Wanda Sznitko

INVESTIGATION OF REGULAR CONTINUITY FOR SOME SINGULAR SURFACE INTEGRAL

1. Introduction

Let S be a closed Lapunow surface bounding a region D^+ in the space E_3 . We denote by D^- the complement of the set $D^+ \cup S$ to the whole space.

We introduce the following notation (see [1], p.168)

$$\mathfrak{D}(X,Y,Z) = \begin{bmatrix} 0 & X & Y & Z \\ X & 0 & -Z & Y \\ Y & Z & 0 & -X \\ Z & -Y & X & 0 \end{bmatrix}, \qquad \mathfrak{D}^*(X,Y,Z) = \begin{bmatrix} 0 & X & Y & Z \\ X & 0 & Z & -Y \\ Y & -Z & 0 & X \\ Z & Y & -X & 0 \end{bmatrix},$$

and

$$M(A,Q) = -\mathcal{D}^* \left(\frac{\partial}{\partial \xi}, \frac{\partial}{\partial \eta}, \frac{\partial}{\partial \xi} \right) \frac{1}{|A-Q|} \mathcal{D}(\alpha,\beta,\eta) ,$$

where |A-Q| denotes the Euclidean distance between the points $A(x,y,z) \in D^+ \cup D^-$ and $Q(\zeta,\eta,\xi) \in S$, and $N(\alpha,\beta,\eta)$ is the versor normal to the surface S at the point Q directed outside the region D^+ .

Let the elements $q_i(Q)$, i=1,2,3,4, of the column

(1)
$$q(Q) = \begin{bmatrix} q_{1}(Q) \\ q_{2}(Q) \\ q_{3}(Q) \\ q_{4}(Q) \end{bmatrix}$$

be defined and continuous on the surface S. The column

(2)
$$F(A) = \frac{1}{4\pi} \int_{c} M(A,Q)q(Q)dS_{Q},$$

called integral of Cauchy type, is defined for every $A \in D^+ \cup D^-$. It is known (see [1] p.170) that the column (2) is holomorphic in $D^+ \cup D^-$; that is, it satisfies in this set an eliptic system of equations

(3)
$$\mathcal{D}\left(\frac{\partial}{\partial \xi}, \frac{\partial}{\partial \eta}, \frac{\partial}{\partial \xi}\right) F(A) = 0 .$$

Moreover, if the elements of column (1) satisfy Hölder's condition on the surface S, then for every $P \in S$ there exists an integral (singular in the sense of Cauchy's principal value)

(4)
$$\frac{1}{4\pi} \int_{c} M(P,Q)q(Q) dS_{Q}$$

which can be expressed by the formula

(5)
$$\frac{1}{4\pi} \int_{S} M(P,Q)q(Q) dS_Q = \frac{1}{4\pi} \int_{S} M(P,Q) \left[q(Q) - q(P) \right] dS_Q + \frac{1}{2} q(P)$$
.

We have also the following formulas

$$F^{+}(P) = \frac{1}{2} q(P) + \frac{1}{4\pi} \int_{S} M(P,Q)q(Q)dS_{Q}$$
(6)
$$F^{-}(P) = -\frac{1}{2} q(P) + \frac{1}{4\pi} \int M(P,Q)q(Q)dS_{Q}$$

which correspond to Plemelj's formulas. Here $F^+(P)$ and $F^-(P)$ are boundary values for the column F(A) defined by the formulas

$$F^+(P) = \lim_{A \to \rho \in S} F(A)$$
, $F^-(P) = \lim_{A \to \rho \in S} F(A)$.

Concerning the singular integral (4) W.Żakowski has proved a theorem (see [4] p.43) which is an analogue of Privalovs theorem known from the theory of singular integrals (over a closed flot curves) in the sense of Cauchy's principal value.

The aim of the present work is a generalization of the above mentioned theorem of Zakowski to the case of integral with parameter of the form (9).

2. The investigation of a singular integral

Let $g(Q,B) = [g_1(Q,B), g_2(Q,B), g_3(Q,B), g_4(Q,B)]$ denotes a column with elements defined for $Q \in S$, $B \in \Sigma$, where S and Σ are bounded closed Lapunow surfaces arbitrarily situated in the space E_3 .

Theorem. If the elements $g_i(Q,B)$, i=1,2,3,4, of the column g(Q,B) satisfy for every system of points $Q \in S$, $Q_1 \in S$ and $B \in \Sigma$, $B_1 \in \Sigma$ the conditions

$$|g_{i}(Q,B)| \leq K,$$

(8)
$$|g_{i}(Q,B)-g_{i}(Q_{1},B_{1})| \leq K[|Q-Q_{1}|^{h}+|B-B_{1}|^{\mu}], 0 < h < 1, o < \mu \leq 1,$$

where K is a positive constant, then the elements $\phi_i(P,B)$, i= = 1,2,3,4, of the column $\phi(P,B)$ defined by a generalized singular integral of the Cauchy type

(9)
$$\phi(P,B) = \frac{1}{4\pi} \int_{\xi} M(P,Q)g(Q,B)dS_{Q}$$
,

(P ϵ S,B ϵ \sum) satisfy the inequalities

$$\left|\phi_{\mathbf{i}}(P,B)\right| \leqslant K(\frac{1}{2} + C)$$

$$|\phi_{\mathbf{i}}(P,B)| - |\phi_{\mathbf{i}}(P_{1},B_{1})| \leq |C_{1}K[|P-P_{1}|^{h} + |B-B_{1}|^{\mu-\epsilon}],$$

where $P_1 \in S$, and C as well as C_1 are some positive constants independent of the column g(Q,B), and ℓ is an arbitrary positive constant satisfying the condition $\mu > \ell > \max(0,\mu-h)$.

Proof. We represent the integral (9) in the following form

$$\phi(P,B) = \frac{1}{4\pi} \int_{P} M(P,Q) \left[g(Q,B) - g(P,B) \right] dS_Q + \frac{1}{2} g(P,B) .$$

Next, taking into account inequalities (7),(8) and the following estimation of the elements $M_{ik}(P,Q)$ (i,k=1,2,3, 4) of the matrix M(P,Q)

$$\left| M_{ik}(P,Q) \right| \leqslant \frac{1}{|P-Q|^2}$$

see ((4) p.39), we obtain

$$\left|\phi_{\mathbf{i}}(\mathbf{P},\mathbf{B})\right| \leqslant \frac{1}{4\pi} \int_{\mathcal{S}} \frac{4\mathbf{K}|\mathbf{P}-\mathbf{Q}|^{\mathbf{h}}}{\left|\mathbf{P}-\mathbf{Q}\right|^{2}} d\mathbf{S}_{\mathbf{Q}} + \frac{1}{2} \left|\mathbf{g}_{\mathbf{i}}(\mathbf{P},\mathbf{B})\right|.$$

This implies

$$|\phi_{\mathbf{i}}(\mathbf{P},\mathbf{B})| \leq \mathbb{K}(\frac{1}{2} + \mathbf{C}),$$

where

$$C = \sup_{S} \frac{1}{\pi} \int_{P-Q} \frac{dS_{Q}}{|P-Q|^{2-h}}.$$

Hence inequality (10) has been proved.

To prove Hölder's condition (11) we consider the difference

(14)
$$|\phi_{i}(P,B) - \phi_{i}(P_{1},B_{1})| \le |\phi_{i}(P,B) - \phi_{i}(P_{1},B)| + |\phi_{i}(P_{1},B) - \phi_{i}(P_{1},B_{1})|$$

 $- |\phi_{i}(P_{1},B_{1})|$, $i = 1,2,3,4.$

The following inequality

(15)
$$|\phi_{\mathbf{i}}(P,B)-\phi_{\mathbf{i}}(P_1,B)| \leq C' K |P-P_1|^h$$
, $i=1,2,3,4$,

where C' is a positive constant independent of the column g(Q,B), result immediately from Zakowski's theorem on preserving Hölder's class by the singular integral

$$\phi(P) = \frac{1}{4\pi} \int_{S} M(P,Q)g(Q)dS_{Q}.$$

Now we are going to prove Hölder's condition with respect to the parameter B. To this aim we consider the difference

$$\phi(P,B) - \phi(P,B_1) = \frac{1}{4\pi} \int_{S} M(P,Q) \left[g(Q,B) - g(P,B) \right] dS_Q + \frac{1}{2} g(P,B) +$$

$$-\frac{1}{4\pi}\int_{S} M(P,Q) \Big[g(Q,B_{1}) - g(P,B_{1})\Big] dS_{Q} - \frac{1}{2}g(P,B_{1}) =$$

$$=\frac{1}{2}\left[g(P,B)-g(P,B_1)\right]+\frac{1}{4\pi}\int_{S}M(P,Q)\left[g(Q,B)-g(P,B)-g(Q,B_1)-g(P,B_1)\right]dS_{Q}.$$

Since in view of assumption (8) we have

(17)
$$\frac{1}{2} |g_{i}(P,B)-g_{i}(P,B_{1})| \leq \frac{1}{2} K |B-B_{1}|^{\mu}$$
, i=1,2,3,4,

it remains to consider the integral

(18)
$$I = \frac{1}{4\pi} \int_{S} M(P,Q) \left\{ \left[g(Q,B) - g(P,B) \right] - \left[g(Q,B_1) - g(P,B_1) \right] \right\} dS_Q.$$

To this integral we apply the classic method of potential theory (see,e.g. [3] p.593). It suffices to investigate the case, where $|B-B_1|<\delta/3$, and δ is a positive number so small that the measure of the angle ϕ between normals at the points P and Q of the part S_k of the surface S included inside the ball with radius δ and center at the point P satisfies the condition $\cos\phi \gg 1/2$ (see [2] p.41).

Consider a circular cylinder W(P,R) with radius $R = |B-B_1|$ and axis along the normal to S at the point P. We assume that the height of the cylinder is selected in such a way that the set W(P,R) \cap (S-S_k) is empty. Let θ_1 denote the part of the surface S cut off by the cylinder W(P,R). We have $\theta_1 \in S_k$. We place the origin of the coordinate system Pxyz at the point P of the surface S, where the axis Pz is directed according to the exterior normal at the point P with respect to the region D⁺. Then the remaining axes lie in the plane π_p tangent to

the surface S at the considered point P.Next we represent the integral I in the form of two integrals

$$I = I + I$$

spread over the parts θ_1 , and S- θ_1 of the surface S, respectively. In view of the relation (18), assumption (8) and the estimation (12) of the kernel M(P,Q) we have

(20)
$$\left|I_{i}^{6_{1}}\right| \leqslant \frac{1}{4\pi} \int_{6_{1}} \frac{4}{\left|P-Q\right|^{2}} \left\{ K \left|P-Q\right|^{h} + K \left|P-Q\right|^{h} \right\} dS_{Q} \leqslant \frac{2K}{\pi} \int_{6_{1}} \frac{dS_{Q}}{\left|P-Q\right|^{2-h}}$$

for i=1,2,3,4. This implies

(21)
$$\left| I_{i}^{61} \right| \leq \frac{2K}{\pi} \int_{6}^{1} \frac{dS_{Q}}{|P-Q|^{2-h}} \leq \frac{2K}{\pi} \int_{\Omega}^{1} \frac{dQ'}{|P-Q'|^{2-h} \cos \varphi},$$

where Ω is the projection of the surface δ_1 onto the plane π_p , φ denotes the measure of the angle between the axis Pz and the exterior normal to the surface S_k at the point $Q(\xi,\eta,\zeta)$ and $Q'(\xi,\eta)$ is the projection of the point $Q(\xi,\eta,\zeta)\in\delta_1$ onto the plane π_p .

Introducing polar coordinates $x=\varrho\cos\vartheta$, $y=\varrho\sin\vartheta$, where $\varrho=|P-Q'|$, in the plane π_p and making use of the inequality $\frac{1}{2}\leqslant\cos\varphi\leqslant 1$ which is satisfied at every point $Q\in S_k$, we obtain

(22)
$$\left|I_{i}^{61}\right| \leq \frac{2K}{\pi} \int_{0}^{2\pi} \int_{0}^{|B-B_{i}|} \int_{0}^{2\frac{\rho}{2-h}} d\rho d\theta \leq \frac{8K}{h} |B-B_{1}|^{h} = A_{1} |B-B_{1}|^{h}$$
,

where $A_1>0$. We represent the integral I as follows

$$I^{S-\delta_{1}} = \frac{1}{4\pi} \int_{S-\delta_{1}} M(P,Q) \left\{ \left[g(Q,B) - g(P,B) \right] + \left[g(P,B_{1}) - g(Q,B_{1}) \right] \right\} dS_{Q} =$$
(23)

$$= \frac{1}{4\pi} \int_{S-6}^{M(P,Q)} \left[g(Q,B) - g(Q,B_1) \right] + \left[g(P,B_1) - g(P,B) \right] dS_Q.$$

Taking into account assumption (8) and conditions (12) we ob-

$$|\mathbf{I}_{i}^{S-6_{1}}| \leq \frac{1}{4\pi} \int_{S-6_{i}} \frac{4 \cdot 2K |B-B_{1}|^{\mu}}{|P-Q|^{2}} dS_{Q} = 8K |B-B_{1}|^{\mu} \frac{1}{4\pi} \int_{S-6_{i}} \frac{1}{|P-Q|^{2}} dS_{Q},$$

$$i=1,2,3,4.$$

The last integral appearing in formula (24) can be split into a sum of two integrals:

(25)
$$\frac{1}{4\pi} \int_{S-\delta_I} \frac{1}{|P-Q|^2} dS_Q = \frac{1}{4\pi} \int_{S-\delta_Q} \frac{dS_Q}{|P-Q|^2} + \frac{1}{4\pi} \int_{\delta_0-\delta_I} \frac{dS_Q}{|P-Q|^2} = I^{S-\delta_0} + I^{\delta_0-\delta_1}$$

where δ_0 is the part of the surface S cut off by the cylinder W(P, $\delta/3$) with axis coinciding with the axis of the cylinder W(P, $|B-B_1|$). For that part δ_0 of the surface S we have the inclusion $\delta_1 \subset \delta_0 \subset S_k$.

Projecting the part θ_0 - θ_1 of the surface S onto the plane π_p and using the inequality $\cos \phi \geqslant 1/2$ we obtain

(26)
$$I_{i}^{S-\delta_{0}} \leqslant \frac{1}{4\pi} \left(\frac{3}{6}\right)^{2} |S| = A_{2},$$

and

$$I_{i}^{\delta_{0}-\delta_{1}} \leq \frac{1}{4\pi} \int_{0}^{2\pi} \int_{|\mathbf{B}-\mathbf{B}_{i}|}^{\delta/3} \frac{2\varrho}{\varrho^{2}} \, d\varrho \, d\theta = \int_{|\mathbf{B}-\mathbf{B}_{i}|}^{\delta/3} \frac{1}{\varrho} \, d\varrho = \ln \frac{\delta}{3} - \ln |\mathbf{B} - \mathbf{B}_{1}| \leq (27)$$

$$\leq \left| \ln \frac{\delta}{3} \right| + \left| \ln \left| B - B_1 \right| \right| = A_3 + \left| \ln \left| B - B_1 \right| \right|,$$

for i=1,2,3,4, where |S| denotes the area of the surface S, $A_3 > 0$. By inequalities (24),(25),(26) and (27) we have

(28)
$$\left|I_{i}^{S-\delta_{1}}\right| \leq 8K \left|B-B_{1}\right|^{\mu} \left(A_{2}+A_{3}+\left|\ln\left|B-B_{1}\right|\right|\right) \leq$$

$$\leq 8K(A_2+A_3)|B-B_1|^{\mu} + 8K|B-B_1|^{\mu-\epsilon}|B-B_1|^{\epsilon}|\ln|B-B_1|,$$

i = 1,2,3,4.

Since for sufficiently small $|B-B_1|$ the inequality $|B-B_1|^{\epsilon} \ln |B-B_1| < 1$ holds, we can write condition (28) in the following form

(29)
$$\left| I_{i}^{S-6_{1}} \right| \le 8\dot{\kappa} (A_{2}+A_{3}+A_{4}+1) \left| B-B_{1} \right|^{\mu-\epsilon}$$
, i=1,2,3,4,

where ε is a positive constant amaller than μ , and $A_4 = \sup_{\varepsilon} \sup_{\theta, \, \theta_i} \left| B - B_1 \right|^{\varepsilon}$. Combining inequalities (22) and (29) we obtain

(30)
$$|I_1| \leq A_1 K |B-B_1|^{h} + A_4 K |B-B_1|^{\mu-\epsilon} \leq A_5 K |B-B_1|^{\mu-\epsilon}$$
,

i=1,2,3,4,

where $\varepsilon > \max (0, \mu-h)$, $A_5 > 0$. From (16), (17) and (30) it follows that

(31)
$$|\phi_{i}(P,B)-\phi_{i}(P,B_{1})| \le C'' K |B-B_{1}|^{\mu-\epsilon}$$
, i=1,2,3,4

where the positive constant C" depends on the choice of ϵ and on the surface S.

Finally, taking into account estimations (14), (15) and (31) we obtain inequality (11), where $C_1 = \max(C', C'')$. Hence inequality (11) has been proved in the case $|B-B_1| < \delta/3$. For $|B-B_1| > \frac{\delta}{3}$ we have

(32)
$$|\phi_{i}(P,B)-\phi_{i}(P_{1},B_{1})| \leq |\phi_{i}(P,B)| + |\phi_{i}(P_{1},B_{1})| \leq K(1+2C),$$

 $i=1,2,3,4.$

Multiplying both sides of inequality (32) by $|B-B_1|$ we obtain $\frac{\delta}{3} |\phi_i(P,B)-\phi_i(P_1,B_1)| \le |B-B_1| |\phi_i(P,B)-\phi_i(P_1,B_1)| \le |K(1+2C)|B-B_1|$, i=1,2,3,4,

$$|\phi_{\mathbf{i}}(P,B)-\phi_{\mathbf{i}}(P_{1},B_{1})| \leq \frac{3b}{6} (1+2C) |K|B-B_{1}|^{\mu-\epsilon}, \qquad i=1,2,3,4,$$

where b = $\sup_{\Sigma} |B-B_1|^{1-\mu+\epsilon}$. This ends the proof of the theorem.

The theorem proved above is true also in the special case, important for applications, where P=B and Σ =S; that is, it is true for the integral

$$\phi(P,P) = \frac{1}{4\pi} \int_{S} M(P,Q)g(Q,P)dS_Q$$
, $P \in S$, $Q \in S$,

where the elements of the column g(P,Q) satisfy the inequality

$$|g_{1}(P,Q)-g_{1}(P_{1},Q_{1})| \le K[|Q-Q_{1}|^{h}+|P-P_{1}|^{\mu}], o < h < 1, o < \mu \le 1.$$

To prove this special case, it suffices to represent the integrals $\phi(P,P)$ and $\phi(P_1,P_1)$ in the following form

$$\phi(P,P) = \frac{1}{4\pi} \int_{c} M(P,Q) \Big[g(Q,P) - g(P,P) \Big] dS_{Q} + \frac{1}{2} g(P,P) ,$$

$$\phi(P_1, P_1) = \frac{1}{4\pi} \int_{S} M(P_1, Q) \left[g(Q, P_1) - g(P_1, P_1) \right] dS_Q + \frac{1}{2} g(P_1, P_1)$$

and then make direct use of the theorem of Zakowski ([4] p.37).

BIBLIOGRAPHY

- [1] A.B. Бицадзе (A.W. Bicadze): Краевые задачи для еллиптических уравнений второго порядка. Москва 1966.
- [2] W. Pogorzelski: Równania całkowe i ich zastosowania, (Integral equations and their applications), t.II. Warszawa 1958.
- [3] В.И. Смирнов (W.I. Smirnow): Курс высшей математики. Т.IV. Москва 1957.

[4] W. \dot{Z} a k o w s k i: On some properties of the Cauchy type integral in the Euclidean space E_3 , Demonstratio Math. 1(1969)175-185.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received December 11, 1973.