

K. D. Singh, A. Nigam

## ON GENERALIZATIONS OF PRODUCT-CONFORMAL KILLING VECTORS

The idea of product-conformal Killing vector field in a locally product Riemannian space was originally introduced by Tachibana [1]. Subsequently, Yamaguchi generalized such vector fields in [2]. In the present paper,  $p$ -product-conformal Killing vector fields (which, when  $p=1$ , reduce to product-conformal Killing vector fields as given in [2]) have been defined and corresponding properties are obtained.

### 1. Introduction

The prerequisites for this paper are to be found in [3], [4] and [6]. However, we list here some notations and definitions, which have been frequently used.

Locally product Riemannian space  $M$  is an  $n$ -dimensional space with a mixed tensor  $F_i^h$  and with a positive definite Riemannian metric  $g_{ji}$ , satisfying the following conditions

$$(1.1) \quad F_j^i F_i^h = A_j^h$$

and

$$(1.2) \quad F_j^t F_i^s g_{ts} = g_{ji}.$$

$M$  is said to be locally decomposable Riemannian space if the following condition is also satisfied

$$(1.3) \quad F_i^h, j = 0 \quad \text{or} \quad F_{ih,j} = 0,$$

where comma (,) followed by an index denotes the covariant differentiation with respect to the Christoffel symbols  $\{^h_{ji}\}$ .

For brevity we shall denote  $X_{i_1, i_2 \dots i_p}$  by  $X_{i_1, i_p}$ . From (1.3), it is easy to verify that the curvature tensor  $R_{kji}^h$  is pure in all its indices.

**Definition 1.1.** In a compact orientable locally decomposable Riemannian space  $M$ , a vector field  $X_i$  is said to be  $p$ -decomposable, if  $X_{i_1, i_2, i_p, j}$  is pure in  $i$  and  $j$  [6].

**Green's Theorem.** In a compact orientable Riemannian space  $M$ , we have

$$\int_M X^i_{,i} d\sigma = 0$$

for an arbitrary vector field  $X^i$  [4].

**Lemma 1.1.** In a compact orientable locally decomposable Riemannian space, a necessary and sufficient condition for a vector field  $X_i$  to be  $p$ -decomposable is [6]

$$g^{st} X_{i_1, i_2, i_p, st} - F^{jt} (X_{s, i_2, i_p, jt} F_i^s) = 0.$$

We shall also assume that the space is of class  $C^{p+2}$  and all other tensors considered in this paper are of class  $C^{p+1}$ .

## 2. $p$ -product-conformal Killing vector fields

**Definition 2.1.** A vector field  $X_i$  is said to be  $p$ -product-conformal Killing or for brevity,  $p$ -PC-Killing, if there exist tensor fields  $\varrho_{i_2, i_p}$  and  $\delta_{i_2, i_p}$  such that

$$(2.1) \quad X_{i_1, i_2, i_p, j} + X_{j, i_2, i_p, i} = 2(\varrho_{i_2, i_p} g_{ji} + \delta_{i_2, i_p} F_{ji}).$$

Transvecting equation (2.1) with  $g^{ji}$  and  $F^{ji}$  respectively, we get

$$(2.2) \quad X^r_{, i_2, i_p r} = n \varrho_{i_2, i_p} + F \delta_{i_2, i_p}$$

and

$$(2.3) \quad X^{*r}_{, i_2, i_p r} = F \varrho_{i_2, i_p} + n \delta_{i_2, i_p},$$

where

$$F = F_a^a = g^{ji} F_{ji}$$

and

$$X^{*r} = X_j F^{jr}.$$

We call a p-PC-Killing vector field  $X_i$  to be special p-PC-Killing, if the tensor fields  $\varrho_{i_2/i_p}$  and  $\delta_{i_2/i_p}$  satisfy the relation

$$(2.4) \quad \varrho_{i_2/i_p, i} = F_i^k \delta_{i_2/i_p, k}.$$

Solving equations (2.2) and (2.3), we get

$$(2.5) \quad \varrho_{i_2/i_p} = (n X^r,_{i_2/i_p r} - F X^{*r},_{i_2/i_p r}) / (n^2 - F^2)$$

and

$$(2.6) \quad \delta_{i_2/i_p} = (n X^{*r},_{i_2/i_p r} - F X^r,_{i_2/i_p r}) / (n^2 - F^2).$$

Now, differentiating covariantly equation (2.1) with respect to  $k$  and multiplying by  $g^{jk}$ , we obtain

$$g^{jk} X_{i, i_2/i_p jk} + g^{jk} X_{j, i_2/i_p ik} - 2\varrho_{i_2/i_p, i} - 2F_i^k \delta_{i_2/i_p, k} = 0$$

or

$$\begin{aligned} g^{jk} X_{i, i_2/i_p jk} + (X^k,_{i_2/i_p ik} - X^k,_{i_2/i_p ki}) + X^k,_{i_2/i_p ki} - \\ - 2\varrho_{i_2/i_p, i} - 2F_i^k \delta_{i_2/i_p, k} = 0. \end{aligned}$$

Using Ricci identity and equations (2.5) and (2.6), we have

$$(2.7) \quad \begin{aligned} g^{jk} X_{i, i_2/i_p jk} + R_{ik} X^k,_{i_2/i_p} - \sum_{t=2}^p R_{kii_t}^a X^k,_{i_2/i_{t-1} a i_{t+1}/i_p} + \\ + \frac{1}{n^2 - F^2} \{ (n^2 - F^2 - 2n) X^k,_{i_2/i_p ki} + 2F X^{*k},_{i_2/i_p ki} - \end{aligned}$$

$$(2.7) \quad - 2nF_i^j X^{*k},_{i_2/i_p k j} - 2FF_i^j X^k,_{i_2/i_p k j} \} = 0,$$

which is thus a necessary condition for a vector field to be p-PC-Killing.

Now, we shall prove that if a p-PC-Killing vector field is p-decomposable [6] then it is special p-PC-Killing, that is,

$$\varrho_{i_2/i_p, k} = F_k^i \delta_{i_2/i_p, i}$$

or

$$(2.8) \quad (n^2 - F^2) \varrho_{i_2/i_p, k} = [F_k^i (nF_j^r X^j,_{i_2/i_p r i} - F X^r,_{i_2/i_p r i})]$$

It is easy to verify that

$$\begin{aligned} F_k^i (nF_j^r X^j,_{i_2/i_p r i} - F X^r,_{i_2/i_p r i}) &= nF_k^i F_j^r (X^j,_{i_2/i_p r i}) + \\ &+ nF_k^i F_j^r (X^j,_{i_2/i_p r i} - X^j,_{i_2/i_p r i}) - FF_k^i (X^r,_{i_2/i_p r i}) - \\ &- FF_k^i (X^r,_{i_2/i_p r i} - X^r,_{i_2/i_p r i}) = nF_j^r (X^j,_{i_2/i_p i} F_k^i),_r + \\ &+ nF_k^i F_j^r (R_{iraj} X^a,_{i_2/i_p} - \sum_{t=2}^p R_{iraj} X^a,_{i_2/i_{t-1} a i_{t+1}/i_p}) - \\ &- F(X^r,_{i_2/i_p i} F_k^i),_r - FF_k^i (R_{iraj} X^a,_{i_2/i_p} - \sum_{t=2}^p R_{iraj} X^a,_{i_2/i_{t-1} a i_{t+1}/i_p}). \end{aligned}$$

Since the curvature tensor is pure in all its indices and vector field  $X_i$  is p-decomposable, therefore

$$\begin{aligned} F_k^i nF_j^r X^j,_{i_2/i_p r i} - F X^r,_{i_2/i_p r i} &= \\ &= nF_j^r F_t^j (X^t,_{i_2/i_p k r}) + n(R_{kjai} X^a,_{i_2/i_p} - \\ &- \sum_{t=2}^p R_{kjai} X^a,_{i_2/i_{t-1} a i_{t+1}/i_p}) - FF_j^r (X^j,_{i_2/i_p k r}) + \end{aligned}$$

$$\begin{aligned}
& + \text{FF}_k^i (R_{ia} X^a, _{i_2/i_p} + \sum_{t=2}^p R_{ir_i t}^a X^r, _{i_2/i_{t-1} a i_{t+1}/i_p}) = \\
& = \{ n(X^j, _{i_2/i_p j k}) - \text{FF}_j^r (X^j, _{i_2/i_p r k}) \} + \text{FF}_j^r (X^j, _{i_2/i_p r k} - \\
& - X^j, _{i_2/i_p k r}) + \text{FF}_k^i (R_{ia} X^a, _{i_2/i_p} + \sum_{t=2}^p R_{ir_i t}^a X^r, _{i_2/i_{t-1} a i_{t+1}/i_p}) = \\
& = (n^2 - F^2) \varrho_{i_2/i_p, k} + F_j^r (R_{kra} X^a, _{i_2/i_p} - \sum_{t=2}^p R_{kri t}^a X^j, _{i_2/i_{t-1} a i_{t+1}/i_p}) + \\
& + \text{FF}_k^i (R_{ia} X^a, _{i_2/i_p} + \sum_{t=2}^p R_{ir_i t}^a X^r, _{i_2/i_{t-1} a i_{t+1}/i_p}) = (n^2 - F^2) \varrho_{i_2/i_p, k}
\end{aligned}$$

by virtue of purity of the curvature tensor. Hence we get

$$\varrho_{i_2/i_p, k} = F_k^i \sigma_{i_2/i_p, i},$$

which provides the proof of the following

**Theorem 2.1.** In a locally product Riemannian space  $M$ , if a  $p$ -PC-Killing vector field is  $p$ -decomposable then it is special  $p$ -PC-Killing.

Next, multiplying equation (2.1) by  $g^{ih}$ ,  $g^{jh}$  and  $g^{kh}$  and differentiating covariantly with respect to  $i, j$  and  $k$  respectively, we get

$$(2.9) \quad X^h, _{i_2/i_p j i} + X_j, _{i_2/i_p i}^h = 2(\varrho_{i_2/i_p, i} A_j^h + \sigma_{i_2/i_p, i} F_j^h)$$

$$(2.10) \quad X_i, _{i_2/i_p j}^h + X^h, _{i_2/i_p i j} = 2(\varrho_{i_2/i_p, j} A_i^h + \sigma_{i_2/i_p, j} F_i^h)$$

and

$$(2.11) \quad X_i, _{i_2/i_p j}^h + X_j, _{i_2/i_p i}^h = 2(\varrho_{i_2/i_p, i} g_{j i}^h + \sigma_{i_2/i_p, i} F_{j i}^h).$$

Adding equations (2.9) and (2.10) and subtracting (2.11), we obtain

$$\begin{aligned}
 & T_{i_2/i_p j i}^h + T_{i_2/i_p j i}^h = \\
 (2.12) \quad & = 2(\varrho_{i_2/i_p, i} A_j^h + \varrho_{i_2/i_p, j} A_i^h - \varrho_{i_2/i_p, i}^h g_{j i} + \\
 & + \sigma_{i_2/i_p, i} F_j^h + \sigma_{i_2/i_p, j} F_i^h - \sigma_{i_2/i_p, i}^h F_{j i}),
 \end{aligned}$$

where

$$\begin{aligned}
 T_{i_2/i_p j i}^h &= X_{i_2/i_p j i}^h + X_{j, i_2/i_p i}^h - X_{j, i_2/i_p i}^h = \\
 &= X_{i_2/i_p j i}^h + R_{a j i}^h X_{i_2/i_p}^a - \sum_{t=2}^p R_{i_t}^a X_{j, i_2/i_{t-1} a i_{t+1}/i_p}^h.
 \end{aligned}$$

From equation (2.12), it is easy to verify that

$$(2.13) \quad g_{j i}^h T_{i_2/i_p j i}^h = -(n-2) \varrho_{i_2/i_p, i}^h + 2 \sigma_{i_2/i_p, i} F_i^h - F \sigma_{i_2/i_p, i}^h$$

and

$$\begin{aligned}
 (2.14) \quad F_t^h F_{j i}^h T_{i_2/i_p j i}^t &= 2 \varrho_{i_2/i_p, i}^h - F F_t^h \varrho_{i_2/i_p, i}^t + \\
 &+ 2 \sigma_{i_2/i_p, i} F_i^h - n F_t^h \sigma_{i_2/i_p, i}^t
 \end{aligned}$$

Subtracting equation (2.14) from equation (2.13), we get

$$\begin{aligned}
 g_{j i}^h T_{i_2/i_p j i}^h - F_t^h F_{j i}^h T_{i_2/i_p j i}^t &= \\
 &= - n \varrho_{i_2/i_p, i}^h + F F_t^h \varrho_{i_2/i_p, i}^t - F \sigma_{i_2/i_p, i}^h + n F_t^h \sigma_{i_2/i_p, i}^t
 \end{aligned}$$

or

$$\begin{aligned}
 (2.15) \quad g_{j i}^h X_{i_2/i_p j i}^h - F_{j i}^h (X_{i_2/i_p j i}^t F_t^h) &= \\
 &= - n \varrho_{i_2/i_p, i}^h + F F_t^h \varrho_{i_2/i_p, i}^t - F \sigma_{i_2/i_p, i}^h + n F_t^h \sigma_{i_2/i_p, i}^t.
 \end{aligned}$$

Assuming that the vector field  $X_i$  is special p-PC-Killing, we get

$$g^{ji} X^h,_{i_2/i_p j i} - F^{ji}(X^t,_{i_2/i_p j i} F_t^h) = \\ = - n \varrho_{i_2/i_p}^h + F \delta_{i_2/i_p}^h - F \delta_{i_2/i_p}^h + n \varrho_{i_2/i_p}^h$$

or

$$(2.16) \quad g^{ji} X^h,_{i_2/i_p j i} - F^{ji}(X^t,_{i_2/i_p j i} F_t^h) = 0,$$

which is a necessary and sufficient condition for a vector field to be p-decomposable in a compact orientable locally decomposable Riemannian space  $M$  [6]. Thus we have the following

**Theorem 2.2.** In a compact orientable locally decomposable Riemannian space  $M$ , a special p-PC-Killing vector field is p-decomposable.

### 3. Integral formula

In this section we establish an integral formula for a compact orientable locally decomposable Riemannian space  $M$  and use it to obtain a necessary and sufficient condition for a p-PC-Killing vector field.

Now consider a vector field  $X_i$  in  $M$  and define tensor field  $S_{j i_2/i_p i}$  by

$$(3.1) \quad S_{j i_2/i_p i} = X_i,_{i_2/i_p j} + X_j,_{i_2/i_p i} - 2 \varrho_{i_2/i_p} g_{ji} - 2 \delta_{i_2/i_p}^j F_{ji},$$

where  $\varrho_{i_2/i_p}$  and  $\delta_{i_2/i_p}$  are given by (2.5) and (2.6) respectively. We notice that  $S_{j i_2/i_p i} = 0$  is equivalent to the fact that the vector field  $X_i$  is a p-PC-Killing.

Putting

$$S^2 = S_{j i_2/i_p i} S^{j i_2/i_p i}$$

and calculating it by the aid of equation (3.1), we get

$$S^2 = (X_{i,i_2/i_p j} + X_{j,i_2/i_p i} - 2\varrho_{i_2/i_p} g_{ji} - 2\sigma_{i_2/i_p} F_{ji}) \times \\ \times (X^{i,i_2/i_p j} + X^{j,i_2/i_p i} - 2\varrho_{i_2/i_p} g^{ji} - 2\sigma_{i_2/i_p} F^{ji}),$$

where right hand member is the sum of the following five expressions A, B, C, D and E

$$A = 2(X_{i,i_2/i_p j})(X^{i,i_2/i_p j}), \quad B = 2(X_{i,i_2/i_p j})(X^{j,i_2/i_p i}),$$

$$C = -8(\varrho_{i_2/i_p} X^{i,i_2/i_p i} + \sigma_{i_2/i_p} X^{*i,i_2/i_p i}),$$

$$D = 4n(\varrho_{i_2/i_p} \varrho^{i_2/i_p} + \sigma_{i_2/i_p} \sigma^{i_2/i_p}), \quad E = 8F \cdot \varrho_{i_2/i_p} \sigma^{i_2/i_p}.$$

Using equations (2.5) and (2.6) in the above expressions, we get

$$\frac{1}{2} S^2 = (X_{i,i_2/i_p j})(X^{i,i_2/i_p j}) + (X_{i,i_2/i_p j})(X^{j,i_2/i_p i}) + \\ + \frac{1}{n^2 - F^2} [4F(X^{i,i_2/i_p i})(X^{*j,i_2/i_p j}) - 2n\{(X^{i,i_2/i_p i})(X^{j,i_2/i_p j}) + \\ + (X^{*i,i_2/i_p i})(X^{*j,i_2/i_p j})\}]$$

or

$$(3.2) \quad \frac{1}{2} S^2 = X^{i,i_2/i_p j} S_{j,i_2/i_p i}.$$

Next, we shall calculate  $S_{j,i_2/i_p i}^j$  which is sum of the following three expressions U, V and W

$$U = g^{jk} X_{i,i_2/i_p jk} + X^j_{i,i_2/i_p ij},$$

$$V = -2\varrho_{i_2/i_p} \cdot i = -\frac{2}{n^2 - F^2} [n^k_{i_2/i_p ki} - F X^{*k}_{i_2/i_p ki}],$$

$$W = -2F_i^j \delta_{i_2/i_p, j} = -\frac{2}{n^2 - F^2} \left[ nF_i^j X^{*k},_{i_2/i_p k j} - FF_i^j X^k,_{i_2/i_p k j} \right]$$

by virtue of equations (2.5) and (2.6). Thus

$$(3.3) \quad g^{jk} S_{j i_2/i_p i, k} = g^{jk} X_{i, i_2/i_p j k} + R_{i_2}^k X_{k, i_2/i_p} - \\ - \sum_{t=2}^p R_{k i i_t} a_{X^k, i_2/i_{t-1} a_{i_t/i_p}} + \frac{1}{n^2 - F^2} \left\{ (n^2 - F^2 - 2n) X^k,_{i_2/i_p k i} + \right. \\ \left. + 2F X^{*k},_{i_2/i_p k i} - 2nF_i^j X^{*k},_{i_2/i_p k j} + 2nFF_i^j X^k,_{i_2/i_p k j} \right\} .$$

On the other hand

$$(3.4) \quad g^{jk} \left\{ S_{j i_2/i_p i} X^{i, i_2/i_p} \right\}_{, k} = \\ = g^{jk} S_{j i_2/i_p i, k} X^{i, i_2/i_p} + S_{j i_2/i_p i} X^{i, i_2/i_p j} .$$

In view of (3.1) and (3.3), the above equation is equivalent to

$$(3.5) \quad g^{jk} \left\{ S_{j i_2/i_p i} X^{i, i_2/i_p} \right\}_{, k} = \\ = \left\{ \text{R.H.S of equation (3.3)} \right\} X^{i, i_2/i_p} + \frac{1}{2} S^2 .$$

Hence application of Green's theorem provides the proof of the following

**Theorem 3.1.** In a compact orientable locally decomposable Riemannian space  $M$ , the following integral formula is valid for any vector field  $X_i$

$$\int_M \left[ \left\{ g^{jk} X_{i, i_2/i_p j k} + R_{i k} X^k,_{i_2/i_p} - \sum_{t=2}^p R_{k i i_t} a_{X^k, i_2/i_{t-1} a_{i_t/i_p}} + \right. \right. \\ \left. \left. + \frac{1}{n^2 - F^2} \left( (n^2 - 2n - F^2) X^k,_{i_2/i_p k i} + 2F X^{*k},_{i_2/i_p k i} - 2nF_i^j X^{*k},_{i_2/i_p k j} - \right. \right. \right. \\ \left. \left. \left. + 2nFF_i^j X^k,_{i_2/i_p k j} \right) \right] dV . \right]$$

$$+ 2FF_i^j X^k,_{i_2/\iota_p k_j} \} X^{i_1, i_2/\iota_p} + \frac{1}{2} S^2 \] d\sigma = 0,$$

where  $d\sigma$  is the volume element of  $M$ .

Theorem (3.1) yields

Theorem 3.2. In a compact orientable locally decomposable Riemannian space  $M$ , a necessary and sufficient condition for a vector field  $X_i$  to be  $p$ -PC-Killing is that

$$(3.6) \quad \text{R.H.S. of equation (3.3)} = 0.$$

#### Particular cases

Case 1. If  $p = 1$ , then  $p$ -PC-Killing vector field becomes PC-Killing, for which a necessary and sufficient condition is [2]

$$g^{jk} X_{i,jk} + R_{ik} X^k + [(n^2 - 2n - F^2) X^k,_{ki} + 2FX^{*k},_{ki} - \\ - 2nF_i^j X^{*k},_{kj} + 2FF_i^j X^k,_{kj}] / (n^2 - F^2) = 0.$$

Case 2. If  $\sigma_{i_2/\iota_p} = 0$ , then  $p$ -PC-Killing vector field reduces to  $p$ -conformal Killing vector field [5] and in this case equation (3.6) reduces to

$$g^{jk} X_{i, i_2/\iota_p jk} + R_{ik} X^k,_{i_2/\iota_p} - \sum_{t=2}^p R_{kii_t} a X^k,_{i_2/\iota_{t-1} a \iota_{t+1}/\iota_p} + \\ + \frac{n-2}{n} X^k,_{i_2/\iota_p k} = 0.$$

Case 3. If  $p = 1$  and  $\sigma_{i_2/\iota_p} = 0$ , then equation (3.6) changes to

$$g^{jk} X_{i,jk} + R_{ik} X^k + \frac{n-2}{n} X^k,_{ki} = 0,$$

which is a necessary and sufficient condition for a vector field to be conformal Killing [3].

**C a s e 4.** If a vector field  $X_i$  is a special p-PC-Killing, then we have

$$g_{i_2/i_p, i} = F_i^k \delta_{i_2/i_p, k}$$

or

$$nX^k,_{i_2/i_p k i} - FX^{*k},_{i_2/i_p k i} = F_i^k (nX^{*j},_{i_2/i_p j k} - FX^j,_{i_2/i_p j k}).$$

In this case theorem (3.1) provides the proof of the following  
**C o r o l l a r y 3.1.** In a compact orientable locally decomposable Riemannian space  $M$  the integral formula

$$\int_M \left[ \left\{ g^{jk} X_{i, i_2/i_p j k} + R_{ik} X^k,_{i_2/i_p} - \sum_{t=2}^p R_{k i i_t} a_{X^k,_{i_2/i_{t-1} a_{i_{t+1}/i_p}} \right. \right. \\ \left. \left. + \frac{1}{n^2 - F^2} ((n^2 - 4n - F^2) X^k,_{i_2/i_p k i} + \right. \right. \\ \left. \left. + 4FX^{*k},_{i_2/i_p k i} \right) \right] X^{i, i_2/i_p} + \frac{1}{2} S^2 \right] d\sigma = 0$$

is valid for any vector field  $X_i$ , where  $d\sigma$  is the volume element of  $M$ .

#### REFERENCES

- [1] S. T a c h i b a n a: Some theorems on locally product Riemannian manifold, Tohoku Math. J. 12 (1960) 281-292.
- [2] S. Y a m a g u c h i: On some transformations in locally product Riemannian spaces, Tensor, N.S. 18 (1967) 227-237.
- [3] K. Y a n o: Differential Geometry on Complex and Almost Complex Spaces. Oxford 1965.

- [4] K. Yano, S. Bochner: Curvature and Betti Numbers. Princeton 1953.
- [5] A. Nigam: On generalizations of conformal Killing vectors, (in print).
- [6] A. Nigam: On p-decomposable vector and tensor fields, (in print).

DEPARTMENT OF MATHEMATICS, LUCKNOW UNIVERSITY, LUCKNOW (INDIA).

Received November 14<sup>th</sup>, 1973.