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SOME ALMOST HERMITIAN QUATERNION MANIFOLDS

1. Introduction. A differentiable manifold with an almost
gquaternion structure has been studied by various mathemati-
cians including C.Ehresmann, P.Liebermann, K.Yano, M.Obata,
S.Ishihara and H.Wakakuwa. A.Gray [1] has given some clas-
sifications of almost Hermitian manifolds, and obtained in-
clusion relations between them. In the present paper we clas-
sify almost quaternion manifolds and later prove inclusion
relations between them. In the last section we study a con-
formal diffeomorphism between almost Hermitian quaternion ma-
nifolds and use this diffeomorphism t compare classifications
of these two manifolds.

2. Preliminaries. Let M be an n-dimensional (n= 4m), C*
real differentiable manifold, F(M) the ring of real valued
differentiable functions over M, and X (M) the module of de-
rivatives of F(M). Then X(M) is a Lie algebra over the real
numbers and the elements of X(M) are called vector fields.

If M is equipped with (1,1) tensor fields F and G satis-

fying

(2.1) P°=-1I, G°=-T1, FG = - GF,
def . oo . s
then H == FG satisfies the identities
H° = - I, GH = - HG = F, HF = - FH = G .
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Such a manifold M is said to be a differentiable manifold with
an almost quaternion structure [3].

Each differentiable manifold with an almost quaternion
structure (¥, G, H) admits a positive definite Riemannian me-
tric defined by a scalar product <+ °, *> such that

<FX,FY>=<X,Y> ,
(2.2) <GX,GY>=<X,Y> ,
<HX,HY>=<X,Y> ,
for all X,Ye X (M) and the manifold is then said to have an
almost Hermitian quaternion structure [3].
Let 'F, 'G, 'H be defined as follows
P(X,Y) =<FX,Y>,
G(X,Y) = <GX,Y>,
'H(X,Y) =<HX,Y>3; X,YeX (M) .
It is easy to check that 'F, 'G, 'H are skew symmetric.

The torsion tensor 5(X,Y) associated with tensors F and G
is a tensor of type (1,2) defined [4] by

2s(%,Y) = [Fx,eY] ~ F[x,cY] - a[FX,Y] + GF[X,Y] +

2.
(2:3) + [6x,FY] - a[x,PY] - Flox,¥] + ma[X,Y] ,

where X,Ye¥ (M). The Nijenhulis tensor corresponding to the
(1,1) tensor F is given [4] by,

Pvx, ) = [Fx,FY] - 7[x,PY] - P[FK, Y] - [X,Y] .

Let VX be the Riemannian connection on M. Then

(2.4) Ve (B)(Y) = Vi (FY) - F VY,
and
(2.5) Ve ('F)(1,2) = <V (F)(Y),2>,
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where X, Y, Z € X (M). Using the above two identities, it 1is
easy to verify the following

Theoren 2.1. The following equalities hold for
arbitrary X,Y,Z e¥(M)

(1) Vy(F)(GY) = F Vo (F)(HY).

(ii) Vg (G)(FY) =GV (G)(HY) .

(1ii) Vx(P)(X) = G Vx(B)(X) + Vy(6)(HY) .
(iv) Vy('F)(GY,2) = = Vy('F)(HY,FZ).

5. Special almost Hermitian quaternion manifolds and their
inclusion relations

In this section we shall require the following explicit
formulas for the exterior and co-derivatives of +the 2-form
IF’

(3.1) d'FE,Y,2) = _C V. ('F)(,2),

m

§F(X) = 'Z, VEi('F)(E.l,X) +VFEi('F)(FEi,X) +

(3.2)
+ VGEi( 'F)(GEi,X) + VHEi('F)(HEi,X)} s

where C denotes the cyclic permutation over (X,Y,Z) and {Eq,
eevy By FEi,uouyFE ), GE,,...,GE , HE,l,...,HEm} form the frame
field on an open subset of M [3].

Theoren 3.,1. Let X,Y,Ze X (M). Then

(3.3) "N(X,Y) = Ve (F) (¥) + Vy(F) (FY) =V (F) (X) = Uy (F) (FX).
2S(X,Y) =VFX(G) (Y) +VGX(F) (Y) - va(G)(Y) - G'Vx(F)(Y) -

(3.4)
~ Vg (8) (X) = Vay (F)(X) + F U (G)(X) + G Vy(F) (X).
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(3.5) 2 VX( 'F)(¥,2) = 4'F(X,Y,2) - 4'F(X,FY,FZ) +<X,N(Y,FZ)>.

2 Vg ('F)(1,2) + 2 Ve ('F)(FY,2) =
(3.6)
= 4'F(%,Y,2) - 4 'F(X,FY,FZ) + 4'F(Z,FX,FY) + 4'F(Y,FZ,FX).

<8(X,Y),Z2> ~ <8(X,2),Y>~<8(Y,2),X>=
(3.7)

= Veg('G)(¥,2) - F V3('G)(Y,2) + Vgy('F)(¥,2) - G Vx('F)(Y,2).

Proof. The proof of (3.3) and (3.4) follows from the
fact, that

Vet - VX = [X,Y] ;

(3.5) and (3,6) are consequences of (3.3), (3.1) and the for-
mula

Vx('F)(FY,2) = V4('F)(Y,FZ).

The relation (3.7) follows from (3.4).

We shall call an almost Hermitian quaternion manifold
1° K.-quaternion manifold or (K.Q) iff

VX‘F = 0, VXG = 03
2° A.K.-quaternion manifold or (A.X.Q) iff
A'F=0, d'G=0;
30(%N.K.)—quaternion manifold or G(N.K.Q.) iff

VX(G)(Y) + VY(G)(X) =0, VX(G)(FY) +VY(G)(FX) = 03
4.0 F(N.K.)-quaternion manifold or F(N.K.Q) iff
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5° G(Q,.K)-quaternion manifold or G(Q.K.Q) iff
F(

6° F(Q.K)-quaternion manifold or - (Q.K.Q) iff

Vg (F) (1) + Vgy (F)(GY) = 0

(s.K.)-quaternion manifold or %(S.K.Q.) iff

~J
[o]

§'G =0;
8° F(s,K.)-quaternion manifold or ¥(S.K.Q.) iff

0'F = 03

O
[o]

H,-quaternion manifold or (H.Q) iff

Pax,y) =0, Gmx,Y) =0, S(X,1)=o0.

Theorem 3,2, The special almost Hermitian quater-
nion manifolds 1° - 9° satisfy the following inclusion rela-
tions:

(1) K.Q. € A.K.Q.
(1i) K.Q. € H.K.Q.
(iii) k.q. ¢ %(n.x.q) < %(q.x.q) € %(s.x.q).
(iv) k.. ¢ T(n.x.qQ) < F(q.x.q) < F(s.x.q).

Proof., The relation K.Q. < A.Z.Q. follows from (2,5)
and (3.1), the relation K.Q. & H.K.Q. follows from (3.1) and
(3.4). The relations K.Q. < ¥(N.K.Q) and K.Q. < T(N.X.Q.) are
obvious. The inclusion Gr(N.K.Q) < G(Q.K.';),) 1s an immediate
consequence of the definitions 30 and 50 and the inclusion
G(Q.K.Q) < G(S.K.Q) is a consequence of (2,2) and (2.5).

In a similar manner we can prove that

Fonk.q.) e F(q.k.q) < F(s.x.9).
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Theorem 3.3, If M is a G(N.K) quaternion mani-
fold and also an A.K.-and F(N.K.)—quaternion manifold, then
it is Ke.-quaternion manifold.

Proof. If Me F(N.EQ), then a'G = 3 Vu( '8)(Y,2),
and 4'F = 3 Vy('F)(Y,2), if Me “(N.K.Q). Now if M e A.K.Q,1it
means that d'G = O, 4'F =0, then V,F = 0, VXG = 0. Hence,
M is Ke.~quaternion.

Using the definitions of special spaces given earlier in
this section, we readily deduce the following theorems.

Theorem 3.4. A F(N.K)—quaternion manifold is
G(N.K)-quaternion iff

Vy(H) (FY) + Vy(H)(FX) = 0.
Proof . Using (iii) of Theorem (2.1) we get
V(@) (Y) + Vy(aG)(X) =
= H{Vy(B)(Y) + Vy(F)(X)} + Vy(B) (FY) + Vy(H)(FX),

and

= F{ Vzg(B)(FY) + Vy(B)(FK)} ~{Vy(@)(FY) + Vy(@)(FX)} .

The proof of the theorem follows immediately <from the above
two expressions.

Theoremn 3.5. A Gr(S.K)—quaternion manifold is
F(S.K)-quaternion manifold iff

V() (FY) = Vg (H)(1) + Vg (H) (HY) - Vi (B)(6Y) = O.

Proof . Using theorem (2.1) and the formila (3.2) we
get

6'G = HS'F - Zm;_ {VE- ("H)(FE;,X) - Vg, ( 'H)(E;,X) +
(= i i
+ VGEi( 'H) (HE, ,X) - VHEi( ‘H)(GE.l,x)} ,

and hence the proof follows.
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As a consequence of the above theorem we have
Corollary 3.5. A %(S.K)~quaternion manifold is T(S.K.)-
-quaternion provided

Vyx(H)(FY) - Vg (H)(Y) =. 0.

4, Conformal diffeomorphism of almost Hermitian quaternion
manifolds

We consider two manifolds (M, <°*,°>) and (Mo, <',‘>°).Let
: M — M° be a diffeomorphism. For XeX (M) let X° =5, X,
where ¢, is the Jacobian or the differential of $ . Then & is
called (1] a conformal diffeomorphism iff there exists
6 € F(M) such that

(4.1) <x°,1°% « ¢ = 20 cx,¥>y  x,ve(M).

For fe F(M), grad fe X (M) is defined by

<grad £,X>= X(f); XeX(M),.
If $ + M — M° is a conformal diffeomorphism then [1]
(#.2) V;OY° ={VyY + X(6)Y + ¥(6)X - <X,Y>grad 61° .

Lemmn a. The forms and structures of M and M° are re-
lated by the following equalities:

(4.3) FO(X°,¥%)ep = o20 'F(X,Y),

(4o4) o* ('F%) = &% ',

(4.5) 8% (a'7°) = ¢°%{2a6 A F + a'F} ,
VO (FNY°) =

(446) X

o]
= { V4 (F)(Y) + FY(6)X - Y(6)FX +<FX,Y> grad6+<X,Y> F gradc} ,
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VOO(:FO)(YO’ZO).é -
X

(#.7) = %V ('FI(1,2) + FY(6) <X,Z> - ¥(6) 'F(X,2) +
+ 'F(X,Y)2(6) - <X,Y> Fz(6)} ,
(4.8) {Fnx, 0}’ = e, ),

for X,Y,ZeX% (M),
Theorem 4.1. If X,YeX¥(M) and dim M=n=4m, then

(4.9) §%GOxM) e = 'G(X) + (n-2)3x(6).
and
(4.10) {s(x,1}° = s°x°,1°).

Proof. We first observe that if

{E,l,...,Em, FEqyeeesFEp, GE,ye0e,GEp, HE,],...,HEm}
is a frame field on an open subset of M, then
m

{(e‘6 E)% veey (9B, (egFE,I)O, cers (e‘GHEm)O}

is a frame field on an open subset of u°.
Now, we have

6°'6°(x°) -8 = - o720 2 [VoC ‘6N (BY,E7) +

+ V0, CEON(EF%ES,X°) + 90 ('6°)(6°ES,x°) +
F By G°E;

@) (88, %)} 8
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Hence by (4.7) - we get

§°'6°(x%) - = Z {in( ‘G)(E{HX) + VFEi( 'G) (FE;,X) +

(=1

+ VGEl( 'G)(GEIQX) + VHE:L( lG)(HEl,X)} -

=1 2 {6E{(6) <By,X> - By (6) 'G(Ey,X) + 'G(B;,E;)X(6) -

=1

~|<B; ,E;> G(X)(6) + GFE,(6) <FE;,X> - FE,(6) 'G(FE;,X) +
+ 'G(FE,,FE;)X(6) - <FE;,FE;> GX(6) +
+ G°E; (6) <GE; ,X> - GE, (6) 'G(GE, ,X) +
+ 'G(GE; ,GE,)x(6) - <GE,,GE;> GX(6) +
+ GHE, (6) <HE, ,X> ~ HE, (6) 'G(HE,;,X) +

+ 'G(HE, ,HE,)X(6) ~ <HE,;,HE;> GX(6)} =
= §'G(X) + 4mGX(6) - 2 ;{aiG—Ei(G) - C;E;(6) -

~ b,HE, (6) + diFEi(G)} ,

where
m

X = 2 {ajEj + DFE; + cJGE; + dJ.HEJ.} .

Hence
d°'6°(x°)+¢ = FG(X) + (n ~ 2)GX(6).

The equality (4.10) is a direct consequence of (4.6)
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By means of Theorem 4.1 and the lemma preceeding it we can

prove the following
Theorem 4.2. Letd: M—M° be a conformal dif-

feomorphism between almost Hermitian quaternion manifolds M
and M°.(1) - The manifold MeH.Q iff M°e H.Q. (2) If dim M>8,
¢ is not nomothetic (i.e. 6 is non-constant), and M is in one
of the classes: K.Q., T(N.E.Q.), F(N.E.Q), F(Q.E.Q), ¥(Q.K.q),
1?(S.K.Q), Gr(S.K.Q), then M° is never in any of these classes.
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