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ON TOTALLY UMBILICAL SURFACES IMMERSED
IN RIEMANNIAN CONFORMALLY RECURRENT
AND CONFORMALLY' SYMMETRIC SPACES

1. Introduction

An n-dimensional (n >2) Riemannian space is said to be
an Rn—space if its curvature tensor satisfies the condi‘tion
(1) V1Resin = @1 Rijin
for some vector cb ., where the symbol V denotes covariant dif-—
ferentiation with respect to the metric of the space, If ¢
is assumed to be non-zero and the space is non-flat then the
space is called of recurrent curvature, or brieflya recurrent
space [5;|, [9]. In the case ¢;j = 0, the R -space reduces to
the well-known Cartan symmetric space.

According to Chaki and Gupta [3], an n-dimensional (n> 3)
Riemannian space is said to be conformally symmetric, if its
Weyl conformal tensor

(2) Cpsin = Begin = 5onOn Ryg ~ O Byn+ Ogs Ryp ~Gyp Ryg)+
+ R (Gyp Guy =Grs Gap)
(n=-1)(n-2)‘"kh “ji~ ki “jh’’

where i denotes the components of the fundamental tensor
of the space, satigfies

(3) vlck‘_jih = 0.

'Tt follows easily from (2) and (3) that every conformally
flat n-space (n>3) as well as every Cartan symmetric n-space
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(n> 3) is necessarily conformally symmetric. The inverse im-
plication fails in general [7]. Conformally symmetric spaces
have been considered by many authors [1], [5], [7].

If the Weyl conformal tensor of a space is non-zero and
satigfies a relation of the form

V1Ceiin = 9105in’

where ¢, is a non-zero vector then the space is called con-
formally recurrent [2]. It is easy to verify that every re-
current n-space (n>3) is necessarily conformally recurrent
with the same vector of recurrence.

By a CR -space we shall mean a Riemannian n-space (n>3)
whose Weyl conformal tensor gatisfies the eguality

(4) V1C%3in = P1Cjin

for some vector ¢j; if ¢j # 0 and Ck;jih" 0, then the CR -
-space is conformally recurrent and if ¢J' = 0, then the CR -
~gpace is conformally symmetric.

Let V® be an m-dimensional Riemannian space immersed in
an n~dimensional Riemannian space V® and let u'= u(w?) be
the parametric expression of the subspace v in Vn, whe re
(ui) are coordmates in V®* and (w*) are coordinates in

. Lot B au /awe. If GJ is the fundamental tensor of
the space vn, then g, defined by g, = B j13 Gy; is the
first fundamental tensor of the subspace V%, In the sequel
the indices h,i,Jj,k,1 take on values 1,...,0 and the in-
dices a,b,c,d,e take on values 1,e..,m (m<n),

Lot N’:' (x=m+1,+..,n) be pairwise orthogonal unit nor-
mals to VI, Then we have the relations

i J Jni
(5) GjiNxJNx..Ex, Gyy NNy 1.0 (349, 6 41 N¢By =0,

where Sx is the indicator of the vector in . It is eagy to

verify that
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On totally umbilical surfaces 3

jopi ba _ .31 _ ivi
(6) BJB g% = G ZX:exNxNx.

The Euler-Schouten curvature tensor H‘bai of the sub-
space V® is defined by

(7) Bl-v.sl,

where Va denotes covariant differentiation with respect to
the fundamental tensor g, of v2 [e].,

If Hba gsatisfieas the relation
i i
(8) Hba = 8pa B=,
where the vector Hi ig given by
i_1 _ba i
(9) H" = -n—z G Hba

and is called the mean curvature vector, them V™ is called
a totally umbilical surface,

Totally umbilical surfaces have been studied by Miyazawa
and Chuman [6]. They have proved there among others ~ the
following theorems:

4 totally umbilical surface V® immersed in a gymmetric
space is a conformally symmetric one.

A totally umbilical surface V2 immersed in a recurrent
space is a conformally recurrent one,' if the recurrence vector
is not orthogonal to the Ve,

The present paper is concerned with some generalizations
of the above mentioned theorems.

2. Preliminary

If for Hy,. defined by (7) we put

(10) Hbza.i= PR in ’

X
then the second fundamental tensor Rbax for in is given by
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(11) Hypy = B iy ..

The Gauss and Codazzi equations for V® can be
in the form

- kpjgpl
(12) chba“Rkjih Bd. Bc Bb Ba + Z 8 dax cbx
aﬁd

i
(13) By By NI BY B =V Hypy - ViHgex *

3 5y(1'bzv Hyey ~Lexy B

respectively [4], where we put

(14) Loy =(Vain)Nyi (= = Ty )

m
and chba 1s curvature tensor for V.,

written

dbx Hcax)

dby )

We assume that the subspace V® immersed in the space vR

is totally umbilical. Substituting (8) into (11), we have

i
(15) Hoax = Bpg B Ngy-

Putting H, = gt N 4» we can rewrite (15), (9) and
the form-

(16) Hpax = Bpa Fxr

: i i i <

(17) B = ; Ex Bx Nx o Hye = ; €x Hy Nx
respectively.

From (17) and (5) it follows that

= ; Sx Hx on
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On totally umbilical surfaces 5

Substituting (16) into (12), we obtain
) Kn dpinh i
(18):  Kyepa = Rk,jih By BBy By + Hy H(ggn 8p=€ap Boa)*

After differentiating (16) covariantly with respect to w?
and substituting the resulting equation and (16) into (13) we
have

5 i |
(19) Rygin Bg ENJIBIBY = gyq V By - Bgg Villy *

+ % ey Hy(be;y gdc"I'cx;r gdb)'

Differentiating (18) covariantly with respect to wo- and.
using (14) and (19), we obtain

- k 3 h =
(20) Vechba - (Vl leh)B B B Bb Ba *+ He:dcba’

where we putb

i
Hoacba = 2 [V (B8 (8gq 8cp = 8o Bpa) *
i i
+ Vb(HiH )(gec Bia ~ Bed gca) + Vc(HiH )(g'da 8ab ™ 8db gea)+

i i
+ Vd(HiH )(gea 8cb ~ Beb gca.)il +V6(H1H )(gda 8cb ~ Bap gca.)‘
3. Main results
Lemma. If V% is a totally umbilical surface immer-
sed in V® (3<m<n) and if a vector ¢, on VB satisfies

(4), then so does the vector @, = Bai ¢i on V&,
Proof, From (4) and (2) it follows that

- A '
(21) Vi Ry 555 = O Regin * 5n [Gkh(Vlei =O1Ry;) - G5 (VRy -G Ry )+
+ 45V Ry = O1R) = Cyp(VyRey - Oy |+
1
- 5= (a=3) (VR —d)lR)(Gkh Gji - Gy Gjh)'
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If we get O, = Béitbi, then from (18) we obtain
(22) 01 Rejin BlBEBInlel -
= 0 Egopa = O BiF (Bze Bop— Eqp Ega)
Substituting (21) into (20) and using (22) we have
(23) Vaqpa = O Kacba = o B1E(€ga €p = Egb Boa) *

1 lpdgd 1,3qh
- [3da(vlnji'¢13;ji)3e BBy = Bap{ViRsn ~91Ryn)Be By Byt

1.kqh 1okqi
+ 8op(V1Ryep ~O Ry )By By By = B (ViFy ;= B Ry )8 By By ] *

1 1l =
- Ta=iTta=zy ViR - O1R)BS (84n Bop = Bap Boa) * Heacba®
Considering (22) we conclude from (20)
_ l.knjninh
(24) V Esova= PFacva= V1Rkjin ~P1Rkjin’Be Bq Bs Bp Ba +
i —

-0y HiH (83, B4y = Bap Boa) * Hodoba®

By contracting (24) with gcb and making use of (6) we obtain

1k h
(25) VeKd.a - ¢9Kda = (Vleh - CDleh)Be Bd Ba +

1o kph i
= (ViR53n ~P1Ry55n)Bs B4 Ba Z €y Ny Ny +
i = cb
- (a1 HiE" ggg + Hoqopg 8
We find lek,jih'q’le;jih from (21) and aubstitute the ob-

tained expression into (25). This, by virtue of (5), gives
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(26) V&g, - 6Ky, = m'2 5 (v, kh-¢leh)B k h+

J
-—zgdag €4(V,Ryy - i)13 N N +

n-m 1l
+* To=1)(n-2) (ViR - O R)B g4, +

i = cb
- (m-1) ¢e HiH B3a * Hedcba g .

Contracting the last egquation with gd'a and considering
(6) and the definition of Hgg,, We find

i 1jm=2 m{n-m 1
- —2-‘(111:1%;)— (V,E-0K) + -'2l(n-2)(m+2)ve(ﬂiﬂi) -3 m(n-2)¢, HE,

Substituting this equation into (26) and considering the de-

finition of Hedcba we obtain

(VR - ¢1Rkh)Bl kph - B2 (VK. - 0,K;.) +

n—2

1 1
- 21 (a2 Yok ~ ®eK)Baa + Bty (ViR ~ 1R)Bg gy +
1 i i i i
- 5(n=2)|V (B HE )gg, + Y, (HiH ) gy 4 +V (HH )g o "d’eHiHJsda]‘
If we now substitute the expression thﬁs obtained into

(23) we find
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~ 1
VoEacba = Peacha * o2 [(Vech = PeE o) 8an = (VoK oq = eKca ) Bqy +

+ (VKo 0K )8 = (VK =0 de)sca:l

1 _
= To-1)(n-2) -(VeK - ¢9K)(5d.a 8cb ~ Bab gca)

or V Cdcba = ¢ecdcba’ where Cdcba denotes the conformal
tensor for VR, which completes ths proof.

Corollary. A totally umbilical m~dimensional sur-
face in a CR -space (3<m<n) is a CR,-space.

Using the above lemma we shall prove

The oremnm 1, A totally umbilical surface V2 immer-
sed in a conformally symmetric space V{3<m<n) is confor-
mally symmetric. _

Proof. The zero vector satisfies (4) for V®, hence
by the 'lemma so does the zero vector on Vm, as desired.

Theorem 2. If V' is a totally umbilical and non-
—conformally flat surface immersed in a conformally recurrent
space VB(3<m<n) such that the recurrence vector is not
orthogonal to Vm, then V® is also conformally recurrent.

Proof., The assertion of the theorem follows from the
lemma in the same manner as that of Theorem 1.

Similarly we can prove the following theorem,

Theorem. 3.Atotally umbilical surface V* immer-
sed in a conformally recurrent space V{3<m<n) is confor-
mally symmetric, if the recurrence vector is orthogonal %o ve,

Analogous theorems may be stated for totally geodesic
surfaces.
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