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SOME PROPERTIES, OF LINEAR CONNECTIONS 
ON RIEMANNIAN MANIFOLDS, II. 

Let 1,1 be a smooth n-dimensional Riemannian manifold with 
a metric tensor g = <C, > . FM denotes the ring of smooth 
functions on M and BM denotes the Fli-module of smooth vec-
tor f i e l d s on M. 

I t is known that i f a l inear connection V on M is Rie-
mannian, then by de f in i t i on we have 

I f , moreover, 

(2) /\ T(X,Y) = V y - VvX - [x,Yl = 0 
X.YeBM i l j 

then this Riemannian connection is called a Levi-Civ i ta con-
nection . 

Let i t FM be an arbitrary smooth function on M. 
D e f i n i t i o n 1.1. The Vector f i e l d » denoted by 

Vf, defined by the formula 

(3) A<Vf,X> = X(f) = df (x), 
XtBM 

where df is the d i f f e r en t i a l of the function f , i s called 
the gradient of the function f . The tensor f i e l d h^ s 
BM * BM —• FM d efined by :the formula 

it) 
' D.Gromoll, W.Klingenberg, V.Meyer: Riemannsche Geometrie in Grossen. 

Berlin 1968. 
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(4) h f U , Y ) = < V x V i y . > 

i s callod a Hess 2-forra. 
We shall prove the following theorem. 
T h e o r e m 1. A Riemannian connection Von a Riemafi-

nian manifold M i s a Levi-Civita connection on M i f and 
only i f for any function f e FM the Hess 2-form i s a sym-
metric 2-form. 

J? r o o f . Let V be a Riemannian connection on M and f 
an arbitrary function in PM, For any X,Y e BM we then have 

' X < Vf ,Y> = < v x V f , Y > + < 7 f , 7 X Y > , 
« 

Y < V f , X > = < t f Y V f , x > + < 7 f , V Y X > . 

jj'rom the def ini t ion (4) of a Hess 2-form we obtain 

h f(X,Y) - h^Y.X) = < V x V f , Y > - < V Y Vf ,X> = 

(5) = X < V f , Y > - Y < V f , X > - < V f , 7 x Y > + < V f , V yX> = 

- [x,Y ] ( f ) -<Vf,T (X,Y) + [X,Y ] > = ( T(X,Y ) ) ( f ) , 

which shows that V i s a Levi-Civita connection on M». 
Now assume that V i s a Levi-Civita connection on .M. Then 

for a l l XtYcBM T(X,Y) = 0, and consequently from (5) i t 
follows that h f(X,Y) = h f(Y,X) for fePM. The remaining 
part of the proof i s evident. 

Let L be a .Censor f i e ld on M of type ( 2 . 1 ) , that i s 
L s BM X£M —~BM. 

D e f i n i t i o n 1.2. A tensor f i e l d L s BM*BM — BM 
on a Riemannian manifold M i s said to be r ight orthogonal 
provided that 

(6) / \ <X,L(Y,X)> = 0, 
x.YeBM : 
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it is said to be l e f t orthogonal i f 

(7) A <X,LCX,i)> =• 0. 
•X,Y£BM 

v»hen L is l e f t and right orthogonal we say that L is 
orthogonal. 

We shall prove the following theorem. 
T h e o r e m 2. A tensor f i e ld I : BM*BM—BM on a 

Riemannian manifold M is right orthogonal i f and only if 

(8) <Y,L(Z,X)> + <X,L(Z,Y)> = 0. 

Similarly, L is l e f t orthogonal i f and only i f 

(9) <Y ,L (X ,Z )>+<X,L (Y ,Z )> = 0. 

P r o o f . Assume that L is a tensor f i e ld on which 
is right orthogonal. By definition we have 

,L (Z ,X)> = 0. 
X,Z«BM 

Putting X = X + Yt X,Y £ BM, we get 

<X + Y, L(Z,X+Y) > = 0. 

This impliels (8 ) . The remaining part of the proof is obvious. 
Theorem 2 directly implies the following corollary. 
C o r o l l a r y 1. An orthogonal tensor f ie ld L : 

BM *BM—KBM on M is skew-symmetric, that is we have 

A = 0. 
XcBM 

Nsxt we prove the following theorem. 
T h e o r e m 3» Let ^ be a linear connection on a Rie-

mannian manifold M and let V be a Levi-Civita connection 
Pi ^ 

on M. V iB « Riemannian connection if and only if S = V - 7 
is a right orthogonal tensor f ie ld on m. 
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j? r o o f. Assume that S = V - V is a rights orthogonal 
tensor field on M of type (2.1). Then we have 

(10) / \ Z<X,Y> = <V 7X,Y>+<X, V„Y> X.Y.ZeBM z z 

and 

(11.) <X,S(Z,Y)> + <Y,S(Z,X)> = 0. X,Y,Z6BM 

Prom the assumption V = S + V and from (10) we obtain A Z <X,Y> = <S(Z,X) + V7X,Y> + <X,S(Z,Y) + V 7Y> = X.Y.ZcBM ù l 

= <VZX,Y> +<X, VzY>+.< Y,S(Z,X)> +<X,S(Z,Y)>. 

By (11) this implies 

Z <X,Y> = <VZX,Y> + <X, V ZY> ; X,Y,Z € BM. 

This shows that V is a Riemarmian connection. 
Conversely, assume that ' V and V are Riemariniân connec-

tions on Î.Ï. Then 

/ \ Z<X,Y> = <V„X,Y> + <X,V_Y> A Z<X,Y> = X.Y.ZeBM Z Z • » ' 

= < VZX,Y> + <Xt V ZY>. 

Hence for arbitrary XiY,ZeBM we have 

<V ZX -VZX,Y> +<V ZY -V ZY,X>= 0. 

Putting S = V - V we obtain 
<Y,S(Z,X)> +<X,S(Z,Y)> =0. 

This ends the proof of Theorem 3. 
Theorem 3 implies the following corollary. 
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C o r o l l a r y 2, An arbitrary Riemannian connection 
on M differs from a Levi-Civita connection ty la right ortho-
gonal tensor S of type (2.1). 

I V 

Let V and V be arbitrary Riemannian connections anM. Prom 
Corollary 2 it follows that the tensor field S = V - V is 
right orthogonal. Consequently, for any tensor fields X,Y,ZeBM 
we have 

(12) < V x Y , Z > = < V X Y , Z > + < S(X,Y), Z> . 

Putting Y = Z in (12) we obtain 

(13) < V X Y , Y > =<V XY,Y> for X,Y e BM. 
I 

Let x be an!y chart with domain U on the manifold M. 
Denoting = 1 = we obtain from (13) 

< V X X . , X . > = < V x j fx a> 

or equivalently 
r * r k 
1 id gjk = 1 id s 

wh&re L and I., are the coefficients of the connections 
X J X J 

V and V in the chart x. In particular this gives the 
following oorollary. ^ ^ ̂  

C o r o l l a r y 3. The coefficients j = ^ i j ® ^ 
(i»d = 1,2,...,n) of any Riemannian conrtfection on M are 
equal to the respective coefficients of a Levi-Civita con-
nection on M, that is, to Christoffel*s symbols. 

In the sequel we assume that on a 3ieniannian manifold M 
there are given two linear connections V and V differing by 
a tensor S : BM * 3Li—» 3:i. Let 'x be an arbitrary chart on 
¿i with domain U. Then in the domain of ths chart x we have 
by assumption 

r k r k * k ( u ) r l d = r i a + S i . 
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r-k F>k , k where 1 ¿-j* 1 ĵ-j S ^ are, respectively,the coefficients 
of the connections V ,V and of the tensor S in the chart x. 

It is known that 

(15) r ^ 1 = 3 irJ k - a dr* k +r 1Jr J
,
k - r ¿ , 

where a r e 'the coefficients of the curvature tensor of 
the connection V in the chart x. 

Prom (14) and (15) we obtain after simple calculation 

<l6)*i;jk - V + 2*[i S3ikL + 2 F ! C l j ] V + 2 S [ H ? | t B 3 ] ^ 

Now, if we assume that the space under examination is a 
4-dimensional Riemannian space with a Levi-Civita connection 
and S is an ortogonal and self-dual 1/2 tensor (cf.I part), 
them from (16) we get 

( 1 7 ) Rijkl = *i;jkl + 2V[iSj]kl ' 

Hence we obtain the following theorem. 
T h e o r e m 4« If a Riemannian connection V on MA /V 'f 

differs from a Levi-Civita connection V on M^ by an orto-
gonal and self-dual 1/2 -tensor S satisfying the identity 

7 [ i s j ] k r 0 ' 
on the domain of an arbitrary chart x belonging to the atlas 
of M^, then the curvature tensors of botn connections are 
equal. 

This theorem implies the following corollary. 
*SJ 

_Corollary 4. If the Riemannian space (M^, g,V) is a space 
of constant curvature, where V is a Levi-Civita connection, 
then the Riemannian space (M^, q, V) is a space of constant 
curvature as well, provided that V is a connection satisfy-
ing the assumptions of Theorem 4. 
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From (17) «e obtain the identities 

(1B) R J k - R j k + g 1 1 V ± S;jkl . 

Hence we get 

(19) R1k — R ( j k ) -S3k. 

Now, let us introduce the following definition. 
D e f i n i t i o n 1.3. Por an arbitrary connection V 

on the manifold M the tensor R*, satisfying the identities 

on the domain of an arbitrary chart x belonging to the atlas 
of M, where R̂ -ĵ '1' a r e "fchje coefficients j of the curvature 
tensor of V , is called the j Ricci. tensor of the connectionV. 

Using the above definition andridentities (19) we obtain 
the following theorem. 

T h e o r e m 5. If a Riemannian connection V on M^ dif-
fers from a Levi-Civita connection V on M^ by an ortogonal 
and self-dual 1/2 -tensor S, then the Ricci tensors of both 
connections are equal. 

We now introduce the following definition. 
D e f i n i t i o n 1.4. A Riemannian space M with 

an arbitrary connection V is called a| generalized Einstein 
space if 

RiJ = *Si;j 

where A is a scalar factor. 

Consequently, from Theorem 5 we get 
T h e o r e m 6. If the Riemannian space (M^, g, V) is 

an Einstein Bpace, where V is a Levi-Civita connection, then 
the Riemannian space (M^f g, V )¡ is a generalized Einstein space 
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(in the sense of definition 1.4) provided that 7 is a con-
nection satisfying the assumptions of Theorem 5« 

Of course in general the Einstein space is a space Without 
torsion but the generalized Einstein space is a space with 
torsion. 
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