

K. D. Singh, R. K. Vohra

INTEGRABILITY CONDITIONS OF (1,1) TENSOR FIELD f
SATISFYING $f^3 - f = 0$

Structures on C^∞ -manifolds, by introducing vectorvalued linear functions satisfying some algebraic relations, have been extensively studied by many mathematicians under various topics, such as complex and almost complex spaces, almost product spaces, f -structure spaces, contact and almost contact spaces. Yano [1] generalised the idea of almost complex structure by defining an f -structure which is a (1,1) tensor field f satisfying $f^3 + f = 0$. He also established [2] integrability conditions of the f -structure. Recently [3] the present authors generalised the idea of an almost product structure by defining an f -(3, -1)-structure which is given by (1,1) tensor field f which satisfies $f^3 - f = 0$; $f \neq 0, 1, \dots$

In the present paper, we study integrability conditions of an f -(3, -1)-structure. First section is introductory. In second and third section we get some conditions of integrability of the distributions of f -(3, -1)-structure manifold.

1. Preliminaries. Let M^n be an n -dimensional C^∞ -manifold equipped with a (1,1) tensor field $f \neq 0$; $f \neq I$ satisfying the condition

$$(1.1) \quad f^3 - f = 0;$$

I being the unit tensor field. We call such a manifold an f -(3, -1)-manifold [3].

Let l and m be two operators given by [3]

$$l = f^2; \quad m = 1 - f^2;$$

then

$$(1.2) \quad l^2 = l; \quad m^2 = m; \quad lm = ml = 0; \quad l + m = 1.$$

Thus these operators are complementary projection operators on M^n .

Theorem 1.1. It is easy to verify the following

$$(1.3) \quad fl = lf = f; \quad f^2l = l; \quad fm = mf = 0; \quad f^2m = 0.$$

Let rank $f = r$, then there exist two complementary distributions D_L and D_M corresponding to the projection operators l and m respectively. The dimensions of D_L and D_M are r and $(n-r)$ respectively. Also the tensor field f acts as an almost product structure on D_L and as a null operator on D_M .

Throughout this paper, we assume that our space is an f -(3,-1)-manifold and all the vector fields X, Y, Z etc. are differential and belong to M^n .

Let $N(X, Y)$ be the Nijenhuis tensor corresponding to the $(1,1)$ tensor field f , i.e.

$$(1.4) \quad N(X, Y) = [fX, fY] - f[fX, Y] - f[X, fY] + l[X, Y].$$

Nijenhuis tensor satisfies the following relations:

$$(1.5) \quad N(mX, mY) = l[mX, mY] = lN(mX, mY),$$

$$(1.6) \quad mN(lX, lY) = m[fX, fY],$$

$$(1.7) \quad mN(fX, fY) = m[lX, lY],$$

$$(1.8) \quad mN(X, Y) = m[fX, fY].$$

Theorem 1.2. In an f -(3,-1)-manifold, the following conditions are equivalent:

$$mN(X, Y) = 0$$

$$mN(fX, fY) = 0,$$

$$mN(lX, lY) = 0.$$

Proof. The proof follows from (1.6), (1.7) and (1.8).

Theorem 1.3. In an f -(3,-1)-manifold, $N(fX, fY) = 0$ iff $N(lX, lY) = 0$.

Proof. The proof is a consequence of (1.2) and (1.3).

Let $\mathcal{L}_Y f$ be the Lie-derivative of the $(1,1)$ tensor field f with respect to the vector field Y , then by definition [6]

$$(1.9) \quad (\mathcal{L}_Y f)(X) = f[X, Y] - [fX, Y],$$

and using (1.4), we have

$$(1.10) \quad N(lX, mY) = f(\mathcal{L}_{mY} f)(lX) = f\left\{ l\left(\mathcal{L}_{mY} f\right) lX \right\},$$

and

$$(1.11) \quad fN(lX, mY) = l\left(\mathcal{L}_{mY} f\right)(lX).$$

2. In this section, we discuss integrability conditions of the distributions D_L and D_M .

The distribution D_L is integrable [5] iff

$$(2.1) \quad m[lX, lY] = 0;$$

while D_M is integrable [5] iff

$$(2.2) \quad l[mX, mY] = 0.$$

These definitions in view of relation (1.5) and Theorem (1.2) provide the proof of the following

Theorem 2.1. The distribution D_M is integrable iff

$$N(mX, mY) = 0, \quad \text{or} \quad tN(mX, mY) = 0.$$

Theorem 2.2. The distribution D_L is integrable iff one of the conditions stated in the Theorem (1.2) is satisfied.

Theorem 2.3. A necessary and sufficient condition for both the distributions D_L and D_M to be integrable is

$$N(X, Y) = tN(tX, tY) + N(tX, mY) + N(mX, tY).$$

Proof. Theorems (2.1) and (2.2) imply that both the distributions D_L and D_M are integrable iff $mN(tX, tY) = 0$ and $N(mX, mY) = 0$ respectively. Also, Nijenhuis tensor can be written as

$$N(X, Y) = tN(tX, tY) + mN(tX, tY) + N(tX, mY) + N(mX, tY) + N(mX, mY).$$

Thus, if both the distributions are integrable, then

$$N(X, Y) = tN(tX, tY) + N(tX, mY) + N(mX, tY).$$

Conversely

$$N(X, Y) = tN(tX, tY) + N(tX, mY) + N(mX, tY) \implies N(mX, mY) = 0,$$

and also $mN(tX, tY) = 0$.

Thus both the distributions are integrable, Q.E.D.

Let the distribution D_L be integrable and let X' be an arbitrary non-zero vector field which is tangent to an integral submanifold of D_L . We define an operator f' by

$$f'X' = fX'$$

then f' leaves invariant tangent spaces of every integral submanifold D_L . Also, Theorem 1.1 implies that f' acts as

an almost product-structure on each integral sub-manifold of D_L .

Let X', Y' be any two vector-fields tangent to the integral submanifold of the distribution D_L , then

$$(2.3) \quad N(X', Y') = [f'X', f'Y'] - f' [f'X', Y'] - f' [X', f'Y'] + [X', Y'].$$

Thus, $N(X', Y')$ can be regarded as a vector-valued two-form in each integral submanifold of the distribution D_L and its values are tangent to the integral submanifold. Let $N'(X', Y')$ denote the Nijenhuis tensor of the structure f' -induced on each integral submanifold of D_L . Then by (2.3),

$$(2.4) \quad N(\iota X, \iota Y) = N'(\iota X', \iota Y').$$

Definition. We call an f -(3,-1)-structure to be partially integrable if the distribution D_L is integrable and both the distributions of integral submanifold, of D_L , considered as an almost product space with the induced almost product structure f' , are integrable.

Theorem 2.4. An f -(3,-1)-structure is partially integrable iff

$$N(\iota X, \iota Y) = 0$$

or equivalently,

$$N(fX, fY) = 0.$$

Proof. Let f -(3,-1)-structure be partially integrable then (2.4) implies $N(\iota X, \iota Y) = 0 \iff N(fX, fY) = 0$. Conversely: $N(\iota X, \iota Y) = 0 \implies N'(\iota X', \iota Y') = 0 \implies f'$ -structure is integrable. Also $N(\iota X, \iota Y) = 0 \implies mN(\iota X, \iota Y) = 0 \implies D_L$ is integrable. Thus f -(3,-1)-structure is partially integrable, Q.E.D.

Theorem 2.5. The distribution D_M is integrable and the f -(3,-1)-structure is partially integrable iff

$$N(X, Y) = N(\iota X, mY) + N(mX, \iota Y).$$

Proof. Theorems (2.1), (2.2) and (2.4) provide the proof.

3. In this section, we prove certain theorems on integrability of the distributions.

Theorem 3.1. A necessary and sufficient condition for the tensor field $\{l(\mathcal{L}_M f)l\}$ to be zero is

$$N(lX, mY) = 0.$$

Proof. The proof follows directly from (1.10) and (1.11).

Let the distributions D_L and D_M be integrable, then $N(X, Y)$ will be of the form given in Theorem 2.3.

In this case we can choose a local coordinate system in such a way that the integral submanifolds of D_L are represented by taking the last $(n-r)$ coordinates constant while the integral submanifolds of D_M are given by taking the first r coordinates constant. We call such a system, an adapted coordinate system.

In this coordinate system, the projection operators l and m have components

$$l = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}; \quad m = \begin{pmatrix} 0 & 0 \\ 0 & I_{n-r} \end{pmatrix}$$

where I_r and I_{n-r} are unit matrices of order r and $(n-r)$ respectively.

Since, $lf = f l = f$, and $mf = 0$, therefore

$$f = \begin{pmatrix} f_r & 0 \\ 0 & 0 \end{pmatrix}$$

in an adapted coordinate system; where f_r is an $r \times r$ square matrix. Also, the Lie-derivative $(\mathcal{L}_M f)$ has components given by

$$f = \begin{pmatrix} * & 0 \\ 0 & 0 \end{pmatrix}$$

where * stands for the components of f in the form of f_b^a ;
 $(a, b, c = 1, 2, 3, \dots, r)$.

Thus, if the tensor field $\{l(\mathcal{L}_f)l\}_{mY}$ vanishes identically, then $(\mathcal{L}_f) = 0$, which shows that the components of f are independent of $(n-r)$ -coordinates which are constant in the integral submanifold of D_L in an adapted frame. Converse also holds.

Thus, by Theorem 3.1, we have,

Theorem 3.2. Let the distributions D_L and D_M be integrable and the adapted coordinate system be chosen, then a necessary and sufficient condition for the components of f to be independent of the coordinates which are constant in the integral submanifold of D_L is that one of the following conditions is satisfied

$$N(lX, mY) = 0 \quad \text{and} \quad N(X, Y) = lN(lX, lY).$$

Definition. We call f -(3,-1)-structure to be integrable if

(i) the f -(3,-1)-structure is partially integrable,

(ii) the distribution D_M is integrable,

and

(iii) the components of f are independent of the coordinates which are constant in the integral submanifold of D_L .

Theorem 3.3. The structure f -(3,1) is integrable iff

$$N(X, Y) = 0.$$

Proof. The proof is a consequence of the Theorems 2.1, 2.3, 3.2 and the definition of f -(3,-1)-structure to be integrable.

BIBLIOGRAPHY

- [1] K. Yano: On a structure f satisfying $f^3 + f = 0$, Technical Report No. 2 June, 20(1961), Univ. of Washington.
- [2] S. I shi h a r a, K. Yano: On integrability conditions of a structure f , satisfying $f^3 + f = 0$, Quart. J.Math. Oxford 15 (1964) 217-222.
- [3] K.D. S i n g h, R.K. V o h r a: On a $(1,1)$ tensor field f , satisfying the condition $f^3 - f = 0$, $f \neq 0$; $f \neq I$ (To appear).
- [4] N.J. H i c k s: Notes on differential geometry. Princeton - New Jersey 1969.
- [5] T.J. W i l l m o r e: An introduction to differential geometry. Oxford 1959.
- [6] K. Yano: Differential geometry of complex and almost complex spaces. New York 1965.

DEPARTMENT OF MATHEMATICS AND ASTRONOMY, LUCKNOW UNIVERSITY, LUCKNOW
(INDIA)

Received May 15th, 1973.