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REMARQUES SUR LES PROPRIÉTÉS FONDAMENTALES 
DE GÉOMÉTRIE SOUS-AFFINÉE DIAGONALE 

1. Entrée 
Les c o n s i d é r a t i o n s des ces no tes sont basées su r des dé -

f i n i t i o n s et des p r o p r i é t é s formulées dans l e s t ravaux de [2], 
[ 3 ] . Le but de ce t r a v a i l es t d.e fo rmuler des p r o p r i é t é s f o n -
damentales de géométr ie s o u s - a f f i n é e d iagonale dans l a langue 
de l a t h é o r i e d ' o b j e t s géométr iques . 

Pour é t a b l i r de symboles et p r é c i s e r l e po in t de s o r t i e 
dans de l o i n t a i n s c o n s i d é r a t i o n s , nous r appe l i ons i c i les d é -
f i n i t i o n s fondamentales de [2] , 

D é f i n i t i o n 1 . 1 . La l o i de groupe Ç = (G,°i) su r 
l ' ensemble X es t l ' a p p l i c a t i o n quelconque 

( 1 . 1 ) f : X * G — X 

s a t i s f a i s a n t l ' é q u a t i o n fondamentale de t r a n s i t i o n s 

( 1 .2) V x e x , V g l , g 2 e G, f ( f ( x , g l ) , g 2 ) = f ( x , g 2 ° g l ) 

et l a cond i t ion d ' i d e n t i t é 

(1.3) V x e x , f (x , e ) = x, 

où e e G es t element n e u t r a l de groupe 5« 

D é f i n i t i o n 1.2. La l o i f de groupe g = (G,°) 
sur l ' ensemble X e s t appeleé e f f e c t i v e a i e l l e s a t i s f a i t 
l ' i m p l i c a t i o n 

(1.4) V i s X, f (x ,g) = x g = e. 
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2 E.Kapustka 

D é f i n i t i o n 1.3. Nous appelons objet algebrique 
abstrait, chaque système (X, Ç, f)- où X est un ensemble 
quelconque (que nous appelons fibre de l'objet), Q=(G,°) est 
un groupe quelconque et f la loi de groupe g sur l'en-
semble X. 

D é f i n i t i o n 1.4. On appelle la géométrie de Klein 
de groupe Ç chaque objet algébrique abstrait ( X, Ç = (G,°),f) 
dans laquel la loi f de groupe Q sur l'ensemble X est effec-
t ive. 

D é f i n i t i o n 1.5. Chaque objet abstrait de groupe 
Ç est appelé objet de géométrie de Klein de groupe G. 

D'après la définition ci-dessus et la noition de théorie 
d'objets algébriques [2], le but de la géométrie est: 

a) la détermination d'objets d'une géométrie donné, 
b) la détermination des comitants d'objet productif, 
c) la détermination des comitants scalaires d'objet pro-

ductif. 
Dans les paragraphes suivants, nous essayons de résoudre 

certain de ces problèmes se rapportant à une géométrie donnée 
(à savoire dans la géométrie sous-affinée diagonale). 

/ r . 2_, Etant donne la geometrie suivant dans le sens de la 
définition 1.4, 

ou 

X = 
1" X 

• 
• 
• 

n X 

= x : x 1e R (i = 1,... ,n) 

A : = 
0 

-(«•f. 

G = GAD(n, R ) : = |[A,a]} 

0 
» («i, ̂  0» pour k=1,2,...,n) 
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Sur géométrie sous-afflnée diagonale 3 

et 

a : = 
n 

outre cela 
[A,a] » [B,b] S= [AB, Ab + a] , 

9AD(n, R ) s= (GAD(n, R ) , ° ) 

et 
n T n 

fî ( R ) * GAD(n, R ) 9 (x,[A,a])t—^f(x,[A,a]) : = Ax + attRH . 

Ainsi défini f est évidemment une loi effective de SAD(n,R) 
sur (Rn) , donc le système 

(2.1) ((Rn)T, §AD(n,R),f) 
est une géométrie. 

En accord avec la terminologie habituelle,nous l'appelle-
rons géométrie sous-affinée diagonale. 
Les objets de base de chaque géométrie sont les scalaires,les 
points et les produits de points. 

Dans la géométrie (2.1) ces sont: 
1° les scalaires 

(2.2) 

où 

2 les points 

(2.3) 

ou 

((Rn)T, §AD(n,R), fj 

f°(co, [A,a] ) := ùù , 

(CÌRn)T, ÇAD(n.lR), f 1) 

f1(x,[A,a]) := -Ax + a 

- 283 -



4 E.Kapustka 

3° les produits de points 

(2.4) f(IRn)T)P, $AD(n,IR), f P) 

où 
f'P((x1 (Ax^ + a,..., Axp + a). 

Nous nous intéresserons maintenant à la détermination des 
comitants scalaires d'objets productif (2.4). 

Les éléments de fibre de cet objet sont des suites compo-
sées de points de la géométrie (2.1). 

Pour p = 1 ce sont les points de la géométrie (2.1),pour 
p => 2 nous serons tenir compte de l'importance des comitants 
de paires de points. 

Hous les déterminerons plus loin. 

3. Etant donné l'objet productif (2.4) pour p=2, c'est-
-â-dire le système 

/ / VI 'I' ' ^ 

(3.1) 

ou 

(((Rn)T) , gAD(n,R), f 2 ) 

f2^(x1,x2), [A,a]^: = (Ax1 + a, Ax2 + a) 

ot-, 0 

, n 
, (1 = 1,2), A : = 

0 
, (<*._ ji 0), a : = 

Pour déterminer tous les comitants scalaires d'objet (3.1) 
on faudrait chercher toutes les solutions de l'équation 
fonctionelle 

(3.2) h(x1fx2) = h(Ax.j + a, Ax2 + a) 

n ï n T * avec la fonction l'inconnue hs (IR ) * (|R ) —»-|R où A, a, x^ , 
x 2 sont arbitraires. Puisque a est quelconque,nous pouvons 
poser a = -Ax2. Nous obtenons alors 
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Surj géométrie sous-affinée diagonale 5 

(3.3) h(xltx2) => h(A(x1-x2), 8) 

où 
0 i = [ o , . . . , o ] T e ( t f 1 ) 1 . 

Etant donné que A est arbitraire nous aurons 

(3.4) h (xpïj) = h 

où 

11 pour x ^ 0 
0 pour x = 0, 

c'est-à-dire que tous les comitants scalaires de paires des 
points sont déterminées par l'application 

(3.5) h(x1tx2) =(/> | sgn|x| - x2j| , (l=1,...,n) 

où (p est une application arbitraire telle que 

4« D é f i n i t i o n 4.1. Le comitant h de paire de 
points de géométrie (1.4) satisfaisant les conditions 

(4.1) V x 1 ,x2e X, h(x1tx2) > 0 A^h(x1fx2 

(4.2) V x l f x 2 e X , h(x1tx2) = h(x2,x1) 

(4.3) Vx^xg.x^ex, h(xltx2) + h(x2,x^) ̂  h(x1tx^) 

est appellé métrique de la géométrie (1.4). La géométrie à 
métrique choisie on appelle géométrie metrique. 

Dans le cas de la géométrie considérée (2.1) les condi-
tions (4.1) -(4.2) sont satisfaites par tous les comitants 
(3.5). 
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6 E.Kapustka 

R e m a r q u e . Pour que le comitant (3.5) soit métrique 
de la géométrie (2.1 ) il suffit qu'e cp satisfasse les condi-
tions 

(4.4) <P"1({0}) ={9} 

(4.5) loi >0, ip : {c>tl}n — { ° } u [<*> 2o<] 

(démonstration est triviale). 
Comme exemple de moetrique de géométrie (2.1) nous pouvons 

donner 
n 

(4.6) h(x1fx2) = 2 s S n |X1 ~ x2\' 

5. Analogiquement que dans § 4 considérons maintenant 
l'objet productif 

(5.1) ((Wn>T)3. SAD(n.R) , f3 

où 

f 3 ^ ,x2,x3), [A,a]):= (Ax1 + a, Ax2 + a, Ax3 + a). 

Pour déterminer tous les comitants scalaires de l'̂ objet 
(5.1) il faudrait trouver toutes les solutions h3: ((Rn)*)J—>R 
de l'équation fonctionelle 

(5.2) h3(x1fx2tx3) = h3(Ax1 + a, Axg + a, Ax3 + a) 
p (J) 

où e (R ) , [A,a] £ GAD(n,R). 
Les valeurs de h ne dépendent pas de; a on peut alors 

remplacer a par - Ax3. On a donc 

(5.3) h3(x1fx2,x3) = h3(A(x1 - x-j), A(x2-x3),0). 
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Vue que A est arbitraire on obtient 

(5.4) h (x^,x2 ,x^) = h' 

p 1 
" 

1 1 
" 3 

• • 
• • 
• • 

n n 
X1 " 3 
n n _x2 " -<3 

1 , 

1 , 

quand xi - x̂ j £ 0, ( l = 1 , , . . , n ) où dans le cas général, 
après avoir dé f in i la fonction 

(5.5) U]_(X1 »x2»x3^ î = " 

x1 - x1 
X1 3 pour x2 - x ĵ ^ 0 

pour x2 - x^ = 0 

on peut ecrire h sous la forme: 

(5.6) h3(x., jXgjX^) = <f>(u1(x1 , x 2 t x^ ) f sgn |x| - ,,n) 

R e m a r q u e . On pourrait chercher la mesure d 'aire 
dans la géométrie cosidérée indép endettent de la métrique. Selon 
la déf init ion classique [4 ] , cette mesure est la comitant sca-
la i re de paires des vecteurs, qui sat is fa i t les conditions 
suivantes 

(5.7) l|>(x,y) ê R u { 0 } 

(5.8) v U . y ) = f ( y , x ) 

(5.9) y(ofx,y) = | « *M x , y ) 

(5.10) y ( x , y ) = ty (y-x, -x ) 

(5.11) V(x+y, z ) = v ( x , z ) + \»;(y,z) 

ou x,y,z vecteurs. 
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8 E.Kapustka 

Certes on voit immédiatement, que comme le comitant de 
paire de vecteurs x,y satisfait l'équation 

(5.12) .v(x,y) = v(Ax, Ay) 

où A matrix diagonale, alors en particulié 

(5.13) V(x,y) = V(2x, 2y) = 4i|>(x,y) t|Kx,y) = 0. 

Ce qui intraine.-l'impossibilité de définir la mesure d'aire. 
Nous obtenons le meme résultat en essayant de définir la me-
sure des symplex. Les conditions de symétrie (5.8) et d'hom®-
génité (5.9) trivialise les solutions. 

Nous formulerons maintenant certaines remarques sur la 
somme semi-directe de groupe, qui par la suite, seront profi-
tables dans l'étude des solutions de l'équation de Cauchy en 
géométrie (2.1 ). 

Soit Ç= (G,°), (H,0) des groupes quelconques ab-
straits, A(H) - le groupe d'automorphismes de H.Supposons en 
plus, qu' un homomorphiBme est donné 

(6.1) G 3g —-f(o,g) 6 A(H) où fî H * G — - H. 

Considérons le produit cartesien G*H avec la loi (vue 
[1]) 
(6.2) [g1 .h^ o [g2.li2] s = [g1 » g2, f(h-, ,g2).h2]v 

T h é o r è m e 6.1. L'ensemble G*H avec la loi (6.2) 
détermine un groupe. 

D é f i n i t i o n 6.1. (vue [1]). Le groupe du théo-
rème (6.1) est applé la somme semi-directe des groupes Q et X 
et notons [g,h]. 

La propriété fondamentales de la somme semi-directe (vue 
[1]) 

1° [ G , { e H J p ^ G ; * Q : [G, {eH}] » [g,e H]-~g£G 
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Sur géométrie sous-affinée diagonale 9 

2 ° [ {®g } ' Th : [ { e Q } , H ] a[{eG} , heH 

3° [g,h] = [G , { e H}]o [ { e G } , h ] 

4° P.,: [G,H] 3 [g»h] '—»-g 6 G, 

P2 : [G,H] 3 [ g , h ] — h 6H 

sont homomorphismem (projection canoniques). 

Rappelons également que si Q = (G,®) un groupe, X j = 

- ( ^ I k , * ^ ) ' = ( K 2 ' ° |k 2 xK 2 ) d e s sous-groupes de Q, 

K1 K2 = {eQ j.. 

Alojrs K = ^ o K2 = { g € G: g = ^ k2 , k ^ R. , i = 1 , 2 } avec 

la l o i °|K„K e s t u n Souse-groupe de 9 et OC s = ( k , °| K x K ) . 
D é f i n i t i o n 6.2 (vue [ 1 ] ) . Le groupe Oi est 

appelé produit d irecte de et dC^. 
Les applications p1 : K.|°K2 3 k.,o k2—-k.j_eK.j_, (1 = 1,2) sont 
des homomorphismes {project ions canonique) J*:= ( T , ° ) étant 
un group. 

T h é o r è m e 6.2. Si h : K ^ K g — e s t un homo-
morphisme alors 

3</>i,<?i t K ^ — T hom., (1 = 1,2) que h(k) = (p1 (k)) • <?2 (p2(k )). 

D é m o n s t r a t i o n ! : 

k£ K^OK2=Ï B ^ k ^ k g î e K^*K2 : k = k.,ok2, 

h(k) = h ik^kg ) = hik, ) -h (k 2 ) .= h ( k^ .h l (kg ) , 
K1 l K 2 

h est un homomorphisme comme la restr ic t ion de l'hdmo-
K i 

morphisme au sous-groupe. Donc 

h(k) = ^ ( k ^ . ^ i k g ) - V 1 ( p 1 ( k ) ) - y 2 ( p 2 ( k ) ) » 

C.Q.F.D. 
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10 E.Kapustka 

R e m a r q u e s . 
1. Si T est abeléen avec la loi "+'• la réciproque est 

vraie 

j ^ : Kj^—T hom.j^jc^ P1 + K —•» T hom.j ( i=1,2 ). 

2. Le théorème 6.2 se généralise par inductions pour 'à 
composants K^,...,Kn» 

T h é o r è m e- 6.3. Soit ^G^,G2J la somme semi-directe 
de groupes, Q1 = (G1t°) g2 » (G2>») groupe quelconque ab-
straite. Alors 

3(pi 1 Gi~~""T hom* ^ = 

jGk, ,G2j—^T hom.|= que 

h(g-) = Vt P^g)" V 2 P2(g) 

D é m o n s t r a t i o n . Vue la 3° propriété de la somme 
semi-directè [S1fG2] " [G1* { eG 2} {^-j}' ° 2] p r o d u i t dlj,eote 
du théorème 6.2 nous obtenons 

3*1» [ V K}]-T et > G2] 
tel que: 

h(g) - « p., )(gM<P2® Pa)(g) 

Or d'après la 2° propriété 

h ' k f l j - ' 

IK}' 
Alors 

(̂LK}' g2l)a 82 * 
h i g ) - ^ ^ 1 P i U » ) - ^ ^ 1 P2(«))) 

- 1 ^i : a Vi ° ̂ i (i = 1»2) sont homomorphismes. 
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Sur géométrie Bous-affinée diagonale 11 

Donci 

h(g) •V1(p-i(g))* V2(p2(g)), C.Q.F.D. 

R e m a r q u e s . -
1. Si T étant un groupe abeléen, l'impli »ion 

: Ĝ —»»T hom. » ^ • p1 + V2 0 P2 hom*} 

est vrai. 
Ce qui signifie que tous, les homomorphismes ht [̂ i»̂ ]"*"̂  

peuvent - être obtenus, connaissant s Ĝ  -1*"T. 

2. Comme précédemment, le théorème 6.3 se généralisé pour 
n composantes. 

L*union les théorèmes 6.2 et 6.3 nous conduisons au 
théorème 6.4. 

Etant donné groupes Jt̂  = (Mj,®), JŶ  = (l^,°), (T,®) (j = 1,2,...,n \ 

et M := ILjOMgO .. . W := N^ Ng» .. .<»Nm. i = 1,2,...,m j 
T h é o r è m e 6.4. Si F s [M,ÏÏ]-"-T hom., alors 

: Mj —• T hom., 3 ^ : — T hom., 

tel que 

P [ a 1°*" V b1° •••°bm]= V a 1 ) 0 ' - ' 0 y i ( a n ) ' V V 0 " ^ m ( b m ) -

7. Revenons à la géométrie (2.1) 

((Rn)T, 5AD(n,R), f). 

Chercher les objets lineaires homogens de cette géométrie re-
vient à trouver toutes les solutions F: GAD(n,|R) —GL(n,R) 
de l'équation de Cauchy. 
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12 E.Kapustka 

(7.1) P(XoY) = P ( l ) . P ( Y ) 

où X,Y e GAD(n,IR), F ( x ) , P(Y) e GL(n,0?).. 

Nous u t i l i s e r o n s l e paragraphe 6 pour étudier ]a forme de 
r é s o l u t i o n P de 1 équation ( 7 . 1 ) . Remarquens dans ce but 
que 

( 7 . 2 ) GAD(n,IR ) = [<5D(nfR ) , ŒD(ntR )] 

est l a somme s e m i - d i r e c t e , où GD(n,ff? ) - l e groupei des matrix 
d iagonal et (GT(n, IR ) , + ) l e groupe des t r a n s l a t i o n s . 

( 7 . 3 ) GD(n,R ) = GD̂  ° GD2»...<»GDn 

où (GD.,o) un groupe de matr ix de l a f o r m e © 

Q " 1 ... 0 . • 
• 3i 
• •. 0 1 

XtIR 

( 7 . 4 ) 

ou GT 

GT(n, R) = GT1 + GT 2 +.- . .+GT n 

± ( n , IR) = ® , . . . , 0 ] T j ^ 

( 7 . 5 ) (GD 1 (n , I R ) , » ) 

1 9 0"! 

, . . x 

o : 1 

xe(]R,+) izomorphismes 

( 7 . 6 ) (GT.Jn, I R ) , + ) 9 [ o , . . . , x , . . . , o ] T " — - x e (R,+) izomorpbismes. 

D'après ( 6 . 2 ) nous obtenons 

F(x) = y 1 ( A 1 ) 0 . . . o ^ n ( A ï l ) ® V 1 ( a 1 ) o . . . o V n ( a n ) 
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Sur géométrie sous-affinee diagonale 13 

ou 
I « [ A , a ] , A = . . . ° A n , A i € GD^n.lR ) 

a = . a n , a ^ G T ^ C n , ! * ) 

( f^ » GDi^in.R ) — * GL(n,R ) hom. 

if^ : GT ( 1 1 , (R ) — GL(n , R ) hom. 

En considérant ( 7 . 5 ) et ( 7 . 6 ) nous aurons 

ou 

( 7 . 7 ) 

( f i = V i o l?D » - V>iorT 

' ^ « ( R * o ) — Q L ( n , R ) 

V ± « ( R » + ) — GL(n, IR) et f T 

sont izomorphismes ( 7 . 5 ) e t ( 7 . 6 ) . 

C ' e s t - à - d i r e que toutes l e s s o lu t i ons d ' équa t i on ( 6 . 1 ) sont 
des produi ts d'homomorphismes sous l a forme ( 7 . 7 ) qui a va i t 
é t é d é j à cheroheé sous l ' h i p o t h e s e que ^ mesurables. 
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