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REMARQUES SUR LES PROPRIETES FONDAMENTALES
DE GEOMETRIE SOUS -AFFINEE DIAGONALE

1. Entrée

Les considérations des ces notes sont basées sur des dé-
finitions et des propriétés formulées dans les travaux de [2],
[3]. Le but de ce travail est de formuler des propriétés fon-
damentales de géometrie sous-affinee diagonale dans la langue
de la théorie d’objets géométriques.

Pour établir de symboles et préciser 1le point de sortie
dans de lointains considérations, nous rappellons ici les dé-
finitions fondamentales de [2].

Définition 1,1, La loi de groupe G = (G,°) sur
1l’engemble X est l’application quelconque

(1.1) f;: X x @ —=X

satisfaisant 1’equation fondamentale de transitions

(1.2) VxeX, Vg, ,e,eG, £(f(x,g),8)= flx,g,°8;)
et la condition d’identite
(1.3) Vxex, tix,e) = x,

ou eeG est element neutral de groupe §.

Déefinition 1,2, La loi f de groupe §=(G,°)
sur l’ensemble X est appelee effective i elle satisfait
1?implication

(1.4) VxeX, flx,g) =x = g = e,
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2 E.Kapustka

Définition 1,3, Nous appelons objet algébrique
abstrait, chaque systeme (X, G, £)- ou X est wun ensemble
quelconque (que nous appelons fibre de 1l’objet), G =(G,°) est
un groupe quelconque et f la loi de groupe (§ sur 1'en-
semble X,

Définition 1,4, On appelle la géométrie de Klein
de groupe ( chaque objet algebrique abstrait (X,Q = (G,°),f)
dans laquel la loi f de groupe § sur l’ensemble X est effec-
tive, X

Definition 1.5, Chaque objet abstrait de groupe
G est appelé objet de geométrie de Klein de groupe G,

D*apres la deéfinition ci-dessus et la notion de théorie
d'objets algebriques [2], le but de 1la géométfie est:

a) la détermination d’objets d’une géometrie donne,

b) la détermination des comitants d?objet productif,

¢c) la détermination des comitants scalaires d’objet pro-
ductif,

Dans les paragraphes suivants, nous essayons de résoudre
certain de ces problemes se rapportant a une geométrie donnée
(2 savoire dans la géométrie sous-affinée dlagonale).

2. FBtant donne la géometrie suivant dans le sens de la
définition 1.4,

1
X . Ly
X=<9[:|=x : x7eR (i=1,04.,n) =(Rn),
<
¢ = GAD(n, R) := {[A,a]}
ou « 0
As=| e, , (ak # 0, pour k=1,2,...,n)
0 oy
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Sur géométrie sous-affinée diagonale -3

et

a = eORn)T,
n

[4,a] o [B,v] := 43, &b + a],

GaD(n,R) :=(GaD(n, R),)

O see

outre. cela

et
nT T
£: (R) xcap(n,R) 3 (x,[a,a]) = £(x,[4,a]) 2= Ax+ ac(RY) .

Ainsi défini f est evidemment une loi effective de GAD(n,R)
sur (R™)", donc le systeme

(2.1) (®™", g, 2)
est une géométrie.

En accord avec la terminologie habituelle,nous 1l'appelle-~
rons geométrie sous-affinee diagonale. _
Les objets de base de chaque géométrie sont les scalaires,les
points et les produits de points,

Dans la geométrie (2,1) ces sont:
1% les scalaires

(2.2) ((R7, gan(n,R), £)

~

ou
£ (w,[A,a]) 1= w,

29 les points

(2.3) (®Y7, gan(a,R), £')

£1(x,[4,8]) s=hx + &
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4 E.Kapustka

3% les produits de points

(2.4) (®")", a0, )

~

ou

P((x 000 ,x Yolh,al)i= (Ax, + 8,..0.y AX_ + 8).,
, B P’ 1 p

Nous nous intéresserons maintenant a la détermination des
comitants scalaires d’objets productif (2,4),

Les éléments de fibre de cet objet sont des suites compo-
gées de points de la géométrie (2,1).

Pour p =1 ce sont les points de la geomeétrie (2,1), pour
p=2 nous serons tenir compte de l?importance des comitants
de paires de points,

Nous les déterminerons plus loin,

3. Btant donné 1’objet productif (2.4) pour p=2, c’est-
-d-dire le systeme

2
(3.1) (((Rn)T) , G&D(n,R), f2)

~

ou

fz((x1,x2), [A,a]):: (Ax, +a, Ax, + a)

1
X o 0 23.1

x) =2 |, (1=1,2), A := . s () £0), a3= L
xil 0 % al

Pour déterminer tous les comitants scalaires.d’objet (3.1)
on faudrait chercher toutes les solutions de 1’equation
fonctionelle

(3.2) h(x-] ,X2) = h(AX.] + a, AXZ + a)

; . n,T n,T .
avec la fonction 1’inconnue h: (R™)” x(R7")"—=R ou 4,s, x,,
X5 sont arbitraires, Puisque a est quelconque,nous pouvons

poser a = -Ax2. Nous obtenons alors
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Surj géométrie sous-affinde diagonale 5

(3.3) - h(xq,%,) = h(A(zy-x,),0)

0 1= [0e..,0] € (R,

Etant donne que A est arbitrailre nous aurons

1
°H(x1 - x;)’ 0 sgnlx] - x;I,
(3.4) hlxy,x,) = h( : sonll e
dn(x?' - xg), 0 | sgnlxﬁ1 - xgl ,
ou _
: 1 pour x #0
sgn|x| 1=
0 pour x =0,

c’est-a-dire que tous les comitants scalaires de paires des
points sont déterminees par l’application

(3.5) h(x1,x2) =(’(sgn x1 - xal) (1=1,ooo,n>
ou ¢ est une application arbitraire telle que
n
(p={0,1} —R.

4.Définition 4,1, Le comitant h de paire de
points de géométrie (1.4) satisfaisant les conditions

(4,1) Vx1 yX, € Xy h(xqy,x,) >0 A(h(x1,x2) =0 & x, _xZ)
(4.2) Vzi,x, € X, h(xy,%,) = h(x,,x)

(4.3) Vx1 1Xp9 X € X, h(x1 ,xa) +.h(x2,x3) > h(x1,x3)

est appellé métrique de la géométrie (1.4), ILa géométrie a
métrique choisie on appelle géométrie metrique,

Dans le cas de la geométrie consideree (2,1) les condi~
tions (4,1) -(4.2) sont satisfeites par tous les comitants
(3.5).
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6 E.Kapustka

Remarqu e. Pour que le comitant (3.5) soit métrique
de la géométrie (2.1) il suffit qu’e @ satisfasse les condi~-
tions

(4.4) ¢~ ({o}) = {6}

(4.5) dat >0, {O,1}n — {0} v [oL, 20(]

(démonstration est triviale),
Comme exemple de méetrique de geometrie (2.1) nous pouvons
donner

n
(4.6) h(x1 ,xz) = Z sgn Ix} - x%l.

5. Analogiquement que dans § 4 considérons maintenant
1?0objet productif

(5.1) (((Rn)T)

-

ou

3
, GaD(n,R) , f3)

f3«x1,x2,x3), [A,a]>:= (Ax1 +a, Ax, + &, AXg + a).

Pour déterminer tous les comitants scalaires de 1’ob;jet
(5.1) il faudrait trouver toutes les solutions v ((R n)'l‘) —R
de 1’équation fonctionelle

(5.2) ni(x, Xp0%3) = n>(Ax, + a, Ax, + &, Axy + a)

0h xy4%pexy € (R™), [4,] € 6aD(n,R).

Les valeurs de h ne dépendent pas de, a on peut alors
remplacer a par - Ax3. On a donc

(5.3) 113(::1 ,xz,x3) = h3(.‘,.(x.l - x3), A(xa-xB),B).
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Sur géométrie sous-affinée diagonale

Vue que A est arbitraire on ottient

— —

1 1
X - X
f17%

A 1
Xy = Xg

(5.4) h3(X1 ,X2,X3) = h3( 5 E .

n
X1—X

wBws
—_
o

n
Xy = X
2

L.

quand x% - x% £0, (L =1,,..,n) ou dans le cas gzenéral,

apres avoir defini la fonction

r

Xt - x%
—%T——~%- pour xé - x% # 0
, 1% 773
{5.5) ul(x1,x2,x3) 1=
1 pour x% - x% = 0

on peut ecrire h3 sous la forme:

(5.6) hB(K1sX29x3) =‘P(ul(x1rx21x3)¢ sgn]x% - x%01(1=1vu-vn)

Remarqu e, On pourrait chercher la mesure d?aire
dans la géométrie cosidérée indépendement de la métrique, Selon
la défipition classique [4], cette mesure est la comitant sca-
laire de paires des vecteurs, qui satisfait 1les conditions
suivantes

(5.7) v (x,7) eR v {0}

(5.8) yix,y) = ywiy,x)
(5.9) ylax,y) =|lw(x,y)
(5.10) Y (x,y) = y(y-x, ~x)
(5.11) wix+y, z) =y(x,z) + y(y,z)

ou x,y,z vecteurs,
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8 E.Kapustka

Certes on voit immediatement, que comme le comitant de
paire de vecteurs x,y satisfait 1’equation

(5.,12) wix,y) = y(ax, Ay)

ou A matrix diagonale, alors en particulie
(5.13) y(x,y) = w(2x, 2y) = 4y(x,y) = wix,y) = 0,

Ce qui intraine. l’impossibilité de définir la mesure d’aire,
Nous obtenons le meme résultat en essayant de deéfinir la me-
sure des symplex, Les conditions de symétrie (5,8) et d'home-
genite (5,9) trivialise les solutions,

6. Nous formulerons maintenant certaines remarques sur la
somme semi-3irecte de groupe, qui par la suite, seront profi-
tables dans l’étude des solutions de 1l’equetion de Cauchy en
geometrie (2,1),

Soit §= (G,°), ¥= (H,°) des groupes quelconques ab-
straits, A(H) - le groupe d’automorphismes de H.Supposons en
plus, qu’ un homomorphisme est donné

(6,1) Gag—f(o,g)ea(H) ou f: H xG—H,

Considerons le produit cartesien GxH avec la loi (vue

(1]

(6.2) [81 'h1]°[829h2] = [510 &os f(h1’82)'h2]°}

Theoreme 6,1, L'ensemble GxH avecla loi (6,2)
détermine un groupe, ’

Definition 6,1, (wvue [1]). Le groupe du theo-
reme (6.1) est applée la somme semi-directe des groupes { et X
et notons [G,H].

La propriete fondamentales de la somme semi-directe (vue

(1)

490 [G:{eHH&—G; Ty 3 [G, {eH}] 3 [g,eH] coegel
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Sur géométrie sous-affinée diagonale 9

2° [{eG}, H]c_l?»H; L [{eG}, H] a[{eG}, h]‘—»h €H
3° [6,8] = [G,{eH}]o[{eG}, H]

4° 2y [6,H] 3 [g,h] —=g €C,y

P, [6,H] 3 [g,n]—=heH
gsont homomorphismem (projection canoniques),
Rappelons également que si G= (G,°) un groupe, X, =
a (K1 , K1XK1)’ ‘7(.2 = (K2,0l Kz"Kz) des sous-groupes de G,
K1 " Ky = {eG}.
Ald|rs K = K1° Ky, = {ge G: g = k.1 kKo, kie K is= 1,2} avec
la loi

OIKKK est un souse-groupe de § et H 3= (K,° IKXK)‘

Définition 6,2 (vue [1])s Le groupe K est
appelé produit directe de 3(1 et ‘7(2.
Les applications p,: KoK,9 kyok,—=k; €K, (1=1,2) sont
des homomorphismes {projections canonique) J := (T,°) etant
un groups

Théoreme 6,2, Si h : KPK,—>T est un homo-
morphisme alors

Iy, + Ky —= T hom., (1=1,2) que h(k)=¢1(p1(k)) « 5 (p,y0))

Démonstratdion:

k€ K1°K2=>31(k1,k2)€ KxKy sk = kokp,

h(k) = h(kok,) = h(ky)eh(ky) = th (k1).-h‘K (ky),
1 2

h = 0y est un homomorphisme comme la restriction de 1'hémo-
i ;
morphisme au sous-groupe, Donc
B(k) = ¢y (g Do (kp) = 0 (B (1) =0 (o))
C.Q.FODO
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10 E.Kapustka

Remarques.
1. 81 T est abeléen avec la loi "+" la réciproque est
vrale

{q:i: K,— T hOm.}==>{(<p1 P+ B pz): K—T hom.}(i=1,2).
2. Le théoréme 6.2 se géneralise par inductions pour ~&
composants K1 reeesK o

Théoreme. 6,3, Soit [G1,G2] la somme semi-directe
de groupes, G4 = (G, ) G, = (G,,®) groupe queloonque ab-
straite, Alors : '

3(?1 -3 Gi—"T ,homo (i = 1’2)
{hx [G1 ,G2]——— 7 hom,.};—) que
h(g) = w; py(8) " wy pyle)

Démonstration, Vuels 3° propriété de la somme
semi~directe [G1 ,G2] = [G1, {eG2} {901}’ Gz] produit directe

du théoréme 6,2 nous obtenons

g, [G1,, {er}] —T et wé:[{eg1}, 62]—>T '

tel que: . _
h(g) = (pq°pq)(g)e(p,° Py (8)e

Or d’apres la 2° propriété

ol ()
[foc,} Gz]é.fa, %([{oa,}» £2]) = 22-

Alors

. _ -1
h(s)_‘='(¢1('¢11 p1_(8?)) °(‘P2("72 pz(s?))
Yy 1= ¢1° 17;_1- (£ = 1,2) sont homomorphismes,
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Sur géométrie sous-affinde diagonale .11

Donel » .
h(g) = \v1(p1(g))- wa(pz(g)), €.Q.F.D,

Remarqueas..
1. S1 T etant un groupe abeléen, 1'impli  .ion

{\"i : Gi-—-’T hom, }:}{h = 1|)1 °py +V¥5°P, hom.}

est vrail,
Ce qui signifie que tous.les homomorphismes h: [G1,G2]-’T
peuvent - €tre obtenus, connaissant Ivi H Gi — 7,

2, Comme précédemment, le théoreme 6,3 se generalise pour
n composantes.

L*union les theoremes 6.2 et 6,3 nous conduisons au
theoreme 6.4,

Etant donné groupes ddj = (M;j’°)’ Ny = (Ni,°), T=(T,°)

J =1,2,000,n
et M ¢= M0 © ce0 @ N ==N°N°0000N .
L= 112ymnesm 1° M3 Wy 1° N3 m
Theoreme 6,4, Si P s [M,N]—-T hom,, alors
3(?3 H Mj _’T homo. Hlpi H Ni_’ T hom.,
tel que

Flaqouee oy b enoby ] = gylaglonop(ay) ey (by)e.. oy (o).
7. Revenons a la géométrie (2,1)

(®™", ganca,p), 2).

Chercher les objets lineaires homogens de cette géometrie re-
vient a trouver toutes les solutions F: GAD(n,R) — GL(n,R)
de 1l'equation de Cauchy.
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12 E.Kapustka

(7.1 F(XoY) = F(X).F(Y)

on X,Y € Gap(n,R), PF(X), P(Y) ¢ GL(n,R).

Nous utiliserons le paragraphe 6 pour etudier la forme de
résolution P de 1 equation (7.,1). Remarquens dans ce but
que

(7.2) ¢AD(n,R ) = [GD(n,IR ), ar(n,R )]

est la somme semi-directe, ou GD(n,R) - le groupe des matrix
diagonal et (GT(n,[R ), +) le groupe des itranslations,

(7.3) @D(n,R ) = GD4° GD,°...,°GD,
1 eee O
S . L4
ou (GDy,°) un groupe de matrix de la forme (D] I *x XeR
o 1

(7.4) ' GP(n, R) = G4 + @ptes 46T

ou @r,(n, R) =.({[o,...,...@,...,O]TLQR+\)

1®0

(7.5) (@, (n, R), 0 ). '
0

..+ x¢e(R,+) izomorphismes

1

(7.6) (GTi(n, R),+)9[0;..., x,_...,O]Tt———xe (R,+) izomorphismes.

D’apres (6.2) nous obtenons

F(x) = ¢ (a1)°.0.00, (4, )0, (ag Joooop (a)
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Sur géométrie sous-affinée diagonale 13

X = [A,8], 4

AP ol®h, A€ GDT(n,IR )

8 = 84+ees 8 ay € ey (n, R )

n?
¢y @Dy (n,R ) — 6L(n,R ) hom,

Y, ¢ @ (n,R ) —GL(n,R ) hom,
En considerant (7,5) et (7.6) nous aurons

0 = 10Ty Yy = Uso T

(7.7) P, 1 (R, o) —=6L(n, R)

1’Ijj_t(R,+) —= GL(n, R) et Tps T

sont izomorphismes (7.5) et (7.6).

Clest-a~dire que toutes les solutions d’equation (6.,1) sont
des produits d*homomorphismes sous la forme (7.7) qui avait
été dejae chercheé sous 1’hipothese que (;:l. mesurables,
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