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SOME PROPERTIES, OF LINEAR CONNECTIONS
ON RIEMANNIAN MANIFOLDS, II.

Let 11 be & smooth n-dimensionzl Riemanniasn manifold with
a metric tensor g =<,>, FM denotes the ring of smooth
functions on M and Bil denotes the Fii-module of smooth vec-
tor fields on M,

It is lmown that if a linecr connection V on 1 is Rie-
mannian, then by definition we have

(1) z{x,y>=<VZx,Y> +<x%, V,¥> .,

X,Y,Z€BM
If, mereover,

VAN e
(2) X,YeBMT(K’“ = V¥ -Vx - [£,¥] = 0
then this RWemannian connection is called a Levi-Civita con-
nection* .
Let feFM be an arvitrary smooth function on M,
Definition 1.1, The vector field, denoted by
Vi, defined by the formula

(3) /\(Vf,:{) = X(£) = af(x),

XeBM

where df is the differential of the function £, is-called
the gradient of the function f, The tensor field hf :
BM xBM —= Fi1 defined by -the formula

*? D.Grolholl, W.Klingenberg, W.Meyer: Riemannsche Geometrie in Grossen,
Berlin 1968,
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2 R.Matla, Z.Zekanowski

(4) he(£,0) = KV, Ve,1>

is called 2 Hess 2-form,

We shall prove the following theorem,

?Theéorem 1, ARiemannian connsction Von s Rieman-
nien manifold M is & Levi-Civita connection on M if anmd
only if for any fuhction fe€ Fit the Hess 2-form is a sym-
metric 2«form,

Proof, Let V be a Riemannian connection on ¥ and £
an arbitrary function in ¥, Por any ZXZ,Ye€ B we then have

XCVE,YD>= KV, VE,Y3+<KVE, VYD,
Ve, XD =KV, VE,8>+<V 2,V XD,
#rom the definition (4) of a Hess 2~form we obtain
he(X,Y) - he(¥,X) = <V, VE,¥> <V, Ve,1 =
(5) = XXV £,Y> - Y<VL,XD -(VE, V¥ +4 V2, VX 5=
= [x,Y](£) —<V£,7(x,¥) + [X,¥]>= (2(x,¥)) (£),

which shows that V is a Levi-Civita connection on M,

Now assume that V is a Levi-Civita connection on M. Then
for all X,YeBM T(X,Y) = 0, and consequently from (5) it
follows that h,(X,Y) = ho(f,X) for feFM, The remaining
part of the proof is eviden¥. ‘

Let L be a Yensor field on M of type (2.1), that is
L : BM xBM —=Bil,

DPefinition 1,2, A tensor field L : BM* BM —BM
on a Riemannian manifold M is said to be right orthogonal
provided that

(6) /\ <Z,1(1,%)> = 0,

X, YeBM
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it is said to be left orthogonal if

(7) /\(x,ch,y» = 0,
X,YeBM
when L is left and right orthogonel we say +that L is
orthogonal,
We shall prove the following theorenm,
Theorem 2, A tensor field L : BMXBM —=BM on
Riemannian menifold M 1= right orthogonal if and only if

o

(8) <Y,u(z,X)> + <X,L(Z,Y)) = 0O,

Similarly, L 1s left orthogonal if and omly if
(9) <Y, L{X,2)> + {%,u(Y,2)> = 0,

Proof, assume that L is a tensor field on M! which
is right orthogonal, By definition we have '

/\(Tc,L(z,Tc) > =0,

X,Z¢BM
Putting X = X + ¥, X,Ye BN, we get
<X + Y, (z,5+Y) > = 0.

This implids (8). The remaining part of the proof is obvious.
Theorem 2 directly implies the following corollary.
Corollary 1. An orthogonal tensor field L:

BM xBi —=BM on M is skew-symmetric, that is we have

/\ L(X,X) = 0,

XeBM

Next we prove the following theorem,

Theorem 3, Let ¥ be a linear connection on a Rie-
mennian manifold M and let V be a Levi-Civita connection
on M, V is @ Riemannien connection if and only if 5§ =V-V
is a right orthogonal tensor field on i,
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Proof, Assume that S =V -V is a right: orthogonal
tensor field on M of type (2,1)., Then we have

(10) X,Y,ZeBMZ XY D =K VX, YD + KX, V,¥)
and
(11) X’Y;ZQBM{X,S(Z,Y)> +<Y,8(2,X)) = 0.

From the assumption V=8 +$ and from (10) we obtain
2 <X, Y) = <5(2,X) + V,X,¥>+<X,5(2,Y) +7,¥) =
X,Y,ZeBM

=<V,E,Y> +<X, V,¥5+<Y,8(2,0)) +<X,5(2,1)),

By (11) this implies

Z <X, ¥> =<V X, Y> +<X, V,¥>; X,Y,Z¢€BMU,
This shows that V is a Riemannian connection, ‘
Conversely, assume that'! V and V are Riemannian connec-
tions on I, Then

7 {X,Y
X,Y,2€BM <X, Y5

VLK, Y) + KX, V,Y) A 2KX,Y ) =

< ﬁzx,w + <X, Vx>,
Hence for arbitrary X;Y,Z2 € Bl we have
<VZX - VZX,Y> + <VZ¥ - V.ZY’X> = 0,

Putting S = V - V we obtain
<Y,8(Z,X)> +<X,8(2,Y)> = 0.

This ends the proof of Theorem 3.
Theorem 3 implies the following corocllzary.
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Corollary '2. An arbitrary Riemannian connection
on M differs from a Levi-Civita connectiont&la right ortho-
gonal tensor S of type (2,1).

Let V and V be arbitrary Riemannian connections onM, From
Corollary 2 it follows that the tensor field S =V - ¥ is
right orthogonal, Consequently, for any tensor fields X,Y,Z¢BM
we have

(12) _<vxy,z>=<’ﬁxy,z>+ < s(x,Y), 2)>.

Putting Y = Z in (12) we obtain

(13) KV ¥,¥> =<Vy¥,¥> for X,Ye Bl
, .
Let x ©be eny chart with domain U on the manifold M,
Denoting X, = —alx—i, i=1,2,,..,0, we obtain from (13)

<VX xj,xj>=< Vg xj,x:])
i i
or equivalently
s [ x
15 &3x = 13 &3k
k ~ k
where r;j end Pij are the coefficients of the connections
V and V in the chart x., 1In particular this gives the
following oorollary. - ~k
' =T
Corollary 3. The coefficients I’“im 1;]gk3

(iy§ = 152440.,n) of any Riemannian comnéection on M sre
equal to the respective coefficients of a Levi-Civita oon-
nection on M, that is, to Christoffel’s symbols,

In the sequel we assume that on a Riemannian manifold i
there are given two linesr connections V and 5 differing by
a tensor S ¢ BM x3ii—e3, Let X Dbe an arkitrary chart on
¥ with domain U, Then in the domain of thz2 chart x we have
by assumption

k =k -k
(14) r‘i_j - Fia. + 5450
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~k
where I"ij, Pid and S;_[J are, respectively,the coefficients

of the connections V , V and of the temsor S in the chart x,
It is known that - ”

_rire

ik"'r‘iq jk T jg ik °

Jk‘ 21"

' 1
where Ri X are the coefficients of the curvature tensor of
the connection V in the chart x.
From (14) and (15) we obtain after simple calculation

(16);3131: =Ryt 2V[1 Syx * 2F[13]‘3;sek+2 s[i{glbsj]kg‘

Now, if we assume that the space under examination 1is a
4-dimensional Riemannian space with a Levi-Civita connection
and S is an ortogonal and self-dual 1/2 tensor (ef,.I part),
them from (16) we get

(17) Ryjp1 = Rijkl + 2V[isj]kl .

Hence we obtain the following theorenm,

Theorem 4, If a Riemannian ,gonnection V on M4
differs from a-Levi-Civita connection V on M’4 by an orto-
gonal and self-dual 1/2 -tensor S satisfying the identity

Vit 85k = O

on the domain of an arbitrary chart =x belonging to the atlas
of M4, then the curvature tensors of both connections are
equal,

This theorem implies the following corollary.

_Corollary 4. If the Riemannian gpace (M N g,V) is a space
of constant c-t;.r_vature, where v is a Levi-Civita connection,
then the Riemannian space (M » @, V) 1is a space of constant
curvature as well, provided that V is a connection satisfy-

ing the agssumptions of Theorem 4,
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From (17) we obtain the identitics

% 113
(18) Ryp = Ry + 877V, 844

Hence we get
%x df 1
(19) Ry = R(yx) =Ry

Now, let us introduce the following definition,
Definition 1.3, PFor an arbitrary connection V
on the manifold M the tensor R*, satisfying the identities

* 1
Ryg = Ragap)

on the domain of an arbltrary chart x belonging to the atlas
of M, where Ry 1 are the coefficients | of the curvature
tengor of V, is called the[Ricci, tensor of the connection V.,

Using the above definition and identities (19) we obtain
the following theorem,

Theorem 5, If aRiemannian connection V on M4 dif-
fers from a Levi-Civita connection V on. M4 by an ortogonal
and self-dual 1/2 -tensor S, then the Ricei temsors of both
connections are equal,

We now introduce the following definition.

Definition 1,4, A Riemannian space M. with
an arbitrary connection V 1s called a\ generalized Finstein
space if

3
Rij = Agij
where A is a scalar factor,

Consequently, from Theorem 5 we get

Theorem 6, If the Rlemannien space (M , 8 V) s
an Einstein space, where Visa Levi-Civita connectlon, then
the Riemannian space (M4, g,V Yis a generalized Einstein space
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(1n the sense of definition 1.,4) provided that V is a con-

nection satisfy;ng the assumptions of Theorem 5.
Of course in general the Finstein space is a space Without

torsion but the generslized Einstein space is a space with

torsion,
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