

Henryk Ugowski

ON DIFFERENTIAL INEQUALITIES OF PARABOLIC TYPE
WITH MULTIDIMENSIONAL TIME

Mlak [2] has proved a theorem on strong differential inequalities of parabolic type. A theorem on weak differential inequalities was obtained by Szarski [3]. Using Mlak's result Besala [1] proved Szarski's theorem under weaker assumptions than those in [3].

In this paper we extend the above-mentioned results of Mlak and Besala to the case where the time-variable is multidimensional.

1. Preliminaries

In this section we extend the notation and definitions stated in the monograph [4] (§§ 46, 47) to the case where the time variable is multidimensional.

Let D be an open domain of the Euclidean space E_{n+m} of the variables $(x, t) = (x_1, \dots, x_n, t_1, \dots, t_m)$ having the following properties:

1° D is contained in the strip

$$\left\{ (x, t) : t_i^0 < t_i < T_i, \quad t_i^0 < t_i \leq \infty \quad (i=1, \dots, m) \right\}$$

and the intersection of the closure \bar{D} with any closed strip

$$\left\{ (x, t) : t_i^0 \leq t_i \leq t_i^1 < T_i \quad (i=1, \dots, m) \right\}$$

is bounded.

2° For any $\tau = (\tau_1, \dots, \tau_m)$, $\tau_i \in [t_i^0, T_i]$, the projection S_τ on the space (x_1, \dots, x_n) of the intersection of \bar{D} with the hyperplane $t_1 = \tau_1, \dots, t_m = \tau_m$ is non-empty.

3° For any point $(x, t) \in \bar{D}$ and any sequence $\{t^y\}$, $(t_i^y \in [t_i^0, T_i])$, such that $t^y \rightarrow t$, there is a sequence $\{x^y\}$, $(x^y \in S_{t^y})$, such that $x^y \rightarrow x$.

Denote by $R_{t_i^0}$ and R_{T_i} , ($i=1, \dots, m$), the interiors of those parts of the boundary δD of D which are situated on the planes $t_i = t_i^0$ and $t_i = T_i$, respectively (if $T_i = \infty$, then R_{T_i} is empty).

Let us put

$$\Sigma = \delta D \setminus \left[\bigcup_{1 \leq i \leq m} (R_{t_i^0} \cup R_{T_i}) \cup \{(x, t^0) : x \in S_{t^0}\} \right]$$

If a function $\alpha(x, t)$ is defined on Σ , then we denote by Σ_α that subset of Σ on which $\alpha(x, t) \neq 0$.

Let functions $f^i(x, t, u, q, r, s)$, ($i=1, \dots, N$), be defined for $(x, t) \in D$ and for arbitrary $u = (u^1, \dots, u^N)$, $q = (q_1, \dots, q_n)$, $r = (r_{11}, r_{12}, \dots, r_{nn})$, $s = (s_1, \dots, s_m)$. Assume that the function $u(x, t) = (u^1(x, t), \dots, u^N(x, t))$ is defined and possesses derivatives $u_x^i = (u_{x_1}^i, \dots, u_{x_n}^i)$ ($i=1, \dots, n$), in the domain D . Under these assumptions, we say that the function $f^i(x, t, u, q, r, s)$ is elliptic with respect to $u(x, t)$ in D if for any r , \bar{r} ($r_{jk} = r_{kj}$, $\bar{r}_{jk} = \bar{r}_{kj}$) and s , such that the quadratic form in $\lambda_1, \dots, \lambda_n$

$$\sum_{j, k=1}^n (r_{jk} - \bar{r}_{jk}) \lambda_j \lambda_k$$

is negative, we have

$$f^i(x, t, u(x, t), u_x^i(x, t), r, s) \leq f^i(x, t, u(x, t), u_x^i(x, t), \bar{r}, s), (x, t) \in D.$$

If a function $u(x, t)$, defined in D and possessing in D derivatives $u_x^i, u_{xx}^i = (u_{x_1 x_1}^i, u_{x_1 x_2}^i, \dots, u_{x_n x_n}^i)$ and $u_t^i = (u_{t_1}^i, \dots, u_{t_m}^i)$ ($i=1, \dots, N$), is a solution of the system

$$(1) \quad f^i(x, t, u(x, t), u_x^i(x, t), u_{xx}^i(x, t), u_t^i(x, t)) = 0, \quad (x, t) \in D \\ i=1, \dots, N$$

and if all the functions f^i are elliptic with respect to $u(x, t)$ in D , then $u(x, t)$ is called a parabolic solution of this system.

We introduce the following condition.

(A) Functions $\alpha^i(x, t)$ ($i=1, \dots, N$) are defined and non-negative on Σ . For every $(x, t) \in \Sigma_{\alpha^i}$ there is given a direction $l^i(x, t)$ which is orthogonal to all the time axes and some segment, with one extremity at (x, t) , of the straight half-line from (x, t) in the direction l^i is contained in \bar{D} .

A solution $u(x, t)$ of the system (1) in D will be called Σ_{α} -regular solution if it is continuous in \bar{D} , possesses derivatives $u_x^i, u_{x_j x_k}^i, u_t^i$ ($i=1, \dots, N; j, k=1, \dots, n; p=1, \dots, m$) continuous in D and if for every i there exists the derivative $\frac{du^i}{dl^i}$ at each point $(x, t) \in \Sigma_{\alpha^i}$.

Assume that we are given

1. the system (1), where the functions $f^i(x, t, u, q, r, s)$, ($i=1, \dots, N$), are non-increasing with respect to s ;

2. functions $\alpha^i(x, t)$ and directions $l^i(x, t)$, ($i=1, \dots, N$), satisfying condition (A);

3. functions $\psi^i(x, t)$ defined on Σ and $\beta^i(x, t)$ defined on Σ_{α^i} , ($i=1, \dots, N$), where $\beta^i(x, t) > 0$ on Σ_{α^i} ;

4. functions $\varphi^i(x)$, ($i=1, \dots, N$), defined on S_T .

The first mixed problem for the system (1) consists in finding a Σ_{α} -regular solution $u(x, t)$ of this system in D , satisfying the initial conditions

$$(2) \quad u(x, t^0) = \varphi(x), \quad x \in S_{t^0}, \quad (\varphi = (\varphi^1, \dots, \varphi^N))$$

and boundary conditions

$$(3) \quad \begin{cases} \beta^i(x, t)u^i(x, t) - \alpha^i(x, t) \frac{du^i}{dt} = \psi^i(x, t), & (x, t) \in \sum_{\alpha^i}, \\ u^i(x, t) = \psi^i(x, t), & (x, t) \in \sum \setminus \sum_{\alpha^i}, (i=1, \dots, N). \end{cases}$$

The following lemma will be needed.

Lemma. Assume that we are given a function $\alpha(x, t)$ and a direction $l(x, t)$ satisfying (for $N=1$) condition (A), and a function $\beta(x, t)$ on \sum_{α} such that

$$\beta(x, t) > b \geq 0 \quad \text{for } (x, t) \in \sum_{\alpha}.$$

Suppose that the function $u(x, t)$, continuous in \bar{D} and possessing the derivative $\frac{du}{dt}$ on \sum_{α} , satisfies the inequalities

$$\beta(x, t)u(x, t) - \alpha(x, t) \frac{du}{dt} \leq b\eta(t) \quad (< b\eta(t)), \quad (x, t) \in \sum_{\alpha},$$

$$u(x, t) \leq \eta(t) \quad (< \eta(t)), \quad (x, t) \in \sum \setminus \sum_{\alpha},$$

where $\eta(t) \geq 0$. Denote

$$D_0 = D \cup \bigcup_{1 \leq i \leq m} R_{t^0_i}.$$

Under these assumptions, if for a point $(x, t) \in D_0 \cup \sum$ we have

$$\max_{x \in S_{\bar{t}}} u(x, \bar{t}) = u(\bar{x}, \bar{t}) > \eta(\bar{t}) \quad (\geq \eta(\bar{t})),$$

then $(\bar{x}, \bar{t}) \in D_0$.

The proof of this lemma is the same as that of Lemma 47.1 of [4].

2. Strong differential inequalities

We introduce the following assumptions:

(I) The functions $f^i(x, t, u, q, r, s)$ ($i=1, \dots, N$): satisfy condition W_+ with respect to u (see § 4 of [4]) and they are non-increasing with respect to s .

(II) The functions $\alpha^i(x, t)$ and the direction $\beta^i(x, t)$ ($i=1, \dots, N$) satisfy condition (A), while $\beta^i(x, t)$ are defined and positive on Σ_{α^i} .

(III) Functions $u(x, t) = (u^1(x, t), \dots, u^N(x, t))$ and $v(x, t) = (v^1(x, t), \dots, v^N(x, t))$ are Σ_{α^i} -regular in D and every function f^i is elliptic with respect to $u(x, t)$. The following differential inequalities are fulfilled in the domain D

$$(4) \quad f^i(x, t, u(x, t), u_x^i(x, t), u_{xx}^i(x, t), u_t^i(x, t)) > \\ > f^i(x, t, v(x, t), v_x^i(x, t), v_{xx}^i(x, t), v_t^i(x, t)), \quad (i=1, \dots, N).$$

Moreover, the initial inequalities

$$(5) \quad u(x, t^0) < v(x, t^0), \quad x \in S_{t^0}$$

and the boundary inequalities

$$(6) \quad \beta^i(x, t) [u^i(x, t) - v^i(x, t)] - \alpha^i(x, t) \frac{d[u^i - v^i]}{dt} < 0, \quad (x, t) \in \Sigma_{\alpha^i}, \\ u^i(x, t) - v^i(x, t) < 0, \quad (x, t) \in \Sigma \setminus \Sigma_{\alpha^i}, \quad (i=1, \dots, N),$$

hold true.

Theorem 1. If assumptions (I)-(III) are satisfied, then $u(x, t) < v(x, t)$ in D ¹⁾.

¹⁾ Theorem 1 is true if, instead of the ellipticity with respect to $u(x, t)$, we assume the ellipticity with respect to $v(x, t)$.

Pr o o f. We proceed similarly as in the proof of Theorem 63.1 of [4]. Since the set $\{(x, t^0) : x \in S_{t^0}\}$ is compact, there is, by (5) and by continuity of $u(x, t)$ and $v(x, t)$, a point $t^1 = (t_1^1, \dots, t_m^1)$, $t_i^0 < t_i^1 < T_i$ ($i = 1, \dots, m$) such that

$$(7) \quad u(x, t) < v(x, t), \quad t^0 \leq t < t^1, \quad x \in S_t.$$

Let $\bar{\varepsilon} \in (0, \min_i (t_i^1 - t_i^0))$ be an arbitrary fixed number and denote

$$t_i^\varepsilon = \begin{cases} \varepsilon(T_i - t_i^0 - \bar{\varepsilon}) + t_i^0 + \bar{\varepsilon} & \text{if } T_i < \infty, \\ \frac{\varepsilon}{1-\varepsilon} + t_i^0 + \bar{\varepsilon} & \text{if } T_i = \infty, \end{cases} \quad (i = 1, \dots, m)$$

where $\varepsilon \in (0, 1)$. Hence, by (7), there is a number $\varepsilon \in (0, 1)$ such that $u(x, t) < v(x, t)$ in the domain

$$D^\varepsilon = \bar{D} \cap \{(x, t) : t_i^0 + \bar{\varepsilon} \leq t_i < t_i^\varepsilon \quad (i = 1, \dots, m)\}.$$

Denote by ε_0 the least upper bound of all $\varepsilon \in (0, 1)$ with this property. We shall prove that $\varepsilon_0 = 1$. Suppose to the contrary, that $\varepsilon_0 < 1$. This implies (as in [4]) the inequality

$$(8) \quad u(x, t) \leq v(x, t), \quad (x, t) \in \overline{D^{\varepsilon_0}}.$$

Moreover, for some index j and some point $(\bar{x}, \bar{t}) \in \overline{D^{\varepsilon_0}}$ such that $\bar{t}_j = t_i^{\varepsilon_0}$ for some i ($1 \leq i \leq m$), we have

$$(9) \quad u^j(\bar{x}, \bar{t}) = v^j(\bar{x}, \bar{t}).$$

If this equality was not true, we would have (by (8))

$$u(x, t) < v(x, t), \quad (x, t) \in \overline{D^{\varepsilon_0}}.$$

Hence it follows that inequality $u < v$ holds true in D^{ε_1} for some $\varepsilon_1 \in (\varepsilon_0, 1)$, which contradicts the definition of ε_0 .

Relations (8), (9) imply that

$$\max_{x \in S_{\bar{t}}} [u^j(x, \bar{t}) - v^j(x, \bar{t})] = u^j(\bar{x}, \bar{t}) - v^j(\bar{x}, \bar{t}) = 0$$

whence, by (6) and by Lemma, we conclude that $(\bar{x}, \bar{t}) \in D$. Thus the function $u^j(x, \bar{t}) - v^j(x, \bar{t})$ attains its maximum at the interior point $\bar{x} \in S_{\bar{t}}$. This implies that

$$(10) \quad u_{\bar{x}}^j(\bar{x}, \bar{t}) = v_{\bar{x}}^j(\bar{x}, \bar{t})$$

and the quadratic form

$$(11) \quad \sum_{k,l=1}^n [u_{x_k x_l}^j(\bar{x}, \bar{t}) - v_{x_k x_l}^j(\bar{x}, \bar{t})] \lambda_k \lambda_l \text{ is negative.}$$

In view of (4) we have, by (8)-(11), condition W_+ and by ellipticity of f^j , the inequality

$$(12) \quad \begin{aligned} & f^j(\bar{x}, \bar{t}, u(\bar{x}, \bar{t}), u_x^j(\bar{x}, \bar{t}), v_{xx}^j(\bar{x}, \bar{t}), u_{tt}^j(\bar{x}, \bar{t})) > \\ & > f^j(\bar{x}, \bar{t}, u(\bar{x}, \bar{t}), u_x^j(\bar{x}, \bar{t}), v_{xx}^j(\bar{x}, \bar{t}), v_{tt}^j(\bar{x}, \bar{t})). \end{aligned}$$

On the other hand, (8) and (9) imply the relation

$$\max_{t \leq \bar{t}} [u^j(\bar{x}, t) - v^j(\bar{x}, t)] = u^j(\bar{x}, \bar{t}) - v^j(\bar{x}, \bar{t}) = 0.$$

Therefore we have

$$u_{tt}^j(\bar{x}, \bar{t}) - v_{tt}^j(\bar{x}, \bar{t}) \geq 0$$

which implies, by the monotonicity of $f^j(x, t, u, q, r, s)$ with respect to s , the inequality

$$f^j(\bar{x}, \bar{t}, u(\bar{x}, \bar{t}), u_x^j(\bar{x}, \bar{t}), v_{xx}^j(\bar{x}, \bar{t}), u_{tt}^j(\bar{x}, \bar{t})) \leq$$

$$\leq f^j(\bar{x}, \bar{t}, u(\bar{x}, \bar{t}), u_x^j(\bar{x}, \bar{t}), v_x^j(\bar{x}, \bar{t}), v_t^j(\bar{x}, \bar{t})),$$

but this contradicts (12).

Thus we have proved that $\varepsilon_0 = 1$; i.e.

$$u(x, t) < v(x, t) \text{ in } \bar{D} \cap \{(x, t) : t_i^0 + \bar{\varepsilon} \leq t_i < T_i \text{ (i=1, ..., m)}\}.$$

Since $\bar{\varepsilon}$ can be taken arbitrarily small, this completes the proof.

3. Weak differential inequalities

We make the following assumptions:

(IV) The functions $f^i(x, t, u, q, r, s)$ ($i=1, \dots, N$) satisfy assumption (I) and each f^i is decreasing with respect to s_i .

(V) Assumption (III) with " $>$ " and " $<$ " replaced by " \geq " and " \leq ", respectively.

(VI) For $u \leq \bar{u}$ the following inequalities are fulfilled

$$f^i\left(x, t, u, q, r, s + \delta^i \left(\sum_{j=1}^m (t_j - t_j^0), \bar{u} - u \right) \right) \leq f^i(x, t, u, q, r, s) \quad (s + \delta^i = \\ = \{s_k + \delta^i\}_{k=1}^m),$$

where $\delta^i(\tau, y_1, \dots, y_N)$ ($i=1, \dots, N$) are non-negative and continuous for

$$0 \leq \tau < \tau_0 = \sum_{j=1}^m (T_j - t_j^0), \quad y_k \geq 0 \quad (k=1, \dots, N).$$

Moreover, we assume that $\delta^i(\tau, 0) = 0$ ($i=1, \dots, N$) and that $y(\tau) = (0, \dots, 0)$ is the unique solution of the problem

$$\frac{dy_i}{d\tau} = \epsilon^i(\tau, y), \quad y_i(0) = 0 \quad (i=1, \dots, N).$$

Theorem 2. If assumptions (II), (IV)–(VI) hold, then $u(x, t) \leq v(x, t)$ in D .

Proof. We apply the same method as in the proof of Theorem 1 of [1].

Let $y^\delta(\tau) = (y_1^\delta(\tau), \dots, y_N^\delta(\tau))$, $\delta > 0$ be a solution of the problem

$$\frac{dy_i}{d\tau} = \zeta^i(\tau, y) + \delta, \quad y_i(0) = \delta \quad (i=1, \dots, N).$$

For any $\varepsilon \in (0, \tau_0)$ there is $\delta_0 > 0$ such that for every $\delta \in (0, \delta_0)$ the functions $y_i^\delta(\tau)$ are defined in the interval $[0, \tau_0 - \varepsilon]$ and

$$\lim_{\delta \rightarrow 0} y_i^\delta(\tau) = 0 \quad (i=1, \dots, N),$$

where the convergence is uniform in this interval.

Denote by D^ε , Σ^ε and $\Sigma_\alpha^\varepsilon$ the parts of D , Σ and Σ_α respectively, contained in the strip

$$\left\{ (x, t) : t_j^0 \leq t_j < T_j - \frac{\varepsilon}{m} \quad (j=1, \dots, m) \right\},$$

where

$$0 < \frac{\varepsilon}{m} < \max_j (T_j - t_j^0).$$

Let us put

$$v^\delta(x, t) = v(x, t) + \omega^\delta(t),$$

where

$$\omega^\delta(t) = y^\delta \left(\sum_{j=1}^m (t_j - t_j^0) \right).$$

Then we have

$$\begin{aligned} & f^i(x, t, u, u_x^i, u_{xx}^i, u_t^i) - f^i(x, t, v^\delta, v_x^{\delta i}, v_{xx}^{\delta i}, v_t^{\delta i}) = \\ & = \left[f^i(x, t, u, u_x^i, u_{xx}^i, u_t^i) - f^i(x, t, v, v_x^i, v_{xx}^i, v_t^i) \right] + \\ & + \left[f^i(x, t, v, v_x^i, v_{xx}^i, v_t^i) - f^i(x, t, v^\delta, v_x^{\delta i}, v_{xx}^{\delta i}, v_t^{\delta i}) + \zeta^i \left(\sum_{j=1}^m (t_j - t_j^0), \omega^\delta(t) \right) + \delta \right]. \end{aligned}$$

The first difference in brackets is, by assumption (V), non-negative. According to assumptions (IV), (VI) the second difference is positive. Thus we have proved that

$$(13) \quad f^i(x, t, u, u_x^i, u_{xx}^i, u_t^i) > f^i(x, t, v^\delta, v_x^{\delta}, v_{xx}^{\delta}, v_t^{\delta})$$

in D^ε (for $0 < \delta < \delta_0$), $i=1, \dots, N$.

Since $\omega^{i\delta}(t) \geq \delta > 0$, we obtain (by assumption (V)) the following inequalities

$$(14) \quad \begin{cases} u(x, t^0) < v^\delta(x, t^0), \quad x \in S_{t^0}, \\ \beta^i(x, t)[u^i(x, t) - v^{i\delta}(x, t)] - \alpha^i(x, t) \frac{d[u^i - v^{i\delta}]}{dt} < 0, \quad (x, t) \in \sum_{\alpha^i}^\varepsilon, \\ u^i(x, t) - v^{i\delta}(x, t) < 0, \quad (x, t) \in \sum_{\alpha^i}^\varepsilon \setminus \sum_{\alpha^i}^\varepsilon \quad (i=1, \dots, N). \end{cases}$$

Inequalities (13), (14) imply, by Theorem 1, that

$$u(x, t) < v^\delta(x, t), \quad (x, t) \in D^\varepsilon,$$

whence, letting $\delta \rightarrow 0$, we have

$$u(x, t) \leq v(x, t), \quad (x, t) \in D^\varepsilon.$$

Since ε is arbitrary, the theorem is proved.

As an immediate consequence of Theorem 2 we obtain the following corollaries.

Corollary 1 (Uniqueness criterion). If assumptions (IV) and (VI) are satisfied, then the first mixed problem (1)-(3) admits at most one parabolic, \sum_{α} -regular solution.

Corollary 2 (Maximum principle). Let assumptions (IV) and (VI) be satisfied. Assume that for $u \geq 0, (x, t) \in D$ we have

$$f^i(x, t, u, 0, 0, 0) \leq 0 \quad (i=1, \dots, N).$$

Suppose that the function $u(x, t)$ is a \sum_{α} -regular and parabolic solution of the system of differential inequalities

$$f^i(x, t, u, u_x^i, u_{xx}^i, u_t^i) \geq 0, \quad (x, t) \in D \quad (i=1, \dots, N)$$

and, moreover, the initial inequalities

$$u(x, t^0) \leq c = (c_1, \dots, c_N), \quad x \in S_{t^0}$$

and the boundary inequalities

$$\beta^i(x, t)u^i(x, t) - \alpha^i(x, t) \frac{du^i}{dt} \leq c_i \beta^i(x, t), \quad (x, t) \in \sum_{\alpha^i},$$

$$u^i(x, t) \leq c_i, \quad (x, t) \in \sum \setminus \sum_{\alpha^i} \quad (i=1, \dots, N)$$

hold true, where c_i are non-negative constants. Under these assumptions we have $u(x, t) \leq c$ in D .

BIBLIOGRAPHY

- [1] P. B e s a l a: On weak differential inequalities, Ann. Polon. Math. 16(1965) 185-194.
- [2] W. M l a k: Differential inequalities of parabolic type, Ann. Polon. Math. 3(1957) 349-354.
- [3] J. S z a r s k i: Sur un système non linéaire d'inégalités différentielles paraboliques, Ann. Polon. Math. 15(1964) 15-22.
- [4] J. S z a r s k i: Differential inequalities. Warszawa 1965.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF GDAŃSK

Received May 29th, 1973.

