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OF ALEXIEWICZ-ORLICZ 

1. I n t roduc t i on 
In the paper [ 1 ] A.Alexlewicz and W.Orlicz have proved the 

fol lowing approximation theorem. 
T h e o r e m (Alex iewlcz-Or l icz ) . Let S be a set dense 

in [oc,(J] and l e t s ( t ) be a measurable f u n c t i o n . I f a f t inct ion 
f ( t , u ) def ined for a < t 4 b , <*<u4(3 I s continuous for fixed 
t end measurable for f ixed u £ S and i f | f ( t , u ) | < a ( t) , then 
t h e r e ex i s t continuous func t ions f Q ( t , u ) suoh t h a t 

(1 .1 ) | f
n

( t » u ) | < ^ 

and 

( 1 . 2 ) l im max f M ( t , u ) - f ( t , u ) =0 f o r almost every t e f a . b l . 
I n I L J 

This theorem has been used by Alexlewlcz and Orlicz in the 
proof of a Caratheodory type theorem' for ordinary and p a r t i a l 
d i f f e r e n t i a l equat ions ([1^» [23)» Subsequently I have used 
t h i s theorem t o prove the ex i s t ence of so lu t i ons of d i f f e r e n -
t i a l - I n t e g r a l equat ions with a lagging argument and a f u n c t i o -
n a l - d i f f e r e n t i a l equat ion of the hyperbol ic type ( [4 ] , [ 5} ) . In 
t h i s paper the approximation theorem of Alexiewicz-Orl icz has 
been used in the proof of some smooth approximation theorem 
for funot iona s a t i s f y i n g the Caratheodory cond i t i on . This 
theorem may be applied to the proof of Kneser ' s Theorem for 
d i f f e r e n t i a l equat ions which s a t i s f y the Caratheodory con-
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2 M.Kisielewicz 

d i t i o n . ID s e c t i o n . 3 we g i v e a p r o o f o f t h i s theorem f o r some 
d i f f e r e n t i a l - i n t e g r a l e q u a t i o n s wi th a l a g g i n g a rgument . In 
£ 3 ] N . K i k u c h i gave a p r o o f o f K n a s e r ' s theorem f o r more g e -
n e r a l f u n c t i o n a l - d i f f e r e n t i a l e q u a t i o n s under t h e a s s u m p t i o n 
t h a t t h e e q u a t i o n s a t i s f i e s t h e Cara théodory c o n d i t i o n . 

Let R denote t h e r e a l l i n e , R n be an n - d i m e n s i o n a l 
l i n e a r v e c t o r s p a c e wi th t h e norm | | x | | = max ( |x . j | , . . . , |xQ | ) , 
f o r x = ( x 1 , . . . , x Q ) . ' L e t P denote t h e s e t i n R n + 1 d e f i n e d 
by P = { ( t , y ) : t 0 < t < T , | y - if | | < a } , where 7 e R n , a > 0 . 

D e f i n i t i o n 1 . 1 . A f u n c t i o n f t P — i s s a i d 
t o s a t i s f y the Cara théodory c o n d i t i o n on P i f f ( t , y ) i s 
m e a s u r a b l e i n t f o r f i x e d y , c o n t i n u o u s i n y f o r each 
f i x e d t , and f o r any f i x e d ( t , y ) e P t h e r e i s a L e b e s g u e 
i n t e g r a b l e f u n c t i o n m ( t ) such t h a t | j i ( t , y ) | | 4 m ( t ) , ( t , y ) e P . 

D e f i n i t i o n 1 . 2 . A f u n c t i o n f ( t , y ) d e f i n e d on 
a s e t P i s s a i d t o be u n i f o r m l y L i p s c h i t z c o n t i n u o u s on P 
w i t h r e s p e c t t o y i f t h e r e e x i s t s a c o n s t a n t L s a t i s f y i n g 
| | f ( t l y 2 ) - f ( t , y 1 ) | | < L j y g - y j f o r a l l ( t . y ^ G P ; i = 1 , 2 . 

2 . Smooth a p p r o x i m a t i o n theorems 
In some s i t u a t i o n s , i t w i l l be c o n v e n i e n t t o a p p r o x i m a t e 

a g i v e n f u n c t i o n on a c l o s e d p a r a l l e l e p i p e d u n i f o r m l y by f u n c -
t i o n s which a r e smooth (C1 or C ° ° ) w i th r e s p e c t t o c e r t a i n 
v a r i a b l e s . Por the c o n t i n u o u s f u n c t i o n t h i s i s a c c o m p l i s h e d 
by L u s t e r n i k - S t i e k i o w ' s method. Us ing t h i s method and t h e 
a p p r o x i m a t i o n theorem o f A l e x i e w i c z - O r l i c z we can extend 
t h i s r e s u l t t o f u n c t i o n s ' s a t i s f y i n g the C a r a t h é o d o r y c o n d i -
t i o n . 

T h e o r e m 2 . 1 . Let f : P—"R n be a f u n c t i o n s a t i s -
f y i n g t h e Cara théodory c o n d i t i o n on P . For every £ > 0 t h e r e 

S n e x i s t s a f u n c t i o n f : P—*-R such t h a t 

( i ) max | | f e ( t , y ) - f ( t , y ) | | — » 0 a& I-*-0 f o r a lmost every 
||y-p||iaH « 

t e [ t 0 , T ] , 

( i i ) | | f e ( t , y ) | | ^ m ( t ) f o r ( t . y ) e P , 
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Theorem of Alexievficz-Orlicz 3 

£ 
( i i i ) f ( t , y ) has continuous partial derivatives of a l l 

orders with respect to 
P r o o f . The approximation theorem of Alexiewicz-Orlicz 

implies the existence of a continuous function f Q ( t , y ) such 
that conditions (1.1), (1.2) are f u l f i l l e d . Hence for every 
£>0 there exists N^E.) such that 

max ||f ( t .y ) - f(t,y)||<-§ 
l|y_1? Il<a n 11 d 

r 1 
for n>N 1 (£ ) and almost every te |_t0,Tj.Let f (t,y) = f n ( t , y ) 
for fixed n>K 1 ( e ) . The function f * ( t , y ) is continuous and 
such that 

f* (t ,y)|| < m(t) for ( t , y ) e P . 

Using the smooth approximation method of Lusternik and Stieklow 
for the continuous function f , we can define for every co>0 

oo n 
a function f : P—"-R satisfying the following conditions 
on P, 

1° ||fW(t,y) - f * ( t » y ) || —'- 0 as co—0 uniformly on P, 

2° || f (t,y)|j < m(t) for ( t , y ) 6 P , 
o ^ 

3 f ( t , y ) has continuous partial derivatives of a l l 
orders with respect to y^ , . . . , y n . 

Let us take now co= 1/n and f ° ( t , y ) = f * ( t , y ) . Fo r £>0 
there exists N2 (£) such that 

f * ( t , y ) - f * ( t , y ) II < E/2 

£ * 

for n>N2 (£ ) and ( t , y ) 6 P . Let us denote f ( t , y ) = f N ^ ( t , y ) , 
where N(g) > max (!!.,(£), NgU ) ) . We have 

f ( t , y ) - f £ ( t , y ) | k 

f ( t , y ) - % ( e ) ( t , y ) | | + ( f iKE j i t . y ) - A t . y ) 

- 61 -



k M.Kisielewicz 

< max ||f(t,y) - f N f p ) ( t , y ) | + i/2 < t 

for almost every t e| t 0 , T j . Hence 

max f ( t , y ) - f ( t , y ) <£ 
lis-? IK*" 

for almost every te^tQ ,T] . This completes the proof. 
Consider now a system of d i f ferent ia l equations of the 

form 

(2.1) 
y ( t ) = y ( t ) for t < t Q 

y ' ( t ) = j f t , y ( t - s ) d a r ( t , s ) + g ( t ) 
o 

for almost every t e [ t 0 , T j , 

where fs sat is f ies the Carathéodory condition on P 
and y ' = (y'., , . . . ip= , . . . >(pn), g = ( g 1 f . . . , g n ) , 

oo 

J f ( t , y ( t - s ) ) d s r ( t , s ) = 
o 

i oo 
= ( t , y ( t - s ) ) d s r ( t , s ) f f n ( t , y ( t - s ) ) d s r ( t , s ) ) . 

o 0 

On the "basis of theorem 2.1 we can state the following 
theorem. 

T h e o r e m 2.2. Let v ( t ) denote a solution of (2.1) 
defined on ( - » , T] . Suppose that the function f : P — R n 

sat is f ies the Carathéodory condition. For every £ > 0 there 
exists a function h ( t , y ) satisfying the Carathéodory condi-
tion on P end such that 

(a ) |h(t,y)|| < m(t) +S for ( t , y ) e P , 

("b) h ( t , y ) is uniformly Lipschitz continuous with res-
pect to y, 

( c ) y = v ( t ) is a solution of the system 
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Theorem of Alexiewicz-Orllcz 5 

y ( t ) = < f ( t ) for t < t 0 

oo 
^ y' ( t ) = y h ( t , y ( t - 8 ) ) d a r ( t , s ) + g ( t ) 

o 
for almost every te [ ^ o ' 1 ] ' 

(d)^maxa||f(t,y) - h(t,y)||<£ for almost every t Q « t « T . 

P r o o f . In virtue of Theorem 2.1 for every £>0 there 
ex i s t s a continuous function f ( t , y ) such that 

1. ||f£(t,y)||<m(t) for ( t , y ) 6 P 

2. max ||f(t,y) - f S ( t , y )|| < €/2 for almost every t e f t .T"I, 
II9-7II «a" " LO J 

3. f £ ( t , y ) i s uniformly Lipschitz continuous with respect 
to y . 

Let us define a function h ( t , y ) by the formula 

h ( t , y ) = f £ ( t , y ) + f ( t , v ( t - s ) ) - f £ ( t , v ( t - s ) ) 

for every ( t , y ) e P and s^O. It i s easy to see that h(t,y) 
s a t i s f i e s the Caratheodory condition and that the condition 
||h(t,y )|| 4 m(t) + £ i s s a t i s f i e d . Moreover, h ( t , y ) i s uni-
formly Lipschitz continuous with respect to y . For almost 
every t Q ^ t 4 T we have 

n max ||f(t,y) - h ( t , y ) | k 

< max ||f(t,y) - f£(t,y)||+ llf (t ,v ( t - s ) ) - f£(t ,v(t-s))||< 

<E/2 + Z/2 = £ . 

Since 
Oo oO 

J h ( t , v ( t - s ) ) d a r ( t , s ) + g ( t ) =J f ( t , v ( t - s ) ) d s r ( t , s ) + g ( t )=v ' ( t ) , 
o o 

for almost every t e [ t Q ,T ] , we infer that the theorem holds. 
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6 M.Kisielewicz 

3. H.Kneser's Theorem 
As an immediate application of the approximation theorem 

2.2 we give a proof of the Theorem of H.Kneser. Consider a 
function r: [to,T]*[0f®®)3(t,s)—r(t,s)e R. Suppose that r 
satisfies the following conditions 

(I) r(t,0) = 0 for te[t0,T], 
(II) there exists a finite number V such that 

DO 

Yr(t,s)«V for te|V,Tl, 
S=0 L O J 

(III) for every £ > 0 there is a number K > 0 such that 

T r(t,s)<£ for teft^.Tl, 
s=K L o J 

(IV) for every- k > 0 and ue[t0,T"] 
k 

limj|r(t,s) - r (u,s) |ds = 0, where t 0 < t < T . 

In the proof of Kneser's theorem we are going to use the fo-
llowing lemmas. 

L e m m a 3.1. Let the function r satisfy the assump-
tions (I)-(IV) and let (ft (— 1 ; 0 — ^ H n "be continuous 
and such that ||cf(t) -i?||<a for t < t Q and ||(p(t0)-i7 ||<a. 
Suppose that gt [ t 0 , T ] | — i s Le"besgue integrable on[t0,T], 
If f: P—*-Hn satisfies the Carathlodory condition on P, then to*A 
there exipts a number A > 0, where J {v m(t )+||g(t )|]}dt < a-b; 
b =||cp(t0) - 7 || such that at least°one solution of (2.1) 
exists on (— jb̂  

P r o o f. In virtue of the approximation theorem of Ale-
xiewicz-Orlicz there exist continuous functions fQ: P—»*E n 

such that conditions (1.1), (1.2) are fulfilled. Consider,for 
rixed n=1,á,..., the equation 
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Theorem of Alexiewicz-Orlicz 7 

(3.1) « 
y ( t ) = cp(t) for t ^ t Q 

90 

y ' ( t ) = J f n ( t , y ( t - a ) ) d s r ( t , s ) + g n ( t ) for t e [ t 0 , T ] 

where the sequence {gn("t)} i s such that : 1° g n ( t ) i s con-
tinuous on [t ,T] , 2° g Q ( t ) -^g ( t ) for almost every te[ t 0 ,T] , 
It i s easy to ve r i f y that. (3 .1 ) i s equivalent to following 
condition 

(3.2) 
cf(t) for t <t . 

<f(t0) +y , j j f n (u , y (u - s ) , )d 3 r (u , s )+g n (u ) ldu for tQ<t<T 

Let A>0 be chosen in such a way that tQ + A and let B 
denote the Banach space of continuous and bounded functions 
y : (-oo ftQ+ A J -*" RD with the norm ||y||B = su^ ||y(t )||. Denote 
"by K the set of a l l functions y e B which"satisfy the fo-
llowing conditions 

1) y ( t ) = cp(t) for t ^ t Q 

2) ||y(t) -i?||<a for t Q < t < T . 

It i s easy to ver i f y that K i s a non-empty, closed and con-
vex subset of B. We define on K an operator A by the for-
mula 

(Ay) ( t ) = < 

(p{ t ) for 
t.+A _ 

t <t . 

0)+J y f n ( u , y (u - s ) ) d s r ( u , s )+g n ( u )|du for 

t0 ^ t 0 « t <T. 

In a s imilar way as in [4] i t i s easy to ve r i f y that the ope-
rat ion A s a t i s f i e s the conditions of Schauder's fixed point 
theorem, provided that the number A s a t i s f i e s the condition 
V-J , 1 
J Jv m(t) + ||g(t) || j. d t<a-b , where b = || (p(tQ) - 7 || .Then 
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8 M.Kisielewicz 

f o r f ixed n = 1 , 2 , . . . t h e r e e x i s t a at l e a s t one s o l u t i o n of 
( 3 . 1 ) , say y Q ( t ) , defined on ( -®° , t Q +A] . I t i s easy to see 
t h a t t h e r e e x i s t s a subsequence -^y^Ci;)j- of 7 n(" t ) which i s 
uniformly convergent on ( - ° ° . t 0 + / i \ ] t o the s o l u t i o n of (2.1). 

L e m m a 3 . 2 . Let the assumptions of Lemma 3.1 hold and 
l e t f ( t , y , A ) be a func t ion t h a t s a t i s f i e s for every ^é(ou.|J} 
the Carathlodory condi t ion on P and i s uniformly L ipsch i t z 
continuous with r e spec t t o y . Suppose t h a t t h e r e e x i s t s aLe -
besque i n t e g r a b l e func t ion K( t ) such t h a t 

f ( t ,y ,a 2 ) - f C t . y . ^ ^ l <K(t) P g - ^ l 

Then the s o l u t i o n y ( t , ^ ) of 

y ( t ) = ^ ( t ) fo r t < t 0 

y> ( t ) = J f ^ t , y ( t - s ) , ^ d s r ( t , s ) + g ( t ) for almost every te [tQ,T] 
to 

i s continuous with respec t t o ¿e(ot, |3). 

P r o o f . The i n e q u a l i t y of the form 
t 

| y ( t , a 2 ) - y t t . ^ j l k v |^2-a1 | jK(u)du< 
0 

Xp - | j K ( t ) d t ; t O < t 4 t o + A 

impl ies tha t max | | y ( t , / L ) - y ( t , /L ) —"-0 ss 
ijitttjiill 2 1 11 ¿ 1 

L e m m a 3 . 3 . Let the funot ions r , y and g s a t i s f y 
the assumptions of Lemma 3 . 1 . Suppose tha t f Q ( t ,y J . f ^ t . y ) , . . . 
s a t i s f y the Caratheodory cond i t ion on P and l e t 

l im max f B ( t f y ) - f Q ( t , y ) 
n -ooj j -^a 1 1 n 0 = 0 

for almost every t e [ t 0 , t 0 + A ] . Let y Q ( t ) be a s o l u t i o n of 
the system 
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Theorem of Alexiewicz-Orlicz 9 

(3 .3 n ) , 
y ( t ) a tp(t) for t ^ t 

o o 

y - ' ( t ) = f f n ( t , y ( t - s ) ) d B r ( t , a ) + g ( t ) for almost every 
o t e [ W A ] 

where n=1,2 , . . . . Suppose that there ex i s t s a letesgue in te -
grable funot ion M(t) such that || f Q ( t , y ) || < M(t) for n = 
= 1 , 2 , . . . and ( t , y ) £ P . Then there i s a subsequence ( y ^ t ) } 
of the sequence •[7n(' t)} which i s uniformly convergent on 
the interval (-oo,tQ+A]. For every suoh subsequence the l i -
mit y 0 ( t ) = l i m y b ( t ) i s a solution of ( 4 0 ) . 

P r o o f . Since for every n=1,2 , . . . and t,t.j , t 2 e [t0,t0+A] 
we have 

t0+A 

K ^ ) - V l h l ^ ^ o ^ " 1 ? ! + / {vM(t)+||g(t)||}dt4a 
to 

and 
2 

l y ^ t ^ - y ^ t ^ l ^ l J j v M í t ) + ||g(t)||} dt|, 

we infer thet the functions y n ( t ) are equioontinuous and 
uniformly bounded. Hence, by Arzela 's theorem, there ex i s t s 
a subsequence '{y^} of. the sequence |yn| converging uniformly 
on the interval ( -°° , t 0+A] to y Q ( t ) . It remains to show 
that y Q ( t ) i s a solutions of ( 4 0 ) . For t 0 4 14 tQ+A we 
have 

t 

y 0 ( t ) - i f ( t 0 ) - J | J f 0 ( u t y 0 ( u - s ) ) d 8 r ( u , s ) d s r ( u , s ) + 

to o 
3 

+ g(u) [da = 2 A , ( t ) , 
J 1=1 

where 

A , ( t ) = y n ( t ) - y - f t ) , 
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10 M.Kisielewicz 

t OO 
A 2 ( t ) = / { / [ f

k ( ^ y k ( ü - s ) ) - f 0 ( u , y k ( u - s ) ) ] d s r ( a , s ) } d a , 
t0 o 

t oo 
A 3 ( t ) = / { / [ f 

t0 0 
I t i s easy to v e r i f y t h a t A ^ t J ^ O , A 2 ( t ) — 0 , A . j ( t ) — 0 

f o r k — 0 0 ( [4] )* This oompletes the p roo f . 

L e m m a 3 . 4 . Let the func t ion f ( t , y ) be uniformly 
L ipsch l t z continuous with r e spec t to y on P and l e t the 
assumptions of Lemma 3.1 ho ld . Then (2 .1 ) has a unique s o l u -
t i o n on the i n t e r v a l [i ;

0»' t 0+A]. 
P r o o f . Suppose t h a t y ^ ( t ) and y 2 ( t ) a re s o l u t i o n s 

of ( 2 . 1 ) . I t i s easy to see t ha t 
w 

| |y 2 (w) - y 1 (w)|| « VLJ max | | y 2 (v) - y., (v ) || du < 

\ 
Therefore t t / ^ t l y 2 ( v ) * y 1 ( 7 ) i 4 L V / « u l l y 2 ( v ) " y 1 ( V ) I d U 

to 
for t Q < t 4 t 0 + A . In v i r t u e of Gronwall 's i nequa l i t y we have 

tmaxt | | y 2 (v ) - y . , ( v ) | | = : 0 for every t 0 < t < t Q + A . 

T h e o r e m 3 . 5 . Let the f l inct ion r s a t i s f y assump-
t i o n s ( I ) - (IV) and l e t ip i i - 0 0 » " ^ ] —""Rn be continuous and 
such t h a t ||</>(t) - v | | < a for t < t Q and ) | ( " t 0 ) - V I I < a ' 
Suppose t h a t g ( t ) i s a Lebesgue i n t e g r a b l e func t ion on 
[ t 0 , T] . Let f : P — E a , where P = | t Q 4 t < T; f y - T ? f < a } . , 
s a t i s f y the Carathéodory cond i t ion on P. F i n a l l y , l e t Sc be 
a subset of Rn defined by So = | y ( c ) t y ( t ) e S } , where 
2 denote the se t of a l l s o l u t i o n s of ( 2 . 1 ) ; c € ( t 0 , t Q + A ) , 
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Theorem of Alexiewicz-Orlicz 11 

where j | V m ( t ) + | g ( t ) || j dt < a - b(, b = | |(p(tQ) - 17 | | . Then S c 

i s a continuum, i . e . , a convex connected s e t . 
P r o o f . The se t S„ i s bounded in Kn . To see t ha t S„ c c 

i s a closed l e t y n e - * - y 0 » n —00 and y n 0 e S 0 , Then y n c = 
= y n ( c ) fo r some y n ( t ) e 2 .By Lemma 3.3 the sequence {yn("t)j 
has a subsequence which i s uniformly convergent t o some 
y ( t ) e £ on the i n t e r v a l (-©<>,t0+A]. Clearly yQ = y ( c ) . 

Suppose to the cont rary t ha t S i s not connected. Then 
1 2 1 ? S0 = S U S , where S , S a r e nonempty, disjoint,iolosed s e t s . 

Since S„ i s bounded, i = d i s t (S1 , S 2 ) > 0, where d i s t ( S 1 , S 2 ) = 

= inf { | | y 1 -y 2 | | ; y ' e S 1 , y ^ S 2 ) . For any y , put e ( y ) = d i s t ( y , S 1 ) -

- d i s t (y, S 2 ) , so t h a t e ( y ) ^ i > 0 i f y e S2 and e (y )< -6< 0 i f 
y e s 1 . The func t ion e (y ) i s continuous and e (y ) ^ 0 for 
y e S c . Let £ > 0 and l e t y . , ( t ) , y ^ t J e S where y ^ c ) , y 2 ( c ) 

1 2 
are in S and S , r e s p e c t i v e l y . In v i r t u e of Theorem 2.2 
t h e r e ex i s t f unc t ions h . j ( t , y ) and h 2 ( t , y ) s a t i s f y i n g the 
Caratheodory condi t ion on Q= <[( t ,y) : t Q 4 t ||y ||<=»<=» 
wi th the p r o p e r t i e s (a) - (d ) , where v ( t ) = y ^ ( t ) , y 2 ( t ) , 
r e s p e c t i v e l y . Consider the one-parameter family of d i f f e r e n -
t i a l - i n t e g r a l equat ions 

i y ( t ) =<p(t) for t < t Q 

(3 .4 ) < 00 
y ' ( t ) = A h ( t , y ( t - s ) , / \ ) d s r ( t , s ) + g ( t ) fo r almost every 

0 t 0 ^ t < t 0 + A , 

where and h ( t , y , 2 ) = 2. h1 (t ,y ) + ( 1 - ^ ) h 2 ( t , y ) . Since 
M t , y , / l ) s a t i s f i e s the assumptions bf Lemma 3.4 and Lemma 3.2 
i t 

fo l lows tha t ( 3 . 4 ) has a unique s o l u t i o n y =y( t , /Q which 
cont inuously depends on 1 in the i n t e r v a l [0,1] . As a conse-
quence of Lemma 3 . 1 , where a i s an a r b i t r a r y , t h i s so lu t i on 
e x i s t s on the i n t e r v a l ( - o o , t Q + A ^ ] f o r some Since a > 0 
i s a r b i t r a r y , we can assume t h a t y ( t , A ) i s extended to t 0 + 4 . 
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Note that || h ( t , y , ^ ) ||<m(t)+£ implies that ||y(t, a ) -7 ||«a+£VA 
for t 0 ^ t ^ t 0 + A . Lemma 3.2 Implies that y ( t ,A) — y ( t , A0) 
as A AQ uniformly on (-<*>,tQ+A]. In par t i cu l a r , y ( c , ^ ) 
and consequently e(y(c ,A)) , i s continuous with respect to A. 
Since • 7(ot0/) = y 2 ( c ) € S 2 , y (c , 1 ) = y 1 (c ) e S 1 , so that 
e(y(G»0))<0« e(y(o»1) )>0t there ex is ts a value of "X = 8 , 
0 <9<1 such that e(y(c,0))=O. If y ^ t ) , y 2 ( t ) are f ixed, 
the ohoice of 9 depends only on say 9 =0(£). Let £ =1/n, 
n>1 and le t h Q ( t , y ) = h ( t , y ,A) where A= 0 ( l/n ) . We have 

||f(t,y) - hQ ( t ,y 1/n for almost every t 0 < t < t 0 + A 
and, toy the choice of ^ = 8(1/n) the system 

for almost every 
t 0 < t < t 0 + A 

has a unique solution y = y t ,0(1/n) = y ( n ^ ( t ) on (-<»,t0+A] 
such that e ( y i n ^ ( c ) ) =0 for n>1. Since ||hn(t,y )||<m(t)+ 
+ 1/n<m(t) + 1 for n>1, the sequence - [ y ^ ( t ) } has a sub-
sequence { y ^ t ) } which i s uniformly convergent to y 0 ( t ) for 
t< t Q +A. Furthermore, || y f c ( t ) - i? ||̂ a + 1/nVA and e(yk(c))=0 
for k=1,2 , . . . , The function y 0 ( t ) s a t i s f i e s the equation 

' y ( t ) = (f( t ) for t < t Q 

< oo 
y ' ( t ) = J f ( t , y ( t - s ) ) d s r ( t , s ) + g ( t ) 

o 

and ||y0(t) t 0 < t < t G + A . Hence y Q ( t ) e S . Also 

e y 0 ( c ) =Um e y f c (c) =0. But then yQ(c)eSc and e(y0(c))= 0. 
This contradiction proves the theorem. 

y ( t ) = y ( t ) for t « t Q 

O O 

y ( t ) =j h n ( t , y ( t - s ) ) d s r ( t , s ) +g( t ) 

for almost every 
t < t<tQ+ A 
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