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SOME APPLICATIONS OF THE APPROXIMATION THEOREM
OF ALEXIEWICZ-ORLICZ

1. Introduction

‘In the paper [1] A.Alexiewicz and W.Orlicz have proved the
following approximation theorem,

Theorem (Alexiewicz-Orlicz). Let S Ye a set dense
in [«,p] and let 8(t) be a measurable function.Ifa function
f(tyu) deflned for agt<b, agu<fp 1is continuous for fixed
t and measurable for fixed ué€S and if |f(t,u)|<s(t),tnen
there exist continuous functions fn(t,u) such that

(1.1) |£a(tan)| < 8tt)
and

(1.2) 1lim max Ifn(t,u)- f(t,u)':() for almost every te[a,b].
n-oo agug

This theorem has been used by Alexiewicz and Orlicz in the
proof of a Carathéodory type theorem for ordinary and partial
differential equations ([1], [2]). Subsequently I have used
this theorem to prove the existence of solutions of differen-
tial-integral equations with a lagging argument and a functio-
nal-differential equation of the hyperbolic type ([4],[5]). In
this paper the approximation theorem of Alexiewicz~Orlicz has
been used in the proof of some smooth approximation theorem
for funotions satisfying the Carathéodory condition. This
theorem may be applied to the proof of Kneser’s Theorem for
differential equations which satisfy the Carathéodory coh-
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2 M.Kislelewicz

dition. In section, 3 we give a proof of this theorem for some
differential-integral equations with a lagging argument. In
[3] N.Kikuchi gave a proof of Knaser’s theorem for more ge~
neral functionsl-differential equations under the assumption
that the equation sstisfies the Carathéodory condition.

Let R denote the real line, R® ©Dbe an n-dimensional
linear vector space with the norm |x | = max (1x1|,...,|xn|),
for x = (x1,...,xn).'Let P denote the set in RPY' gefined
by Po={(t,3): t <t<T, |[y-'r3||<a}, where 7€ER®, a>0.

Definition 1.1, 4 funetion f: P—RP is said
to satisfy the Carathéodory condition on P if f(t,¥) is
measurable in t for fixed y, continuous in y for each
fixed t, and for any fixed (t,y)eP there is a TLebesgue
integrable function m(t) such that |#(t,y)[<mn(t),(t,y)eP.

Definition 1.2, A function f(t,y) defined on
a set P 1is said to be uniformly Lipschitz continuous on P
with respect to y 1if there exists a constant T satisfying
”f(t,yz)-f(t,y1)“.< L"y2-y1" for all (t,y;)€P; i=1,2,

2. Smooth approximation theorems

In some situatiohs, it will be convenient +to approximate
a given function on a closed parallelepiped uniformly by func-
tions which are smooth (C' or C™) with respect to certain
variables, For the continuous functior this is accomplished
by Lusternik - Stlekiow’s method. Using this method and the
approximation theorem of Alexiewicz -~ Orlicz we can extend
this result to functions ‘satisfying the Carathéodory condi-
tion,

Theorem 2,1, Let f: P—~RB %De a function satig-
fying the Carathéodory condition on P, For every € >0 there
exists a function fez P—R" such that

(1) lfe(t,y)-f(t,y)"———o as &—0 for almost every

max
ly-nlica
te [t 7],

(11) 5, 3) | <mt) for (t,3)e?,

- 60 -



Theorem of Alexiewicz-~Orlicz 3

(1i41) fs(t,y) has continuous partial derivatives of all
orders with respect to FqsesesTpe

Pr oo f. The approximation theorem of Alexiewicz-Orlicz
implies the existence of a continuous function fn(t,y) such
that conditions (1.1), (1.2) are fulfilled. Hence for every
£ >0 there exists N1(E,) such that

llgﬁiﬁmnfn(t’y) - f(t’y)"<%

*
for n>N1(€) and almost every te [to,T].Let f (t,y):fn(t,y)
for fixed a>Ny(£). The function £¥(+,y) is continuous and
such that

[£¥,3) | <m(t)  for  (t,3)er.

Using the smooth approximation method of Lusternik and Stiekiow

for the continuous function f*, we can define for every w>0
w

a function f : P—=RP satisfying the following conditions

on P,

1° | £%¢,5) - f*(t,y)_"——o as ©—-0 uniformly on P,
2° £ (t,9)] ¢ m() for (t,y)ep,

W
3° f (t,y) has continuous partial .derivatives of all
orders with respect to FqseeesTpe

Let us take now ®=1/n and £ (t,5) = £4(t,3).For £>0
there exists N,(€) such that

|| £ (t,y) - f:(t,y)“ < g/2

£
for n>N2(8) and (t,y)e P. Let us denote f (t,y)zfg(s)(t,y),
where N(g) > max(N1(€), N2(E)>. We have

£ (5ay) - 2506, <

<||etim) = ey 8|+ Jegeey ) - Fm|<
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< | m;a“x< lect,y) - fN(e)(t'y)" i<
y-nfica |

for almost every te[to,T]. Henoce
max ||£(t,5) -f(t.y)" <¢

lIl4-2 flsa

for almost every te[ﬁo,T]. This completes the proof.
Consider now a system of differential equations of the
form

y(t) p(t) for t<t,

(2.1)
v (%)

/'f t,7(t-8) dsr(t,s) + g(t)

0
for almost every te[to,T],

where f: P—R" sgatisfies the Carathéodory conditiom on P
and vy o= (5"1,---.5’;1), Pp= ((P«IQO-',V’D), g = (81’0-',813)5
o

ff(t,y(t—s))dsr(t,s) =

o

=(j; (t,y(t-s)) dsr(t,s),...,‘./Zé,y(t-s))dsr(t,s)) .
[+]

On the basis of theorem 2.1 we can state the following
theorem.

Theorem 2.2, Let v(t) denote a solution of (2.1)
defined on (-ee, T]. Suppose that the function f: P — RP
satisfies the Caratheodory condition. For every & >0 there
exists a function h(t,y) satisfying the Carathéodory condi-
tion on P &and such that

(a) |B(t,3)] < m(t) +€& for (t,7)e?,

(b) h(t,y) is uniformly Lipschitz continuous with res-
pect to 7,
(¢) y =v(t) 1is a solution of the system
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Theorem of Alexiewicz~Orlicz 5

y(t) = @(t) for t<to

y' (t)=fh(t.y(t—sj)dsr(t,8) + g(%)
0
for almost every +t¢ [to,T],

(d)
r/|l<‘1|
Pr o o f. In virtue of Theorem 2.1 for every £€>0 there

exlsts a continuous function fe(t,y) such that

-

If(t,y) - h(t,y)"<£ for almost every tostsT.

£°6,9) || <nt) for (5,3)e®

£
2. max {If(t - (% < g/2 for almost every te|t.,T
uy-vum“ (4,7) (4,3)] <&/ v te[t, 1],
3, f&(t,y) 1is uniformly Lipschitz continuous with respect

to y.
Let us define a function h(t,y) by the formula

h(t,y) = £(t,7) + £(t,v(t-8)) = £5(t,v(t-9))

for every (t,y)eP and 820, It is easy to see that h(t,y)
satisfies the Carathéodory condition and that +the condition
“h(t,y)||$m(t) + & 1is satisfied. Moreover, h(t,y) is uni-
formly Lipschitz continuous with respect to y. For almost
every togts'l‘ we have

Wi x |l£(4,7) - ht,3)]<

u;f??‘a"f(t,y) - 25,3+ [£(8,v(6-9)) - £ (v (s-0))| <

<&E/2 + E/2 =¢.
Since

fh(t,v(t-s))dsr(t,s)+g(t) =ff<t,v(t-s)) d r(t,s)+g(t)=v'(t),
[d (4]

for almost every te[to,T], we infer that the theorem holds.
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3. H.Kneser’s Theorem

As an immediaste application of the approximaetion theorem
2.2 we give a proof of the Theorem of H.Kneser. Consider a
-funetion r: [to-,T']x[O,w)a(t,s)—»rr(t,s):e R. Suppose that =
satisfies the following conditions

(I) =r(t,0) =0 for e[t ,T],

(I1) there exists a finite number V such that

- o
s‘z_for(t,a)sv for te[to,TJ,

(III) for every £>0 there is a nvmber K>0 such that
o
_S’Z"(r(t,s)q for  te[t,,T],
(IVv) for every k>0 and ue[fo,T]
k
| tl.ifﬂr(t,s) - r{u,8)|ds = 0, where t <t<T.

In the proof of Kneser’s theorem we are going to use the fo-
llowing lemmas.

Lemnmna 3.1. Let the function r satisfy the assump-
tions (I)- (IV) and let ¢ (- o,o,to]--—-Rn be ocontinuous
and such that “(p(t) -7l a8 for t<t, amd |e(t,)-y |<a.
Suppose that gt [to,T] —R" 185 Lebesgue integrable on[to,T],
If f: p—~RP satiisfies the Carathte:&dory conditionon P, then

there exipts a number A > O, whereJ {V n(t )+||g(t)"}dt < a-b;
b =||cp(t°) -y| such that at least ome solution of (2.1)
exists on (-oo,f  +a].

Proo f. In virtue of the approximation theorem of Ale-
xlewlicz-Orlicz there exist continuous functions fn: p— R
such that comditions (1.1), (1.2) are fulfilled. Comsider, for
rixed n=1,3,..., the equation
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y(t) =c(t) for +t<£t
(3.1) oo

S (%) =/fn(t,y(t—s))dsr(t,s)+gn(t) for te [t,,T],
0

0

where the seguence {gn(t)} is such that: 1° gn(t) is con-
tinuous on [tO,T], 2° g (t)~g(t) for almost every teﬁo,T].
It is easy to verify that. (3.1) is equivalent to following
condition

L eplt) for t1<t
(3.2) t oo
q;(to) +/ {jfn(u,y(u-s))dsr(u,s)+gn(u)}du for togth.
t, o
Let A>0 %Ye chosen in such a way that T+ A LT and let B
denote the Banach space of continuous and bounded functions
n
y: (~e0,t +A]—=R" with the norm |y = Sup, |7(t)]|. Denote
by K +the set of all functions ye€ B which satisfy the fo-
llowing conditions

1) () =¢(t) for Tt
2) ||y(t)-p||<a for t <t<T.

It is easy to verify that K is a non-empty, closed and con-
vex subset of B, We define on K an operator A by the for-
mula

@(t) for t <t

t°+A

o]
oo

gp(to)+f {/fn(u,y(u—s)) dsr(u,s)+gn(u)}du for
t [} to\<t <T,.

(Ay)(t) =

("]

In & similar way as in [4] it is easy to verify that the ope-
ration A satisfies the conditions of Schauder?s fixed point

:cheorem, provided that the number A safisfies the condition
ot4

f {V n(t) + "g(t) " } dt La-b, where b =” @t,)= " . Then
to
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for fixed n=1,2,... there exists at least one solution of
(3.1), say y,(t), defined on (-oo,t°+A] . It is easy to see
that there exists a subsequence {yk(t )} of yn(t) which is
uni formly convergent on (-o°,t°+A] to the solution of (2.1).

Lemma 3.2, Let the assumptions of Lemma 3,1 hold and
let f(t,y,A) be a function that satisfies for every Ae(q,ﬁ)
the Carathéodory condition on P and is uniformly Lipschitz
continuous with respect to y. Suppose that there exists a Le-
besque integrable function K(t) such that

[ £06,3:25) - 243,20 | <®(8) [2,- 2,

Then the solution y(t,A) of

y(E) = @(t) for <t
t

3/ (%) =/ f(t,y(t-s),ﬂ)dsr(t,s)+g(t) for almost every tc¢ [to,'l‘]
to
is continuous with respect to Ae(«,p).

Pr oo f., The inequality of the form

t
|72, = 3¢6,2)]| € V |2, 2] friw)aus
tra 0
<2 - Ay | fraes r<rctgra
t

implies that max t,A,) - y(t,2 —0 g8 A,—™ A,
p to€t$t°‘A"y( ’ 2) y(t, 1)" 2 M

Lemma 3,3, Let the functions r,¢ and g satisfy
the agsumptions of Lemma 3.1. Suppose that fo(t,y),f1(t,y),...
satisfy the Carathéodory condition on P and let

1im max ||£, (% - f ty)”:O
nm"y_?"sa” n(te3) - £,(t,

for almost every te[to,to+A] . Let yn(t) be a solution of
the system
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J(t) =¢(t) for t<t
(3.3,) Y °

¥ (t) =/fn(t,y(t—s))dsr(t,s)+g(t) for almost every
0 te[to,to+ A]

where n=1,2,... . Suppose that there exists a Lebesgue inte-
grable function M(t) such that |£,(t,7)] <M(t) for n =
= 1,25... a&nd (t,y)€ P, Then there i8 a subsequence {yk(t )}
of the sequence {yn(t )} which is uniformly convergent on
the interval (-oo,t°+A]. For every such subsequence the 1li-
mit yo(t) = lg._!_.gloyk(t) is a solution of -(40).

Proo f, Since for every n=1,2,...and t,t1 ,tze[to,t°+A]
we have '

‘ to+A

[70(8) =7) <] @tts) -] +j {VM(t )+||g(t)||}at<a
to

and 4

J7ates) -yt || f e + e} at],
ty
we infer thet the functions yn(t) are equiocontinuous and
uni formly %bounded. Hence, by Arzela’s theorem, there 'exists
a subsequence '{yk} of.the sequence {yn convergling uniformly
on the imterval (-oo,to+A] to y (t). Tt remains to show

that yo(t) is a solutions of (40). For t°<t$t°+A we
have

t oo .
7,(t) - ap(to)—f{ffo(_u.yo(u-s))der(u.s) d T (u,8) +
t, 0
3
+ s(u)}du = 2 Ay (%),
(=1
where

Ay¥) = 3,(8) = 3,.(¢),
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Ay(%) =f{ﬁfk(u.yk(u-s ) =% (207 (u-8)) Ja T (8,8) }au,
ty, o

t
A3(t) =f{j[fo (u,yk(u-s )) -fo (u.,yo(u-s )) ]dsr(u,s)}du.
t, o

It is easy to verify thet A1(t)——0, A2(t)—>0, Aa(t)—*o
for k-—~ec= ([4]). This completes the proof.

Lemma 3.4. Let the funotion f(t,y) be uniformly
Lipschitz continuous with respect to y on P and 1let the
assumptions of Lemma 3,1 hold, Then (2.,1) has a unique solu-
tion on the interval [t ,t +4A].

Proo f. Suppose that y1(t) and yz(t) are solutions
of (2.1). It is easy to see that

w
[72) = 3| < VL[ max |7,(v)-3,(%) || au <

¢ to-

< VL[max
teVg

Therefore °

(v) - 3, (v)]au; t < Wt

t

i J720v) = 7,0 < LVt max ||y, (v) - y,(v) [ au
[}
for toét gto+A. In virtue of Gronwall’s inequality we have

825, |75(v) = 3,(v)[ = 0 for every t <t<t +a.

Theoremnmn 3.5 Let the function r satisfy assump-
tions (I) -~ (IV) and let (-oo,to] —=R® be continuous and
such that |o(t) =pl<a for t<t, and |e(t ) -7 | < a.
Suppose that g(t) is a Lebesgue integrable function on
[tys T]. Let £ P—E?, where P = {toé t <1 |y —'Q"(a},
satisfy the Caratheo’dory condition on P, Finally, let Sc be
a subset of RP® defined by S, {y(c), y(t)eZ} where
Y. denote the set of all solutiona of (2.1); c€(t ,to+A),
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totd
whereéf{Vm(t) + ||g(t)||}dt<a -b, b=et)-7
ig a cgntinuum, i.e., &8 convex connected set.
Proo f. The set S is bounded in R"., To see that S
is a closed let Yne ™ yc, n-~oo and Yno€ S +« Then Yne
= y,(¢) for some y (t)e X .By Lemma 3.3 the sequenoe {y (t)}
hes a subsequence which 1is uniformly convergent to some
J(t)e 2 on the interval (-oo,t +A] Clearly Vo = y(ec).
Suppose to the contrary that S is not connected. Then
s =stu 52, where s1, s% are nonempty, disjoint,closed sets.,

c
Since S, 1is bounded, = dist(s',s%)>0, where dist(s',5%)=

= inf {||y1-y2||; yie S1, yzesz}. For any y, put e(y):dist(y,s‘l )~

—aist(y,S2), so that e(y)20>0 if yeS® and e(y)< -6<0if
yeS'. The function e(y) 1is continuous and e(y) £ 0  for
yeS,. Let €>0 and let y1(t), yé(t)ez where y,(c), ¥,(c)

are in S1 and Sz, regpectively. In virtue of Theorem 2.2

there exist funotions h,(t,y) and h,(t,y) satisfylng the
Carathéodory condition on Q= {(t,y) 1 tos t $t°+A; “y"oo}

w/ith the properties (a) - (d), where v(t) = y1(t), yz(t),
respectively. Consider the one-parameter family of differen-
tial - integral equations

« Then Sc

=

y(t) =¢(t) for <1,
(3.4)
v (t) /h(t,y(t -8), R)d r(t,s)+g(t) for almost every

t,<t<t + 4,

where 0<2A<1 and h(t,y,2) =2h1(t,y)+(1-2)h2(t,y). Since
h(t,y,1) satisfies the assumptions of Lemma 3.4 and Lemma 3.2
it follows that (3.4) has a unique solution ¥ =y(%,A) which
continuously depends on A in the interval [0,1]. As a conse-
quence of Lemma 3,1, where a is an arbitrary, +this solution
exists on the interval (-oo,t,+4;] for some A,<A.Since a>0
is erbitrary, we can assume that y(t,A) is extended to to+A.
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Note that _||h(t,y,7l) l<m(t)+& implies that [y(t,2)-7 l<a+eva
for $,<t<t +A, Lemma 3.2 implies that Y(t,A) — 3 (¢, Ao)
as A =}, uniformly on (-oo,t,+A]. In particular, y(c,a)
and consequently e(y(c,;\)), is continuous with respect to A.
Since - y(c.d) = yz(c)'e Sz, y(c,1) = y1(c) € S1, g0  that
e(y(c,O))so, e(y(c,1))>0, there exists a value of 1=0,
0<08<1 ‘such that e(y(c,@)):'o. If y1(t); yz(t) are fixed,
the choice of © depends only on £, say O =6(e). Let € =1/n,
n>1 and let h,(t,y) = h(¥,y,1) where A=08(1/n). We have

ﬁgpﬁa l£(t,7) - b, (t,7)<1/n for almost every ¥ <t<to+A
and, by the choice of A =0(1/n) the system

y(t) = (t) for t <%
y/(%) =jhn(t,y(t-s))dsr(t,s) +g(t) for almost every
0 ottt + 4

has a unique solution y =y t,0(1/n) =y(n)(t) on (-oo,t°+A]
such that e(y(n)(c)) =0 for n>1. Since ||hn(t,y)||<m(t)+
+ 1/n<m(t) + 1 for n>1, the sequence {y(n)(t)} has a sub-
sequence {yk(t)} which is uniformly convergent to yo(t) for
t <t + A, Furthermore, “yk(t) -pl<a+1/nVA and e(yk(c)).=0
for k=1,2,... » The function yo(t) satisfies the equation

y(t) =¢(t) for t<gt,

o0
¥ (t) -_-/f(t,y(t-s ))’dsr(t,s)-i-g(t) for almost every
0 tos 1t < 1:0+ A

and ||7,(t) ~p|<as to<t<to+A. Hemoo yo(t) € X . Also

e yole) =lim e v, (c) =0, But then y,(c)eS, and e(yo(c))= 0.
This contradiction proves the theorem.
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