

Roman Matla, Zbigniew Żekanowski

SOME PROPERTIES OF LINEAR CONNECTIONS
ON RIEMANNIAN MANIFOLDS, II.

Let M be a smooth n -dimensional Riemannian manifold with a metric tensor $g = \langle \cdot, \cdot \rangle$. FM denotes the ring of smooth functions on M and BM denotes the FM -module of smooth vector fields on M .

It is known that if a linear connection ∇ on M is Riemannian, then by definition we have

$$(1) \quad \bigtriangleup_{X,Y,Z \in BM} Z \langle X, Y \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle.$$

If, moreover,

$$(2) \quad \bigtriangleup_{X,Y \in BM} T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y] = 0$$

then this Riemannian connection is called a Levi-Civita connection*).

Let $f \in FM$ be an arbitrary smooth function on M .

Definition 1.1. The vector field, denoted by ∇f , defined by the formula

$$(3) \quad \bigtriangleup_{X \in BM} \langle \nabla f, X \rangle = X(f) = df(x),$$

where df is the differential of the function f , is called the gradient of the function f . The tensor field $h_f : BM \times BM \rightarrow FM$ defined by the formula

* D.Gromoll, W.Klingenberg, W.Meyer: Riemannsche Geometrie in Grossen. Berlin 1968.

$$(4) \quad h_f(X, Y) = \langle \nabla_X \nabla f, Y \rangle$$

is called a Hess 2-form.

We shall prove the following theorem.

Theorem 1. A Riemannian connection ∇ on a Riemannian manifold M is a Levi-Civita connection on M if and only if for any function $f \in FM$ the Hess 2-form is a symmetric 2-form.

Proof. Let ∇ be a Riemannian connection on M and f an arbitrary function in FM . For any $X, Y \in BM$ we then have

$$\begin{cases} X \langle \nabla f, Y \rangle = \langle \nabla_X \nabla f, Y \rangle + \langle \nabla f, \nabla_X Y \rangle, \\ Y \langle \nabla f, X \rangle = \langle \nabla_Y \nabla f, X \rangle + \langle \nabla f, \nabla_Y X \rangle. \end{cases}$$

From the definition (4) of a Hess 2-form we obtain

$$\begin{aligned} (5) \quad h_f(X, Y) - h_f(Y, X) &= \langle \nabla_X \nabla f, Y \rangle - \langle \nabla_Y \nabla f, X \rangle = \\ &= X \langle \nabla f, Y \rangle - Y \langle \nabla f, X \rangle - \langle \nabla f, \nabla_X Y \rangle + \langle \nabla f, \nabla_Y X \rangle = \\ &= [X, Y](f) - \langle \nabla f, T(X, Y) + [X, Y] \rangle = (T(X, Y))(f), \end{aligned}$$

which shows that ∇ is a Levi-Civita connection on M .

Now assume that ∇ is a Levi-Civita connection on M . Then for all $X, Y \in BM$ $T(X, Y) = 0$, and consequently from (5) it follows that $h_f(X, Y) = h_f(Y, X)$ for $f \in FM$. The remaining part of the proof is evident.

Let L be a tensor field on M of type (2.1), that is $L : BM \times BM \rightarrow BM$.

Definition 1.2. A tensor field $L : BM \times BM \rightarrow BM$ on a Riemannian manifold M is said to be right orthogonal provided that

$$(6) \quad \bigwedge_{X, Y \in BM} \langle X, L(Y, X) \rangle = 0,$$

it is said to be left orthogonal if

$$(7) \quad \bigwedge_{X,Y \in BM} \langle X, L(X, Y) \rangle = 0.$$

when L is left and right orthogonal we say that L is orthogonal.

We shall prove the following theorem.

Theorem 2. A tensor field $L : BM \times BM \rightarrow BM$ on a Riemannian manifold M is right orthogonal if and only if

$$(8) \quad \langle Y, L(Z, X) \rangle + \langle X, L(Z, Y) \rangle = 0.$$

Similarly, L is left orthogonal if and only if

$$(9) \quad \langle Y, L(X, Z) \rangle + \langle X, L(Y, Z) \rangle = 0.$$

Proof. Assume that L is a tensor field on M which is right orthogonal. By definition we have

$$\bigwedge_{\tilde{X}, Z \in BM} \langle \tilde{X}, L(Z, \tilde{X}) \rangle = 0.$$

Putting $\tilde{X} = X + Y$, $X, Y \in BM$, we get

$$\langle X + Y, L(Z, X+Y) \rangle = 0.$$

This implies (8). The remaining part of the proof is obvious.

Theorem 2 directly implies the following corollary.

Corollary 1. An orthogonal tensor field $L : BM \times BM \rightarrow BM$ on M is skew-symmetric, that is we have

$$\bigwedge_{X \in BM} L(X, X) = 0.$$

Next we prove the following theorem.

Theorem 3. Let $\tilde{\nabla}$ be a linear connection on a Riemannian manifold M and let ∇ be a Levi-Civita connection on M . $\tilde{\nabla}$ is a Riemannian connection if and only if $S = \nabla - \tilde{\nabla}$ is a right orthogonal tensor field on M .

Proof. Assume that $S = \nabla - \tilde{\nabla}$ is a right orthogonal tensor field on M of type (2.1). Then we have

$$(10) \quad \bigtriangleup_{X,Y,Z \in BM} Z \langle X, Y \rangle = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle$$

and

$$(11) \quad \bigtriangleup_{X,Y,Z \in BM} \langle X, S(Z, Y) \rangle + \langle Y, S(Z, X) \rangle = 0.$$

From the assumption $\nabla = S + \tilde{\nabla}$ and from (10) we obtain

$$\bigtriangleup_{X,Y,Z \in BM} Z \langle X, Y \rangle = \langle S(Z, X) + \tilde{\nabla}_Z X, Y \rangle + \langle X, S(Z, Y) + \tilde{\nabla}_Z Y \rangle =$$

$$= \langle \tilde{\nabla}_Z X, Y \rangle + \langle X, \tilde{\nabla}_Z Y \rangle + \langle Y, S(Z, X) \rangle + \langle X, S(Z, Y) \rangle.$$

By (11) this implies

$$Z \langle X, Y \rangle = \langle \tilde{\nabla}_Z X, Y \rangle + \langle X, \tilde{\nabla}_Z Y \rangle; \quad X, Y, Z \in BM.$$

This shows that $\tilde{\nabla}$ is a Riemannian connection.

Conversely, assume that ∇ and $\tilde{\nabla}$ are Riemannian connections on M . Then

$$\begin{aligned} \bigtriangleup_{X,Y,Z \in BM} Z \langle X, Y \rangle &= \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle \wedge Z \langle X, Y \rangle = \\ &= \langle \tilde{\nabla}_Z X, Y \rangle + \langle X, \tilde{\nabla}_Z Y \rangle. \end{aligned}$$

Hence for arbitrary $X, Y, Z \in BM$ we have

$$\langle \nabla_Z X - \tilde{\nabla}_Z X, Y \rangle + \langle \nabla_Z Y - \tilde{\nabla}_Z Y, X \rangle = 0.$$

Putting $S = \nabla - \tilde{\nabla}$ we obtain

$$\langle Y, S(Z, X) \rangle + \langle X, S(Z, Y) \rangle = 0.$$

This ends the proof of Theorem 3.

Theorem 3 implies the following corollary.

Corollary 2. An arbitrary Riemannian connection on M differs from a Levi-Civita connection by a right orthogonal tensor S of type (2.1).

Let ∇ and $\tilde{\nabla}$ be arbitrary Riemannian connections on M . From Corollary 2 it follows that the tensor field $S = \nabla - \tilde{\nabla}$ is right orthogonal. Consequently, for any tensor fields $X, Y, Z \in BM$ we have

$$(12) \quad \langle \nabla_X Y, Z \rangle = \langle \tilde{\nabla}_X Y, Z \rangle + \langle S(X, Y), Z \rangle.$$

Putting $Y = Z$ in (12) we obtain

$$(13) \quad \langle \nabla_X Y, Y \rangle = \langle \tilde{\nabla}_X Y, Y \rangle \text{ for } X, Y \in BM.$$

Let x be any chart with domain U on the manifold M . Denoting $X_i = \frac{\partial}{\partial x_i}$, $i = 1, 2, \dots, n$, we obtain from (13)

$$\langle \nabla_{X_i} X_j, X_j \rangle = \langle \tilde{\nabla}_{X_i} X_j, X_j \rangle$$

or equivalently

$$\Gamma_{ij}^k g_{jk} = \tilde{\Gamma}_{ij}^k g_{jk}$$

where Γ_{ij}^k and $\tilde{\Gamma}_{ij}^k$ are the coefficients of the connections ∇ and $\tilde{\nabla}$ in the chart x . In particular this gives the following corollary.

Corollary 3. The coefficients $\tilde{\Gamma}_{ij,j}^k = \tilde{\Gamma}_{ij}^k g_{kj}$ ($i, j = 1, 2, \dots, n$) of any Riemannian connection on M are equal to the respective coefficients of a Levi-Civita connection on M , that is, to Christoffel's symbols.

In the sequel we assume that on a Riemannian manifold M there are given two linear connections ∇ and $\tilde{\nabla}$ differing by a tensor $S : BM \times BM \rightarrow BM$. Let x be an arbitrary chart on M with domain U . Then in the domain of the chart x we have by assumption

$$(14) \quad \Gamma_{ij}^k = \tilde{\Gamma}_{ij}^k + S_{ij}^k,$$

where Γ_{ij}^k , $\tilde{\Gamma}_{ij}^k$ and S_{ij}^k are, respectively, the coefficients of the connections ∇ , $\tilde{\nabla}$ and of the tensor S in the chart x .

It is known that

$$(15) \quad R_{ijk}^l = \partial_i \Gamma_{jk}^l - \partial_j \Gamma_{ik}^l + \Gamma_{iq}^l \Gamma_{jk}^q - \Gamma_{jq}^l \Gamma_{ik}^q,$$

where R_{ijk}^l are the coefficients of the curvature tensor of the connection ∇ in the chart x .

From (14) and (15) we obtain after simple calculation

$$(16) \quad R_{ijk}^l = \tilde{R}_{ijk}^l + 2\tilde{\nabla}_{[i} S_{j]k}^l + 2\tilde{\Gamma}_{[ij]}^q S_{qk}^l + 2S_{[i|q|}^l S_{j]k}^q.$$

Now, if we assume that the space under examination is a 4-dimensional Riemannian space with a Levi-Civita connection and S is an orthogonal and self-dual $1/2$ tensor (cf. I part), then from (16) we get

$$(17) \quad R_{ijkl} = \tilde{R}_{ijkl} + 2\tilde{\nabla}_{[i} S_{j]kl}.$$

Hence we obtain the following theorem.

Theorem 4. If a Riemannian connection ∇ on M_4 differs from a Levi-Civita connection $\tilde{\nabla}$ on M_4 by an orthogonal and self-dual $1/2$ -tensor S satisfying the identity

$$\tilde{\nabla}_{[i} S_{j]kl} = 0,$$

on the domain of an arbitrary chart x belonging to the atlas of M_4 , then the curvature tensors of both connections are equal.

This theorem implies the following corollary.

Corollary 4. If the Riemannian space $(M_4, g, \tilde{\nabla})$ is a space of constant curvature, where $\tilde{\nabla}$ is a Levi-Civita connection, then the Riemannian space (M_4, g, ∇) is a space of constant curvature as well, provided that ∇ is a connection satisfying the assumptions of Theorem 4.

From (17) we obtain the identities

$$(18) \quad R_{jk} = \tilde{R}_{jk} + g^{11} \tilde{\nabla}_i S_{jkl}.$$

Hence we get

$$(19) \quad R_{jk}^* \stackrel{df}{=} R_{(jk)} = \tilde{R}_{jk}.$$

Now, let us introduce the following definition.

Definition 1.3. For an arbitrary connection ∇ on the manifold M the tensor R^* , satisfying the identities

$$R_{ij}^* = R_l(ij)^l$$

on the domain of an arbitrary chart x belonging to the atlas of M , where R_{ijk}^l are the coefficients of the curvature tensor of ∇ , is called the Ricci tensor of the connection ∇ .

Using the above definition and identities (19) we obtain the following theorem.

Theorem 5. If a Riemannian connection ∇ on M_4 differs from a Levi-Civita connection $\tilde{\nabla}$ on M_4 by an orthogonal and self-dual $1/2$ -tensor S , then the Ricci tensors of both connections are equal.

We now introduce the following definition.

Definition 1.4. A Riemannian space M with an arbitrary connection ∇ is called a generalized Einstein space if

$$R_{ij}^* = \lambda g_{ij}$$

where λ is a scalar factor.

Consequently, from Theorem 5 we get

Theorem 6. If the Riemannian space $(M_4, g, \tilde{\nabla})$ is an Einstein space, where $\tilde{\nabla}$ is a Levi-Civita connection, then the Riemannian space (M_4, g, ∇) is a generalized Einstein space

(in the sense of definition 1.4) provided that ∇ is a connection satisfying the assumptions of Theorem 5.

Of course in general the Einstein space is a space without torsion but the generalized Einstein space is a space with torsion.

INSTITUTE OF ELECTRICAL MACHINES, TECHNICAL UNIVERSITY OF WARSAW;
INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received December 9, 1974.