

Zbigniew Olszak

ON TOTALLY UMBILICAL SURFACES IMMERSED
IN RIEMANNIAN CONFORMALLY RECURRENT
AND CONFORMALLY SYMMETRIC SPACES

1. Introduction

An n -dimensional ($n > 2$) Riemannian space is said to be an R_n -space if its curvature tensor satisfies the condition

$$(1) \quad \nabla_1 R_{kjh} = \Phi_1 R_{kjh}$$

for some vector Φ_j , where the symbol ∇ denotes covariant differentiation with respect to the metric of the space. If Φ_j is assumed to be non-zero and the space is non-flat then the space is called of recurrent curvature, or briefly a recurrent space [8], [9]. In the case $\Phi_j = 0$, the R_n -space reduces to the well-known Cartan symmetric space.

According to Chaki and Gupta [3], an n -dimensional ($n > 3$) Riemannian space is said to be conformally symmetric, if its Weyl conformal tensor

$$(2) \quad C_{kjh} = R_{kjh} - \frac{1}{n-2}(G_{kh} R_{ji} - G_{ki} R_{jh} + G_{ji} R_{kh} - G_{jh} R_{ki}) + \\ + \frac{R}{(n-1)(n-2)}(G_{kh} G_{ji} - G_{ki} G_{jh}),$$

where G_{ji} denotes the components of the fundamental tensor of the space, satisfies

$$(3) \quad \nabla_1 C_{kjh} = 0.$$

It follows easily from (2) and (3) that every conformally flat n -space ($n > 3$) as well as every Cartan symmetric n -space

$(n > 3)$ is necessarily conformally symmetric. The inverse implication fails in general [7]. Conformally symmetric spaces have been considered by many authors [1], [5], [7].

If the Weyl conformal tensor of a space is non-zero and satisfies a relation of the form

$$\nabla_1 C_{kjih} = \phi_1 C_{kjih},$$

where ϕ_j is a non-zero vector then the space is called conformally recurrent [2]. It is easy to verify that every recurrent n -space $(n > 3)$ is necessarily conformally recurrent with the same vector of recurrence.

By a CR_n -space we shall mean a Riemannian n -space $(n > 3)$ whose Weyl conformal tensor satisfies the equality

$$(4) \quad \nabla_1 C_{kjih} = \phi_1 C_{kjih}$$

for some vector ϕ_j ; if $\phi_j \neq 0$ and $C_{kjih} \neq 0$, then the CR_n -space is conformally recurrent and if $\phi_j = 0$, then the CR_n -space is conformally symmetric.

Let V^m be an m -dimensional Riemannian space immersed in an n -dimensional Riemannian space V^n and let $u^i = u^i(w^a)$ be the parametric expression of the subspace V^m in V^n , where (u^i) are coordinates in V^n and (w^a) are coordinates in V^m . Let $B_a^i = \partial u^i / \partial w^a$. If G_{ji} is the fundamental tensor of the space V^n , then g_{ba} defined by $g_{ba} = B_b^j B_a^i G_{ji}$ is the first fundamental tensor of the subspace V^m . In the sequel the indices h, i, j, k, l take on values $1, \dots, n$ and the indices a, b, c, d, e take on values $1, \dots, m$ ($m < n$).

Let N_x^i ($x = m+1, \dots, n$) be pairwise orthogonal unit normals to V^m . Then we have the relations

$$(5) \quad G_{ji} N_x^j N_x^i = \varepsilon_x, \quad G_{ji} N_y^j N_x^i = 0 \quad (y \neq x), \quad G_{ji} N_x^j B_a^i = 0,$$

where ε_x is the indicator of the vector N_x^i . It is easy to verify that

$$(6) \quad B_b^j B_a^i g^{ba} = G^{ji} - \sum_x \varepsilon_x N_x^j N_x^i.$$

The Euler-Schouten curvature tensor H_{ba}^i of the subspace V^m is defined by

$$(7) \quad H_{ba}^i = \nabla_b B_a^i,$$

where ∇_a denotes covariant differentiation with respect to the fundamental tensor g_{ba} of V^m [6].

If H_{ba}^i satisfies the relation

$$(8) \quad H_{ba}^i = g_{ba} H^i,$$

where the vector H^i is given by

$$(9) \quad H^i = \frac{1}{m} g^{ba} H_{ba}^i$$

and is called the mean curvature vector, then V^m is called a totally umbilical surface.

Totally umbilical surfaces have been studied by Miyazawa and Chuman [6]. They have proved there among others the following theorems:

A totally umbilical surface V^m immersed in a symmetric space is a conformally symmetric one.

A totally umbilical surface V^m immersed in a recurrent space is a conformally recurrent one, if the recurrence vector is not orthogonal to the V^m .

The present paper is concerned with some generalizations of the above mentioned theorems.

2. Preliminary

If for H_{ba}^i defined by (7) we put

$$(10) \quad H_{ba}^i = \sum_x \varepsilon_x H_{bax} N_x^i,$$

then the second fundamental tensor H_{bax} for N_x^i is given by

$$(11) \quad H_{bax} = H_{ba}^i N_{xi}.$$

The Gauss and Codazzi equations for V^m can be written in the form

$$(12) \quad K_{dcba} = R_{kjh} B_d^k B_c^j B_b^i B_a^h + \sum_x \varepsilon_x (H_{dax} H_{cbx} - H_{dbx} H_{cax})$$

and

$$(13) \quad R_{kjh} B_d^k N_x^j B_c^i B_b^h = \nabla_c H_{dbx} - \nabla_b H_{dcx} + \\ + \sum_y \varepsilon_y (L_{bxy} H_{dcy} - L_{cxy} H_{dby})$$

respectively [4], where we put

$$(14) \quad L_{axy} = (\nabla_a N_x^i) N_{yi} (= -L_{ayx})$$

and K_{dcba} is curvature tensor for V^m .

We assume that the subspace V^m immersed in the space V^n is totally umbilical. Substituting (8) into (11), we have

$$(15) \quad H_{bax} = g_{ba} H^i N_{xi}.$$

Putting $H_x = H^i N_{xi}$, we can rewrite (15), (9) and (8) in the form

$$(16) \quad H_{bax} = g_{ba} H_x,$$

$$(17) \quad H^i = \sum_x \varepsilon_x H_x N_x^i, \quad H_{ba}^i = \sum_x \varepsilon_x H_x N_x^i g_{ba},$$

respectively.

From (17) and (5) it follows that

$$H_i H^i = \sum_x \varepsilon_x H_x H_x.$$

Substituting (16) into (12), we obtain

$$(18) \quad K_{dcba} = R_{kjh} B_d^k B_c^j B_b^i B_a^h + H_i H^i (g_{da} g_{cb} - g_{db} g_{ca}).$$

After differentiating (16) covariantly with respect to w^a and substituting the resulting equation and (16) into (13) we have

$$(19) \quad R_{kjh} B_d^k N_x^j B_c^i B_b^h = g_{bd} \nabla_c H_x - g_{dc} \nabla_b H_x + \\ + \sum_y \epsilon_y H_y (L_{bxy} g_{dc} - L_{cxy} g_{db}).$$

Differentiating (18) covariantly with respect to w^a and using (14) and (19), we obtain

$$(20) \quad \nabla_e K_{dcba} = (\nabla_l R_{kjh}) B_e^l B_d^k B_c^j B_b^i B_a^h + \bar{H}_{edcba},$$

where we put

$$\bar{H}_{edcba} = \frac{1}{2} \left[\nabla_a (H_i H^i) (g_{ed} g_{cb} - g_{ec} g_{bd}) + \right. \\ + \nabla_b (H_i H^i) (g_{ec} g_{da} - g_{ed} g_{ca}) + \nabla_c (H_i H^i) (g_{da} g_{eb} - g_{db} g_{ea}) + \\ \left. + \nabla_d (H_i H^i) (g_{ea} g_{cb} - g_{eb} g_{ca}) \right] + \nabla_e (H_i H^i) (g_{da} g_{cb} - g_{db} g_{ca}).$$

3. Main results

L e m m a. If V^m is a totally umbilical surface immersed in V^n ($3 < m < n$) and if a vector Φ_j on V^n satisfies (4), then so does the vector $\Phi_a = B_a^i \Phi_i$ on V^m .

P r o o f. From (4) and (2) it follows that

$$(21) \quad \nabla_l R_{kjh} = \Phi_l R_{kjh} + \frac{1}{n-2} \left[G_{kh} (\nabla_l R_{ji} - \Phi_l R_{ji}) - G_{ki} (\nabla_l R_{jh} - \Phi_l R_{jh}) + \right. \\ + G_{ji} (\nabla_l R_{kh} - \Phi_l R_{kh}) - G_{jh} (\nabla_l R_{ki} - \Phi_l R_{ki}) \left. \right] + \\ - \frac{1}{(n-1)(n-2)} (\nabla_l R - \Phi_l R) (G_{kh} G_{ji} - G_{ki} G_{jh}).$$

If we set $\Phi_a = B_a^i \Phi_i$, then from (18) we obtain

$$(22) \quad \begin{aligned} \Phi_1 R_{kjih} B_e^l B_d^k B_c^j B_b^i B_a^h &= \\ &= \Phi_e K_{dcba} - \Phi_e H_i H^i (g_{da} g_{cb} - g_{db} g_{ca}). \end{aligned}$$

Substituting (21) into (20) and using (22) we have

$$(23) \quad \begin{aligned} \nabla_e K_{dcba} &= \Phi_e K_{dcba} - \Phi_e H_i H^i (g_{da} g_{cb} - g_{db} g_{ca}) + \\ &+ \frac{1}{n-2} \left[g_{da} (\nabla_1 R_{ji} - \Phi_1 R_{ji}) B_e^l B_c^j B_b^i - g_{db} (\nabla_1 R_{jh} - \Phi_1 R_{jh}) B_e^l B_c^j B_a^h + \right. \\ &+ g_{cb} (\nabla_1 R_{kh} - \Phi_1 R_{kh}) B_e^l B_d^k B_a^h - g_{ca} (\nabla_1 R_{ki} - \Phi_1 R_{ki}) B_e^l B_d^k B_b^i \left. \right] + \\ &- \frac{1}{(n-1)(n-2)} (\nabla_1 R - \Phi_1 R) B_e^l (g_{da} g_{cb} - g_{db} g_{ca}) + \bar{H}_{edcba}. \end{aligned}$$

Considering (22) we conclude from (20)

$$(24) \quad \begin{aligned} \nabla_e K_{dcba} - \Phi_e K_{dcba} &= (\nabla_1 R_{kjih} - \Phi_1 R_{kjih}) B_e^l B_d^k B_c^j B_b^i B_a^h + \\ &- \Phi_e H_i H^i (g_{da} g_{cb} - g_{db} g_{ca}) + \bar{H}_{edcba}. \end{aligned}$$

By contracting (24) with g^{cb} and making use of (6) we obtain

$$(25) \quad \begin{aligned} \nabla_e K_{da} - \Phi_e K_{da} &= (\nabla_1 R_{kh} - \Phi_1 R_{kh}) B_e^l B_d^k B_a^h + \\ &- (\nabla_1 R_{kjih} - \Phi_1 R_{kjih}) B_e^l B_d^k B_a^h \sum_x \varepsilon_x N_x^j N_x^i + \\ &- (m-1) \Phi_e H_i H^i g_{da} + \bar{H}_{edcba} g^{cb}. \end{aligned}$$

We find $\nabla_1 R_{kjih} - \Phi_1 R_{kjih}$ from (21) and substitute the obtained expression into (25). This, by virtue of (5), gives

$$(26) \quad \nabla_e K_{da} - \phi_e K_{da} = \frac{m-2}{n-2} (\nabla_1 R_{kh} - \phi_1 R_{kh}) B_e^1 B_d^k B_a^h +$$

$$- \frac{1}{n-2} g_{da} \sum_x \varepsilon_x (\nabla_1 R_{ji} - \phi_1 R_{ji}) B_e^1 N_x^j N_x^i +$$

$$+ \frac{n-m}{(n-1)(n-2)} (\nabla_1 R - \phi_1 R) B_e^1 g_{da} +$$

$$- (m-1) \phi_e H_i H^i g_{da} + \bar{H}_{edcba} g^{cb}.$$

Contracting the last equation with g^{da} and considering (6) and the definition of \bar{H}_{edcba} we find

$$\sum_x \varepsilon_x (\nabla_1 R_{ji} - \phi_1 R_{ji}) B_e^1 N_x^j N_x^i = \frac{1}{2} \left[\frac{m-2}{m-1} + \frac{m(n-m)}{(n-1)(m-1)} \right] (\nabla_1 R - \phi_1 R) B_e^1 +$$

$$- \frac{n-2}{2(m-1)} (\nabla_e K - \phi_e K) + \frac{1}{2} (n-2)(m+2) \nabla_e (H_i H^i) - \frac{1}{2} m(n-2) \phi_e H_i H^i.$$

Substituting this equation into (26) and considering the definition of \bar{H}_{edcba} we obtain

$$(\nabla_1 R_{kh} - \phi_1 R_{kh}) B_e^1 B_d^k B_a^h = \frac{n-2}{m-2} (\nabla_e K_{da} - \phi_e K_{da}) +$$

$$- \frac{n-2}{2(m-1)(m-2)} (\nabla_e K - \phi_e K) g_{da} + \frac{1}{2(n-1)} (\nabla_1 R - \phi_1 R) B_e^1 g_{da} +$$

$$- \frac{1}{2} (n-2) \left[\nabla_e (H_i H^i) g_{da} + \nabla_a (H_i H^i) g_{ed} + \nabla_d (H_i H^i) g_{ea} - \phi_e H_i H^i g_{da} \right].$$

If we now substitute the expression thus obtained into (23) we find

$$\begin{aligned} \nabla_e K_{dcba} = & \phi_e K_{dcba} + \frac{1}{m-2} \left[(\nabla_e K_{cb} - \phi_e K_{cb}) g_{da} - (\nabla_e K_{ca} - \phi_e K_{ca}) g_{db} + \right. \\ & + (\nabla_e K_{da} - \phi_e K_{da}) g_{cb} - (\nabla_e K_{db} - \phi_e K_{db}) g_{ca} \left. \right] + \\ & - \frac{1}{(m-1)(m-2)} (\nabla_e K - \phi_e K) (g_{da} g_{cb} - g_{db} g_{ca}) \end{aligned}$$

or $\nabla_e \bar{C}_{dcba} = \phi_e \bar{C}_{dcba}$, where \bar{C}_{dcba} denotes the conformal tensor for V^m , which completes the proof.

Corollary. A totally umbilical m -dimensional surface in a CR_n -space ($3 < m < n$) is a CR_m -space.

Using the above lemma we shall prove

Theorem 1. A totally umbilical surface V^m immersed in a conformally symmetric space V^n ($3 < m < n$) is conformally symmetric.

Proof. The zero vector satisfies (4) for V^n , hence by the lemma so does the zero vector on V^m , as desired.

Theorem 2. If V^m is a totally umbilical and non-conformally flat surface immersed in a conformally recurrent space V^n ($3 < m < n$) such that the recurrence vector is not orthogonal to V^m , then V^m is also conformally recurrent.

Proof. The assertion of the theorem follows from the lemma in the same manner as that of Theorem 1.

Similarly we can prove the following theorem.

Theorem 3. A totally umbilical surface V^m immersed in a conformally recurrent space V^n ($3 < m < n$) is conformally symmetric, if the recurrence vector is orthogonal to V^m .

Analogous theorems may be stated for totally geodesic surfaces.

REFERENCES

[1] T. Adachi, T. Miyazawa: On conformally symmetric spaces, *Tensor, N.S.*, 18 (1967) 335-342.

- [2] T. A d a t i, T. M i y a z a w a: On Riemannian space with recurrent conformal curvature, *Tensor, N.S.*, 18 (1967) 348-354.
- [3] M.C. C h a k i, B. G u p t a: On conformally symmetric spaces, *Indian J.Math.*, 5 (1963) 113-122.
- [4] L.P. E i s e n h a r t: Riemannian geometry. Princeton 1949.
- [5] E. G l o d e k: Some remarks on conformally symmetric Riemannian spaces, *Colloquium Mathematicum* 23 (1971) 121-123.
- [6] T. M i y a z a w a, G. C h u m a n: On certain subspaces of Riemannian recurrent spaces, *Tensor, N.S.*, 23 (1972) 253-260.
- [7] W. R o t e r: On conformally symmetric Ricci - recurrent spaces, *Colloquium Mathematicum* (in print).
- [8] H.S. R u s e, A.G. W a l k e r, T.J. W i l l m o r e: Harmonic spaces. Roma 1961.
- [9] A.G. W a l k e r: On Ruse's spaces of recurrent curvature, *Proc. Lond. Math. Soc.*, (2), 52 (1950) 36-64.

INSTITUTE OF MATHEMATICS AND THEORETICAL PHYSICS, TECHNICAL UNIVERSITY OF WROCŁAW /

Received July 15, 1974.

