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OF QUASI- «(-STARLIKE MEROMORPHIC k-SYMMETRIC FUNCTIONS

1. Introduection

*
Let >,  denote, for any fixed o in the interval [0,1),the
class of functions

n-1

F(z) = A 2, A_4=1, d<|z|<1

n-1

Ms

n

1
o

N 7 )
satisfying the condition: re ‘—zfqz%_)xi when |z|<1. The

%
functions of the class z,o‘ are called «-starlike mel;‘omor-
phic functiors. In perticular, for o«=0 we denote 2. by
3%
> . This is the class*of stg_rlike meromorphic funetions, It
is easy to see that c E for every € f_O 1).
ZoL k) ’

Next, for anyfixed natural k, let 2, denote the class
*
of those functions F € 2.  which possess an expsnsion of the
form

oo
Flz) => b, 2™, a_, =1, o<|z|<1.
n=0

*(K)
The functions of the class Zd are called o -starlike

meromorphic k-symmetric functions. From the definitions above

*(k) *
it follows directly that >, <2, for k=1,2,... and
H(1) *
2, =2, .

Consider the class Z:((k)of quagsi-a~-starlike meromorphic

k-symmetric functions f defined by the equation
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2 ) K.Dobrowolska

(1) . F(lf)=MF(Z). o<z <1,

where TF denotes an arbitrary function belonging to the class

* (k) ,
2., ,and M is a fixed number in the interval [1,e).In par
ticular, putting k=1 or o =0 we obtain classes of functions
introduced and .investigated previously, namely:

M{) M(K) M(K)

M) M M <
ZO =2 (see [1]), Zd =Z°L(see [2]),20 =Z (see [3]).
Let f(z,t) denote the function defined by the equation:

(2) F(3) = e® F(z), 0<|z|<1, 0g % <oo,

. *(K)
where F denotes an arbitrary function of the class Zo( .

It is easy to see that the funection £(2,T) belongs to the
M (k)
class Zd for M = eT. Moreover it can be proved (see ,[4])

that for the functions f{ and (g in (2), where F 1is any
¥

fixed function of the class » We have
(3) lim e~Pf(z,t) = F(za).
t=>oo
(k)
Hence the functions F € Zd can be approximated by fun-
: M(k)

ctions in the class Zo(. .

In the sequel, let )b(olz),de[o,‘l), denote the class . of
the functions

o0
(4) p(z) = %bnkznk, by =1, |z|<1,

satisfying the condition: re p(z)> o« 1if |z |<1.
Finally, let .‘P(‘k)(m), % <m < o<, denote the class of
functions of the form (4) satisfying the condition: '

k (k)
Ip(z) - m|<m, whenever |z|<1. Observe that '}’( 200)5 ‘}g R
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Generalized Lowner equation 3

In the present work we shall obtain the generalized Low-

ner’s equation to the functions of the class Z . Moreover,
using this equation we shall obtain an estimation for  YDbasic

M(k)
functionals in the cless -2_ Z of guasi-starlike mero-

morphic functions.

2. The generalized Lowner equation
Theorem 1. A function f(z) belongs to the class

M (K)
Zd if and only if f(z) = f(z,T), where f(z,t)} is a so-
lution of the equation ’

= f(z,t)P 'f(;-T))’ O<|z|<1, 0<t<T

with the imitial condition f(z,0) = 1/z, where P in (5)
denotes a function of the class ‘ﬁ(k)(m), with m = 1/2a and

T = log M. *x(%)
Pr oo f, Take an arbitrary function Fez It 18 known

that the furotion p(z) ——F(-g-)l belongs to the class 50
With the above notatlon we have

F'(z) 1 _ 1-p(z) ,
F(z) z2 Z

After integrating this equation from O to 2z, we get

2
(6) B(z) =1 exp(; p(3)-1 dz,).
z J ;

From (6) and (2) it follows that
’ z

f(Z.t)exp<f p(%g) - d€>'% xp(‘ -f&;ﬁ d«:) :
0

0

From this, taking the logarithm of both sides and then diffe-
rentiating with respect to t, we obtain
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(7) dlog f(z,t) + p(1éf;zt't3)) -1, ?)f(g%t) -1

and oonsequently

t
® 2t = 200 SE7iDY -

Upon denoting P(z) = 1/p(z), equation (8) can be rewritten
in the form (%). Making use of the fact that pelﬁ(j) we easily
show that the funotion P(z) satisfies the conditionms P(0)=1,
IP(z) - 2—& |<21—d whenever Iz | <1. Hence the function P be-
longs to the class %’ (m) where m = 1/2a. If &= 0, then

P e ‘f’(k) oo) = 50“!)

From the consideratlion above it follows that each function
M(k)
-fGZd oan be represented in the form f(z) = f(z,T), T =

= log M, where f(z,t) is & solution of equation (5) and

Pe ‘P(k)(m), m = 1/2« (when =0 we take m=0o),
It is not diffiocult to prove the converse theorem (see

[51).
(k)
3. Estimation of some functionals in the class > o
Theorem 2, For any arbitrary function fel he
following inequalities hold
(9) m(r) < |f(z)| M(r) for 0<|z|=.r<1,

where

K > \/k
(9")  mr)=gp (1(1 -rk) +iE'+-;-(1-1‘k) (1-r%)° + 4—:‘1:) ,

wi/k
k k

(9") M(r)==3 (—(1+1‘ ) - T +-‘;-(1+I'k) (1+rk)2_ 51'_1‘) ,
M
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Generalized Lowner equation 5

In particular, for the function f defined by the eguation

2/k 2/k
(10") N CINIE DI S L
we have |f(z)| = m(z), |z| = r, end for the function f sa-
tisfying the equation
2/k 2/k
(10") % (£% + 1) =-¥ (zk + 1)

we heve the equality |f(z)| = M(r), |z| = .

Proo f., Fron Theorem 1 we know that a function f be-
M(K)
longs to 2.  if and only if f£(z) = f(z,T), T =log M, where

f(z,?) is a solution of equation (5) in which P denotes a

k (k)
function of the class #’ (o0) = %% . From equation (5) it
follows that

(11) dylog f(z,t) = P (1/£(z,%))dt ,
and next
(11") dtlog|f(z,t)l= re P(1/f(z,t))dt .

(k)
It is well-known that every function Pe¢ ?% can be repre-
sented in the form

2n
: L ie k
(12) P(z) =IEH d}l(e):
e - 2
0

where y(e) is s nog;ﬂecreasing funetion in the interval
[0,2n] such that ‘f du(@) =1. From this we obtain the ine-
(i}

quality
(13) ——1{—1-rk<reP(z)<——T1+rk for |z|-r<1,
1+4r = = 1-r
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6 K,.Dobrowolska

The following inequalities follow from (11') and (13'):

. k
l£(z,8)] +1
|£(z,%)]

lﬁiﬂ_ﬁll_:l_dt dt10g|f(z,t)‘<

(14)
¢z, t) |5+

dt.

By integrating (14) in the interval [0,T], T=log M, and taking
into sccount (11') we obtain

T k 2
(le(z,2)] “40)° <t

l£(z, T)| T

and
2
(|f(z,T)|k—1) kT rk-1 2
>e k
|f(z,T)|k T

The assertion of Theorem 2 follows directly from the inequali-
ties above. ‘

Theorem 2 implies the following theorem on covering for
quasi-sterlike meromorphic k-symmetric functions.

T he o r e m 3. Each function w=7f(z) Dbelonging to the

class :E: maps the unit disc K1__{z'|z|<1} onto aregion
kK
Df containing the Do={w:lw|>Ro}, where R <?M ~142 Mk(M -1 ) .

The function £ defined by the equation
. 2/k 2/k
L (£*4) / = 4zk4)
K=0
maps the disec K, onto the domain D =E, (K U LJ I ), where

E, is the complex plsne of Gauss, K, = {w |w| <1} =
2mrn

i
= {w: w = te K <R }

By taking limit (3) in the above theorems we obtain pre-
viously known theorems for starlike meromorphic k-symmetric
functions,
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Generalized LGowner equation 7

(k)
Theorem 2. For any function Fe >, we have

2/k 2/k
T < Ew)| <« Ty, o<lz| =<1,

2/k
where the equsality holds for the function F(z) =%(zki1) .

' »* (k)
Theoremn 3. Bach function Fe 2 maps the disc

o s K
K1={z: |z |<1} onto a region Dy containing Doz{W: w|>w/7f}.
In particular, the function kF‘(z)—_-%(zkH) maps the disc

i2nn/k
K1 onto the region D = Ez\kjo I where In={w:w=te ”.Osts}w(/z}.
n=

In the sequel we shall estimate the argumentof a function
M)
in the class 2. ,where arg zf(z) will denote that branch

of a multiple valued function which satisfies the condition
;’3% arg zf(z) = O. M(k)

Theorem 4, For any function feX the following
inequalities hold

k k
Clez)] =1)(1 + 25)
e By (1= 25y

(15) Iarg zf(z)kl log O<|z|= r<1,

: k
(16) |arg zf(z)|<—21E log<1 +<1 -1\#) (:'r ) , O<|z|= r<1,
-r

The equality in (15) holds for functions f defined by the
equation

2/k . 2/k
(17) Tfe6) =51 +625 7, 6=,
. . k k
where 0 is selected in such a way thet im(6f (z)):]f(z)l or
k
1m(6fk(z)) = -lf(z)l .
Proof, From (11) it follows that

dtarg f(z,t) = im(1/f(z,t))dt.
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8 K.Dobrowolska

From this, taking into account (11'), we get

im P(1/£(z,%))
re P(1/£(z,t))

(18) d,erg f(z,t) = dtloglf(z,t) .

On the other hand, using (12) we can show that

2 ¥

im P(z)
$1_r2k, lzl=r<1,

Te P(z)

(19)

K
where the equality holds for the function P(z) = -212_ with

z=r. Consequently, 1tiz

(20)

k
im P(1/f(z,t))|< 2 |£(z,t)] for  [2]<1,

re P(1/£(z,1)]  |£(z,t)]5-1

k
where the equality holds for the function P(%.) = _fk_+_6_ with

5~ 6
x k
G being a number such that |6|=1 snd im(6£%(z,t)) = |f(z,4)|"
TR k :
or im (Gfk(z,t)) = = |f(z,t) . From (18) and (20) we obtain

the inequality

K
2 |£(z,1)]
K

|£(z,t)|" -1

dtlog lf(z,t) R

Idtarg f(z,t) I<

By integrating it in the interval [0,T], T =1og M, and taking
into account f(z,0) = %, f(z,T) = f(z), we get inequality
(15). From this and from (9) - (9") we obtain (16).

The estimation (15) is sharp. We get extremal functions in

1 £, 6
{(15) by taking P(?) =TE and selecting & in such a way
5

that im (6£%(z,t)) = 'f_(z,t)lk, or else  im (6£%(z,t)) =
= - |z, )",
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Generalized Lowner equation 9

This shows that the extremal functions are defined by equatlon
(17) with a sultably selected 6, which ends the proof.

In subsequent consideration our aim will be to find an
eatimation for the modulus of the derivative and the modulus
of the logarithmic derivative of a quasi-starlike meromorphic
k-symmetric function. M(K)

Theoremn 5, For any function fe2 the following
inequalities hold

1k k Lk
(21) )l (leca)] “+1) , _1-x k)glf:(z)lg ezl (legg) =) |

l£(2)] -1 (147 l£(2%)] +1
k
] +r
S —x 0<|z | = r<1
r(1-n") ’ l I ’

. k
(22) (e )l 51 1-1-“\ 2t (2)| o o) a1 | 14"
If(z)lk-1 1478 HEV R |f(z)“k+1 11k
0<|z | = r<1,
4 . | \ . ~1/k
1 k r 1 k 4r
5 (1-r") +—=x + 5 (1-r") 1+————>
(2 wk 2 V W (1)
- 4 K — . 1
A o
(23) f'(Z)« WY (14 05)

£°(z) O<|z|=r<r.

k(\/kzm -x h 44k
(Vk2+1 + 1) r(1-r")

\

. r°<|z|=r<1,
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10 K.Dobrowolska

2 k 2 k *
1 k T 1 k 4r
S5(14r7) - =+ 3(1+417) \/1-——————)
(2 k2 ME (140%)°2

k
1 4r
My/1+(1- —ar_
\/ +< ME> (1-r€)?

~1/k

0<|zl=r< 1,

1 z £'(z) 1 4

251 e P2 1 ) e
T4+{ 1=~ — %
\/ < l\F)U-r )

UK o
where r :()-VR2—1) , A= 1 +.£7;I1:_i.

We obtain the equality sign on the right-hand sides of (21)
and (22) for the funotion f defined by equation (10’), =nd
on the left-hand sides for the function f 1in (10”).Thevest1-
mation (23) is sharp for 0 <|z | = r{r,. The function f 1in
(10’) is an extremal function. We obtain the equality sign in
(24) and on the left-hand side of (25) for the function f in
(10").
Pr oo f. From equation (5) it follows that

(26) dtlog‘f;(z,t)l = (re P (1/f(z,t)) —re(%%@)dt.'

From this, in view of (11’), we get

, _ e (1/£(z,t P (1/8(2,t)
(27) dtloglfz(z,t)l_<1- ul Se P2 0)) z )> d,log

f(z,t)l.
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Generalized Lowner equation 11

Using formula (12) it can be shown that

k k
=2KL_ re p(z)<re(s P'(2)) < 2 re P(z),  |z] = r<i.
1-r 1-1
This implies
k : k
(28) =2 < re(z ? (Z))g 2kr2k 1] |Z| = 1‘(1.

qp2k ~ T Plz) 17

From (27) and (28) we obtein the inequalities

k
_ 2k |1(z,1)] |
<1 m>dtloglf(zvt)‘<dtlog|fz(z,t)‘<

K
2k |£(z,1)]
< (1 +———(—‘—)—>d log |£(z,1)
\< If(z,t)|2k-1 v l ’

Upon integrating it with respect to t in the intervsl [O,T],
T=log M we obtain

k
(29) Loz, )l (Jecz,2)] +1), 12” JEXCH NI
|£(z,7)] =1 T(1+r ")

k

k
ez, )| (£(z,0) 1 "=1) , _1ar®
= |f(z,T)|T{—1 r(1-rk)

Putting f{(z,T) = f(z) in (29) we immediately obtain in-
equalities (21) and (22). The equality sign in (21) and (22)
is obtained for the functions defined by equations (10”) and
(107').

Inequality (21) implies directly the following inequality
. le(z) a4

Kk k
S e (le(2)l 5+1)  r(1-r")

0<|z]| = r<n.

£'(z)
£2(z)

(.30) ltz) 1 _aer <
If(z)l ( lf(z)lk-1) r(’l+rk)
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12 K.Dobrowolska

k
Denoting x = If(z)l, Ay =_Hik_) , We can rewrite the
r(1-r
right-hand side of inequality (30) in the form

h,(x) = 4 ——k———x =1
1 1 x{x"+1)

where, according to (9), x'e[m(r), M(r)](: (1,00). It is easy
to check that the function h, 1is increasing for x e (1,x,)

1/k
and decreasing for x¢€ (xo,oo), where x = (k+\/k2+1) / R If

5—\1/k NiZar .
m(z)yx, fee. O<rgro= (AVaT-1) A= 1+ XEFL=1 o gpe
M

function h,(x) attains it5 maximum in the interval [m(r)M(r)]
for x=m(r). Consequently, putting x= If(z)l = m{r) into the
right-hand side of inequality (30), we obtain,in view of (9'),
the first inequality in (23). Equality is realized by the
function f defined in (10'). If m(r)< Xys lees 1 <T <,

we substitute = ]f(z)l.—.xo= (k+\lk2-1>1/k, into the right-hand
side of (30) and we obtain the second inequality in (23). Let
us mention that T, depends upon two parameters: M and k.
It is easy to see that Mliliroﬂ and lim T =1 Hence in-

k0o

equality (23) gives a sharp estimation for +the considered
Mk}

functional in the class 2. in an arbitrary cisc of the form

|zl Lr <1 for sufficiently large k.

1-r%

Denoting x=|f(z)| and A k) we can rewrite the

2" r(1+r
left-hand side of inequality (30) as follows

k
1
h,(x) = A __k-—x +
2 2x(x -1)

where, as previously, =xe¢ [m(r), M(r)]C(1,°°). The function
h2 ig decreasing in the interval (1, ©°).This shows that the
function h,(x) atteins a minimum in the intervalm(r), M(r)]
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Generalized Lowner equation 13

for x=M(r). Substituting x=|f(z)| = M(r) into the left-hand
side of (30) and taking into account (9”) we obtain inequality
(24). This estimation is sharp., We obtain equality for the
function f defined by equation (10”).

Finally let us prove inequality (25). The right-hand side
of (22) can be written in the form

k
hy(x) = A3—‘E=1,

x +1

i 140k ‘ ‘
where x =|f(z)], A3=~ = =1 xe[m(r), M(r)]‘. It is easy to
1-1 :

oheck that the funotiom h., 1is increasing in the interval
[m(r), M(r)]. This implies that h3(x) attains a maximum in
the considered interval for x=M(r). Putting =x= |f(z)|=M(r)
into the right-hand side of inequality (22) we obtain,in view
of (9”) the equality on the right-hand side of (25). Ana-
logously, the left-hand side of inequality (22) can be written
in the form

’ k
X +1
h4(x) =A4—r—x - ,

where x = |f(z)], Ay= (1-rk)/(1+rk), x€[m(r), M(r)].Since
h4 is decoreasing in the interval [x’n(r), M(r):], we obtain a
minimum for h4(x!) in the oconsidered interval putting z=M(r).
Substituting x = |f(z)|=M(r) into the left-hand side of in-
equality (22) and teking into account (9"), we obtain an esti-
mation from below for the modulus of the logarithmic deriva-
tive. This estimation is sharp. We obtain equality for the
function £ in (10”). This ends the proof.

From the above theorem one obtains known inequalities for
starlike meromorphic k-symmetric functions.

Theorem 5. For any function FeZ* the following
sharp estimation hold
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14 K.Dobrowolska

k [ k
1-r zF (2 1+
< < —== O<ijz| =r<1
1 orE Flz) | S E’ |z | ’
1% 7' (2) 14r% o<la]= z<1

< €% s
k)1+2/k'\lF2‘z) (1-rk)1+2/E

(1+r

and we obtain & minimum for the considered functionals for the

2/k
function TF(z) =%(zk+1) / ’ and a maximum for F(z) =

1,k ,12/k
=E(Z -1) .
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