l ' e r r e u r 
d ' i n t é g r a t i o n es t bornee par ou 

p ( r ) ( g ) = z R U ) ~ r . 

l a somme se rapportant à tous l e s h e Za d i f f é r e n t s de 0 et 
s a t i s f a i s a n t ( 1 . 3 ) . 

On s a i t que [ ? ] 

(1 .4) P ( r ) ( g ) < 2 ^ ( l o f i m ) 3 - 1 

( r - 1 ) ! ( log 2) i>(g) 
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L'srreur dans le calcul des intégrales 3 

mais cette borna supérieure est fortement exagérée. Comme la 
recherche des bons treillis.se réduisait à celle des g don-
nant la plus grande valeur possible de p(g) ([3]»[5], [7])» 
il est important d'obtenir une borne supérieure plus précise 
de P ^ ( g ) en fonction de p(g) et plus particulièrement — t n ) — une borne de P I,g), car 

P(r)(g) < p(g)2"r P(2)(g) (r > 2) 

et cette dernière borne supérieure paraît relativement sa-
tisfaisante quand on substitue à une borne su-
périeure satisfaisante de cette quantité. 

(2) 
Le problème d'obtenir une borne supérieure de Pv '(g) 

meilleure que (1.4) dans plus de deux dimensions présente des 
difficultés sérieuses. Le cas de s = 2 est beaucoup plus 
simple grâce à la possibilité d'employer directement l'algo-
rithme des fractions continues. Dans ce cas-là (mais seulement 
dans ce cas) -l'exposant de log m dans (1.4) est le meilleur 
possible; cependant nous allons réduire considérablement la 
constante en nous servant d'un raisonnement complètement diffé-
rent et plus direct que celui qui avait donné (1.4). Grâce à 
une étudp un peu plus approfondie de l'ensemble des solutions 
de (1,3)« on obtient dans les cas les plus importants des bor-

( P) * nés inférieures de F (_g) et l'on arrive au résultat suivant 
dont l'application à la pratique est évidente. 

On sait q.ue dans deux dimensions le rapport p(g) : m 
est le plus grand possible quand, en désignant par <uQ> la 
suite des nombres de Fibonacci (u„ = u~ = 1.i u.^« = u,,,,. + u„ v x 1 2 ' n+2 n+1 n 
(n = 1,2,.<.)) one pose 

(1.5) n = un, g = <1, , 

ce qui donne p(g) = un_2» ou bien 

(1.6) m = 2ur, s = <1, 2un_^> 
ce qui donne p(^) = 
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4- S.K.Zaremba 

D ' a i l l e u r s , dans deux dimensions, on peut; tou jours poser 

(?) - 2 
(1 .7) P ^ ; ( g ) = m c l o g m ; 

i l se trouve que le c o e f f i c i e n t c a une borne inférieure po-
s i t i v e un iverse l le et une borne supérieure f i n i e pour ce r -
t a i n e s c lasses de t r e i l l i s admettant des va leurs du module m 
arb i t ra i rement grandes. H es t donc na tu re l de regarder c comme 
une mesure du rendement d 'un t r e i l l i s . Jusqu'à, p résen t , l e s 
t r e i l l i s d é f i n i s par (1 .6) n ' ava i en t guère a t t i r é l ' a t t e n -
t i o n , mais on verra que, jugé par ce c r i t è r e , l eur rendement 
es t supérieur à ce lu i des t r e i l l i s d é f i n i s par ( 1 . 5 ) . 

( 2) , 
§ 2 . Une majorante .de P (g) 
Nous nous bornons au cas ou le nombre d 'éléments du dé-

veloppement de g2/m (avec g^ = 1p n ' e s t pas infér ieur à 5 . 
Ceci n ' e s t pas une r e s t r i c t i o n sé r i euse , car s i ce nombre es t 
i n f é r i e u r à 5, m es t t r è s p e t i t à moins qu'au moins un é l é -
ment de ce t te f r a c t i o n continue ne so i t relat ivement grand, 
auquel cas [6] p (g ) : m est | p e t i t , ce qui rend aussi le t r e i l -
l i s peu i n t é r e s s a n t . D ' a i l l e u r s , i l n ' y a u r a i t aucune d i f f i -
cu l t é à adapter le raisonnement qui s u i t au cas d'une fract ion 
continue composée d 'un ou deux éléments. 

P r o p o s i t i o n 2 . 1 . Soit g = < 1, g 2 > avec 
(g 2 , m) = "•!» 1® développement de g2/m en f r a c t i o n continue 
comportant au moins t r o i s éléments. Alors 

(2) 4 

(2.01) P ( g ) < - » ^ g n ' 
12 p(g) logÇ 

où \ (1 + V 5 ) . 

D e m o n s t r a t i o n . Désignons par b , j , . . . , b l e s 
éléments du développement de g2/m en f r a c t i o n continue et 
par Ajj/Bjj. ses r édu i t e s success ives ; en p a r t i c u l i e r B^ = m. 
Soi t 

(2.02) Bk-1^ h 2 < Bk' B k - 1 ^ 2 < B k U > 2 ) 
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L'erreur dans le calcul des intégrales 5 

On a a l o r s | h'2 - h'2 | < B^ e t d ' a p r è s le théorème de Lagrange 
sur l e s f r a c t i o n s cont inues , pour tou te pa i re d ' e n t i e r s t e t 

( t í 2 - hpgg - ( V - I" )m I > I Bk-1 g2 - Ak-1 m 

(k-1) I (k-1)I Donc s i h)| ' = - B ^ g 2 + A ^ ^ m, e s t une borne 
i n f é r i e u r e des va leurs absolues des d i f f é r e n c e s en t re l e s va-
l e u r s de h^, quand £ s a t i s f a i t (1 .3) e t h'2 e t h^ s a t i s -
fon t ( 2 . 0 2 ) . En t enan t compte des quatre combinaisons pos s ib -
l e s des s ignes de h^ e t h 2 on trouve., quand k > 1 , 

(2 .03) S — L , « * 
V i ^ W f e ) TJ2 h ( k - i r ^ k 3 p(g) a k - 1 n 1 g-h«o(il«l •) 

(2) ^ - 2 
Soit maintenant P^ (g) l a somme de R(h) pour tous 

l e s Ji s a t i s f a i s a n t (1 .3 ) e t t e l s que h 2 s o i t congruent mo-
dulo m à un nombre h pour l eque l h 2 h ^ O e t ®k-1 ^ 
4 | h | <Bj£. Quand k > 2, on ob t i en t c e t t e somme à p a r t i r de 
(2 .03) en s u b s t i t u a n t dans chaque terme de c e t t e dernière somme 
l ' e x p r e s s i o n 

a - ( | h 2 | +Am) 2 

- 2 » - 2 
à h 2 . Le rappor t de c e t t e somme à h 2 e s t 

00 A 

(2 .04) V L - 2 ' 
f i (1 + A m / | h 2 | ) 

Si l ' o n é c r i t l a f r a c t i o n continue de façon à é v i t e r que 
le d e r n i e r élément s o i t égal à 1, on a Bk< m/2,quand k^q-1, 
e t (2 .04) e s t plus p e t i t e que 
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6 S.K.Zaremba 

V 1 - V 1 V 1 „ - 3 v i £ 
è T T T i ^ " s ? " à " 4 à n 2 ~ 8 ' 

S i k = q, on se contente de la majorante 

,2 
ir 

2 ~ ~6~ (1 + A ) 

On a donc, d'après ( 2 . 0 3 ) , 

(2) J * 
(2 .05) ( g K 2e p" (k= 2 , . . . , q - D 

* ~ ' 12 p ( g ) 2 

et 

(2) * 
(2 .06) P ( g ) < -

1 ~ 9 ' p( g) 

(2) (2) 
Quand à P^ ( g ) , on remarque que ni p(g) n i P (g) 

ne changent pas, quand on substitue m - g 2 à g 2 . 0n/ peut» 
donc supposer g 2 > m/2, ce qui entraîne Alors P ^ 2 ' ( g ) 
est la somme de Rtfa.)"2 par rapport à tous les il s a t i s f a i -
sant h^ = h 2 - 0 (mod m) et | h^ | +' | h 2| > 0 . On trouve 
donc 

coi 21. 100 \ 2 2 4 . & V 1 4 I r 1 I 2jt 7T (2 .07) P ^ 2 ) ( S ) + 
' - m ^ k m \ k k 2/ Jm2 9m4 ' 

D'après (2 .05)» (2 .06) et ( 2 . 0 ? ) , i l vient 

(2 .08) P ( 2 > ( g ) < ^ - 2 / 3 ) * % + - 4 . 
~ 12 pCg) 3a 9m 

I l n 'y a plus qu'à trouver une bonne majorante le q en 
fonction de m. évidemment, quand q est donné, m est le 
plus pe t i t s i tous les éléments de l a f ract ion continue 
sauf le dernier sont égaux à 1, c e l u i - c i étant égal à 2m Sa 
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L'erreur dans le calcul des intégrales 

tenant compte du fait que la première réduite est alors I/U2 
(où désigne toujours la suite des nombres de Fibonacci) 
et que si la dernière réduite a pour dénominateur uQ, celui 
de 1'avant-dernière est u OJ on trouve n—2' 

(2.09) m = B q > u q + 2 . 

D'ailleurs, pour tout n | 

- 7 / n -n>. -4 n / n+1 -2n\ 
(2.10) u û = 5 I f e - ( - ^ ) ) = 5 ?ï,. (1 + (-1) Ç )f 

où, comme précédemment, ^ ( 1 W F ) . 
Par suite 

log uQ = n log log V F + log (1 + (-l)n ^ 2n), 

donc 
n = (log u n + log V F - log (1 + ( - D n + 1 $ eû))/log ^ 4 

<(log u n + log V F - log (1 - Ç ' ^ / l o g É , 

et comme 

logd-OL) >-«/(l -od (o( >0), 

qn trouve finalement 

(2.11) n<(log u n + l o g V 5 + ^ _ 2 n (1 - ^ " ^ i ^ / l o g ^ . 

Puisque dans nos hypothèses n>5» on a 

^ _ 2 n(i - ^ _ 2 n ) " 1 < 0.01 

et,ipuisque log VF<0.81, on en déduit 

n * ^ ̂  log m , 0*82 -, log m 41 
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8 S.K.Zaremba 

e t 
2 s log m 23 

q " 3 I o g T " ^ * 

D'après (2 .08) , i l vient 

(2.12) P U ) ( g )< y + 
~ 12 p(g)41 logt, 288 plg)* 3nT 9HL 

D ' a i l l e u r s , on a tou jours p(j;) < ( 2/5)m. On voit a l o r s 
que l a somme des deux dern ie r s termes es t plus p e t i t e en va-
l eu r absolue que le second. On a donc à plus f o r t e ra i son 
l ' i n é g a l i t é ( 2 . 01 ) . 

En tenant compte des valeurs numériques de x et de l o g | , 
on déduit de (2.01) l ' i n é g a l i t é suivante 

(2 ) - 2 
(2.13) P (g) <17 p(g) log m; 

( 21 en comparant ceci avec l a majorante (1.4) de Pv (g) p ré -—_ P 
cédemment trouvée, on voi t que le c o e f f i c i e n t de p(g)~ log m 
a é té rédu i t par un f a c t e u r de plus de 10. 

§ 3 . Une c lasse remarquable de t r e i l l i s 
Comme nous l ' a v i o n s remarqué au début, l'eB t r e i l l i s dé-

f i n i s par (1 .5) méritent tout par t icu l iè rement notre a t t e n -
t i o n . Dans ce cas - l à 

(3 .1) p(g)/m = u q _ 2 / u q > 3 /8 

ce qui nous permet d 'exprimer l a majorante (2.13) en fonc t ion 
de m; i l v ien t 

(2) - 2 
(5.2) P (g) < 120m log m. 

Cependant, i l nous a semblé u t i l e d?examiner une classe 
de t r e i l l i s qui généra l i se ce l le dont i l v ient d ' ê t r e ques-
t i o n . On d é f i n i t l a su i t e <Vj£;> par 
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L'erreur dans le ca lcul des intégrales 

v 0 = 0; v,, = 1; v k + 2 ^ uvfc+1 T vfc 

où b es t un e n t i e r p o s i t i f . On pose ensui te 

= + v t (k= 0 , 1 , 2 , . . . ) , 

(5 .3) m = v. e = <1. V i >] 

On remarque quei, quand b = 1, on a l e s nombres de Fibonacci 
et l e s t r e i l l i s d é f i n i s par ( 1 . 5 ) . 

P r o p o s i t i o n 3 .1 . Pour le t r e i l l i s d é f i n i par 
( 3 . 3 ) , 

(3 .4) p(g) = b v q _ 2 . 

D é m o n s t r a t i o n . Ceci es t une géné ra l i s a t ion de 
la p ropr ié té des t r e i l l i s engendrés par l e s nombres de Fibo-
nacci qui é t a i t c i t ée dans l ' i n t r o d u c t i o n . Le raisonnement qui 
s u i t e s t une simple géné ra l i sa t ion de l a démonstration de 
l a Proposi t ion 2 .3 dans [ 6 ] . De l a même façon on montre que,-
s i vk+1 ^ l h 2 U v k + 2 ' en t ra îne R ( h ) » b v q v k + 1 / v k + ? e t 
l ' o n remarqué que, l e s rô l e s de h^ et h 2 é t an t symétr i -
ques, on peut supposer 

(3.5) v k + 2 > h2 > b v q v k + 1 / v k + 3 . 

Dans ce cas, l e plus p e t i t e n t i e r égal ou plus grand que 
ce t t e borne i n f é r i e u r e b v q v k + ^ / v ^ j de R(h) e s t au moins 
b v „ 0 . En e f f e t , q - 2 ' 

k+3 q-2 = b v. 
vk+1 _ v q-2 

k+3 

b 2 Vq < v k + 3 vk+4 ' 

l a dernière i n é g a l i t é é tan t une conséquence f a c i l e des pro-
p r i é t é s bien connues des f r a c t i o n s cont inues . D ' a i l l e u r s , 

(b 2 + l ) / b > v k + 5 / v k + 2 > ( b 2 + b + l ) / ( b + 1 ) . 
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10 S.K.Zaremba 

Donc, en tenant compte de (3.5), on trouve 

b ^ - b v 2 
k+3 q"2 

b2 vq(b +1)3 b(b + 1)3 v k + 3 

< (b* + b + 1 v£+2 ^ (b^+b + 1)-* vk+1
 < 

, (b + I)3 (b2 + 1)2 
< —7-3 n ^ 1 

(b +b + 1 y b 

dès que b>2, tandis que le cas de b = 1 avait été traité 
précédemment. Donc p(g)^b v 2, mais on a l'égalité!, car 
h1 = vq_2, h2 = b satisfait 0.3). 

Evidemment, les treillis du type considéré correspondant 
à des valeurs relativement grandes de b n'ont aucune impor-
tance au point de vue de l'analyse numérique, puisque [6] 
p(g) ̂  m/b. Cependant, il vaut peut-être la peine d'examiner 
d'un peu plus près le cas de b => 2, dans lequel le rapport 
p(q): m n'est que légèrement plus petit que dans le cas des 
treillis construits à partir des nombres de Fibonacci, tandis 
que les valeurs de q en rapport avec m sont nettement plus 
petites. A cause de cela, on trouve la proposition suivante. 

P r o p o s i t i o n 3.2. Quand g_ est déterminé par 
(3.3) avec b » 2 et q > 4, 

p(2> ( e ) <tt 4(logm^1 T05) +_2*!. + 
- 12 q(g) log^ 18 q(gr Jaf 9m* 

où - 1 + V?. 
D é m o n s t r a t i o n . Comme dans le cas général, on 

a (2.08), mais en cherchant la valeur de q, on doit se souve-
nir que si, pour faire g2 > m/2, on substitue vq - v .j à 
Vq_.j = g2, on allonge le développement en fraction continue de 
g2/m, de sorte que Bq = vq, mais on a toujours = vq_^<m/2. 
Pour trouver une majorante de q, qui est presque égale a sa 
valeur, on remarque que 

-3/2. k , .k+1 -k\ -3/2 k / .k+1 »2k\ 
vk = 2 (? + ( - D 7 )•- 2 7 k(i+(-D 7 ) 
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L'erreur dans le calcul des intégrales 11 

et que par suite 

q = (log vq + log (2 3 / 2) - log(l + (-l)k+1 i?~2k))/log t|< 

. 3/2. ,2k , r2kv-1\ , , 
<(log m + log (2 ) + i)\ (1 - i\ ) )/log T)\< 

log m + 1.05 
^ 10g T?i ' l 

dès que q ^ 4. En substituant cette majorante de q dans 
(2.08), on trouve (3.6). 

Comme dans tous les cas p(g)/m > 1/3» en substituant l'es 
valeurs numériques de îc et log 17 dans (3.6), on trouve 

(2) -2 (3.7) P (g) < 84m log m. 

Ceci paraî|t beaucoup plus avantageux que (3.2), mais ce 
n'est qu'une comparaison de majorantes; en fait, les résultats 
des calculs numériques reproduits a la fin montrent que tout 
de mi|me les treillis formés à partir des nombres de Fibonacci 
sont un peu plus avantageux, au moins quand m est dans l'in-
tervalle pour lequel on a fait les calculs. 

( 2 ) 
§ 4. Minorantes de P (g) , k ( 2 ) 
Il est difficile d'obtenir une bonne minorante de P (g), 

quand seulement m et p(g¡) sont donnés; cependant, on 
obient sans difficulté! la proposition suivante 

P r o p o s i t i o n 4.1. Pour tout treillis g=<1,g 2> 
avec (g2, m) = 1, 

) P ( 2 \ g ) > 4m~2 log m. 

D é m o n s t r a t i o n . En nous servant jtoujours des 
notations introduites précédemment et en supposant g2>m/2, 
nous nous bornons aux termes correspondant à h 2 = + B^ (k = 
= 1,...,q-1). Comme 
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12 S.K.Zaremba 

| V B k - g2/m U 1 / ( B k w • 

i l vient I I < m/BJc+1 et R(h) ^ m Bj£/Bjc+1, done 

R(h)"2 > m"2 (B^/B^) 2 > 2m"2 log (Bk+1/Bk). 

En faisant l a somme par rapport à k et en tenant compte des 
deux signes possibles de hg, on trouve (4 .1) . 

On croit qu'une minorante obtenue pour un cas spécial que 
nous allons t r a i t e r est valable pour un t r e i l l i s a rb i t r a i r e . 
Cependant, en conjonction avec (3 .2 ) , la dernière proposition 
confirme d'une façjon simple et élémentaire que, comme nous 

' 2 (2 ; l 'avions indique dans l ' introduction, m P (g)/log m est une 
norme raisonnable du rendement d'un t r e i l l i s . 

P r o p o s i t i o n 4.2 . Si m = 5 et g = <1 «u^^ > 
modulo m, 

(4 .2) P ( 2 ) ( g ) > 17m"2 log m. 

D é m o n s t r a t i o n . On commence à se borner de 
nouveau aux termes correspondant à |hg| = Bk_.j = u k , mais cette 
fo i s on choisit l e développement de g/m, où tous les éléments 
sont égaux à: 1. D'a i l l eurs , on v é r i f i e facilement que 

Uk Uq-1 " Uk-1 Uq = uq-k (k=0 ,1 , . . . , q ) 

et l 'on obtient l a valeur de ĥ  sa t i s fa i sant (1.3) et ayant 
l a plus pet i te valeur absolue s i l 'on.pose 

k+1 

(4 .3) h1 = ( -1 ) uq_k sgn h 2 , 

de sorte que 

(4.4) R(h) = uk uq_k . 

On vé r i f i e que (4 .5) uk uq-k N< 2uq-3 (k = 2 , 3 , . . . ,q-2) 

- 358 -



L'erreur dans le calcul des integrales 13 

en remarquant que d'après (2.10) 

Soit 
f(k) = + ( - D q ; 

il vient 

fQc) = 2 i o ^ ( - r 2 k
 + c-i)q *2k~q). 

Si q est impair, alors f'(k)<0 et la suite <uk > 
restreinte aux valeurs impaires de k est décroissante. Comme 
k^2, le maximum correspond à k = 3 avec u^ = 
Mais u^ u ^ est invariant par rapport à la substitution de 
q-k à k et k est pair»quand q-k est impair. Le maximum 
est donc valable poilr tout k entier entre 2 et q-2. 

Si q est pair, toujours d'après (2.10), 

Uk V k « U « + • î'"2k • 

et la fonction de k dans le second membre est visiblement 
décroissante tant que k 4 q/2 et invariante par rapport à 
la substitution de q - k à k; son maximum dans l'intervalle 
[ 3 , m - 3 ] eat donc atteint à k = 3, mais alors q - 3 est 
impair, de sorte que l'inégalité ci-dessus devient une égalité. 
Quand' à k = 2 ou k = q - 2, u2 uq_2 =uq_2<2uct_2 (q=5,6,... ). 
L'inégalité (4.5) e3t donc satisfaite dans tous les cas, puis-
que u^®2. Deaprès (4.3), il s'en çuit que R(h)< 2uq_̂ j,,quand 
| h 2 | a uk (k = 2,3,...,q-2) et h1 est donné par (4.3). Comme 
ùq > *uq_3 = 5,6,...), il vient 

(4.6) R(fe)"2> 8uq"2 . 

On a q-3 termes de ce genre. Une légère modification du 
raisonnement du § 3 donne une minorante de q. Au lieu de (2.11) 
on écrit 
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q>(log uq + logV? - log (1 + Ç~2q)) /log % > 

r\ 

>(log Uq + log VF1- )/log^ > (log U q+ 0.75)/log % 

dès que q>5. Donc 

q - 3 > (log m - 9/4)log 

La somme des termes (4.6) est donc plus grande que 

(8 log m - 18)/(m2log > (16.6 log m - 37.41)m"2. 
Il y a encore deux termes correspondant à k = 1jet k = 

= n-1, pour lesquels R(h) = u^ uq-1 = <(2/3)m. En te-
nant compte des deux signes possibles dans chacun de ces deux 
termes, on trouve 

l6/(9m2) > 1.7?m~2. 

En ajoutant ceci à la somme précédente, on arrive à 

(16.6 log m - 35.64)m~2. 

Mais chacun des vecteurs h donnant lieu à cette somme peut 
encore être doublé. Alors R(h) est divisé par 16 et l'ad-
dition de ces termes multiplie la somme par 17/16, donnant 

(4.7) (17.6 log m - 37.82)m"2. 

Finalement, il y a les termes correspondant à h^= 0 (modm) 
ou h2

 s 0 (mod m), mais non pas j h^ = h2 = 0. D'après 
(2.07), leur somme est plus grande que 

2ir~2/(3m2) > 6.57m"2. 

Ajouté à (4.7) cela donne 

(4.8) (17.6 log m - 31,25)m"2. 

- 36jO -



L'erreur dans le calcul des intégrales 15 

Qqe.nd (4.2) est une conséquence immédiate de cette 
minorante, tandis que pour 5 ̂  q 4 12 on l'obtient des ré-
sultats numériques cités à la fin. 

5 5. Le ces ou (gg» m)>1 ; une classe de treillis parti-
culièrement avantageux 

Si (g2, m) = d, évidemment p(g)^ m/d. Comme nous savons 
obtenir p(g) > m/3 pour des valeurs de m .arbitrairement 
grandes, les cas où d>2 offrent peu d'intérêt. Nous nous 
bornerons donc au cas où d = 2f mais notre raisonnement pour-
rait être facilement généralisé de façon à traiter les cas où 
d > 2. 

P r o p o s i t i o n 5.1. Soit g = <1, g 2> modulo 
m avec (g2, m) = 1. Si g = .<1, 2g2> modulo m = 2m, on a 

(2) ~ (2) 9 9 

(5.1) P (g) = P (g)/4+or m . 

D e ' m o n s t r a t i o n . Si 
(5.2) g»h = 0 (mod m), 

h^ est nécessairement pair. En posant h-| = 2h^ , h 2=h 2, on 
trouve que (5.2) est équivalent à (1.3). Ceci établit une cor-
respondance biunivoque entre les solutions des deux congruen-
ces avôc R(H) = 2R(h) à moins que h., = 0, auquel cas R(h) = 
f H(h). On a donc 

P(2)(g) = | p ( 2 ) ( g ) + r t 

o;ù r est égal aux trois-quarts de la somme des termes de 
( 2 ) * " •P (g) correspondant à = 0. Dans ces termes, h2 = km 

(k = ±1, ±2, ...) et leur somme est 
OO r\ 

2 y 1 _ » 
s r? = r ? • m "-1 k 3m 

Donc 
r = (3/4) Jr2/(3m2)=~Jr2 m-2. 
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Nous avions remarqué que Bi l'on définit c par (1.7),ce 
paramètre mesure, en un certain sens, le rendement du treil-
lis. Parmi les treillis engendrés par des vecteurs g dont les 
deux coordonnées sont relativement premières par rapport à m, 
ceux qui sont engendrés par g = <1, > modulo u^ ont 
vraisemblablement le meilleur rendement mesuré de cette façon. 
Si l'on passe au treillis engendré par g = <1, 2uq_i > modulo 
m = 2uq, on a d'après (5.1) 

P^ 2\g) = m~2 (c log m - c log 2 + Tr2)<m~2 c log m, 
« 

puisque»fd'après (4.2), c>17 et 17 log 2 > T. . Ceci montre 
que le rendement des treillis engendrés par g modulo m est 
(légèrement) supérieur à celui des treillis engendrés par 
= <1, Uq> modulo m. Un raisonnement semblable montrerait que 
le résultat de la comparaison serait le même si l'on se ba-
sait sur P ^ ( g ) (n>2) au lieu de- P^(_g). D'ailleurs 
p(g)si m = p(g)s m. On a donc toutes les raisons de préférer 
g; modulo m à g modulo m, du moins tant qu'il s'agit d'in-
tégrandes développables en séries de Pourier; quand ce dé-
veloppement n'est pas convergent, d'autres ensembles de points, 
qui ne sont pas des treillis, peuvent êltre plus avantageux. 

Revenant encore aux treillis, on remarque que les treillis 
où ni ĝ  ni gg ne sont relativement premiers par rapport 
à m ne peuvent pas ê(tre avantageux. En effet, si (g^,g2iHi)= 
= d, le treillis est équivalent au treillis engendré par g 
modulo m/d. Si (g-j , gg, m) = 1, mlais g^ et g 2 ont chacun 
un facteur commun plus grand que 1 avec m, au moins un de ces 
facteurs est nécessairement égal ou plus grand que 3, ce qui 
entraîlne p(g)/m<1/3. 

§ 6. Résultats numériques 
Les résultats ci-dessous ont été obtenus par J.M.St-Pierre 

avec l'aide de l'ordinateur IBM 370 de l'Université de Sher-
brooke; quand au principe du calcul de Pv (g), voir p. ex. 
[5] ou [7]. 
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TABLE 1 

n = u q g-, = 1 , g 2 = 

m g 2 P ( 2 ) ( g ) m2 P ( 2 ) ( g ) / l c 

5 3 2 ,275 35,35 
8 5 1 ,080 

4 ,759 x 10"1 
33,25 

13 8 
1 ,080 
4 ,759 x 10"1 31,35 

21 13 2,091 *10~ 1 30,29 
34 21 8 ,975 *10~ 2 29,42 
55 34 3 ,815 *10~ 2 28 ,80 
89 55 1 ,603 x 1 0 " 2 28,29 

144 89 6 ,685 x 1 0 " 3 27,89 
233 144 2 , 7 6 7 M O " 3 27,56 
377 233 1 ,139 * 1 0 " 3 27 ,28 
610 377 4 ,662 *10~ 4 27,05 
987 610 1 ,900 x i o " 4 26 ,85 

1597 987 7 ,713 * 1 0 ~ 5 26 ,67 
2584 1597 3 ,120 x 1 0 " 5 26,51 

TABLE 2 

«1 = 1 ' 82 = V 1 
m g 2 P ( 2 ) ( g ) m2 P ( 2 ) ( g ) / l o g m 

12 5 5 ,562 M O " 1 32 ,23 
29 12 1 ,224 * 10"1 30 ,58 
70 29 2 ,570 x10~ 2 29,64 

169 70 5 ,213 x 1 0 ~ 3 2 9 , 0 3 
408 169 1 ,032 x 10~ 3 28,59 
985 408 2 , 0 0 8 x 10~4 28,26 

2378 985 3,851 X10" 5 28,01 
5741 2378 7 ,304 * 1 0 ~ 6 27,81 
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