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SOME PROBLEMS ON THE EXISTENCE AND BEHAVIOUR OF SOLUTIONS
OF HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS
IN HILBERT SPACE

1. Let I=<0,+c0) and let H be a real Hilbert space.
Let K be a fixed, not necessarily bounded, linear operator
acting in H with dense domain D(K), Assume that X has the
following properties:

Z«.1l. The operator K is symmetric, positive definite,clo-
sed, and possesses an infinite set of eigenvalues ﬂn, n =
=1,24... with corresponding eigenfunctions xneD(K),n=1,2,...
such that

(8) O<21<22<R3 eese <2n<ooo r]‘--j;?;° 2n=°°
{(b) the eigenfunctions X of the operator K form a

complete system in H. In view of the symmetricity of K we
may assume that the system of eigenfunctions {xn} is ortho-
normal.

Remark 1. In order that a pogitive definite operator
K heve eigenvalues snd eigenfunctions with properties (a)
and (b) 1% suffices to assume that H is a space in which
every subset bounded 1n the energetic norm of the operator K
is compact in H (see [1]).

Z.2., There are defined real scalar functions o,fp of the
class C°(I) with the property that there exist constants
a,b,A,B such that for every t€I we have O<agw(t) <A,
0<b  Pf(t) < B.

Z.3. Let x ¢cH, ioeH be elements such that X, € D(KB),
:':o € D(K2),
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2 I.Musial

2, Under the assumptions above, let us consider the diffe-
rential equetion

(1) X +alt)x + p(t)x + Kox = 0,

with the initial conditions

(2) x(0) = x_, x(0) =5:°.

In this paper we use the same definition of boundedness
and exponential tending to zero for solutions as that given
in [2]. On the other hand, we define stability and asymptoti--
cal stability of solutions as follows.

Definition 1. 4 solution x of the problem
(1), (2) is said to be stable if it is defined for all telI,
end for every & > O there exists d>0 such that for any
solution y of (1) defined for every +t¢€1I satisfying y(0) =
=74 7(0) =35 (y,€D(K>), 7,€D(K?)) the inequalities
Jixy - K3, |[<6s |3, - 3o [ <6 tmply  |=x(e) - y(e)] <.

Definition 2, A solution x of the problem
(1), (2) 4is said to be assymptotically stable ifit is stable

in the sengse of definition 1 and moreover it is ”xu)-y@)“—~0
for t-—+=co,

3. Theoremn. Let Z.1, 2.2, Z.3 hold and assume that
the conditions

2.4. 2$>[§g9 +%] - b,

Ze5e ).n = O(n),
hold with the constents a,b,A,B as in Z,2. Then the problem
(1), (2) has a solution x(t) that is Dbounded together with
derivatives of the first and second order, and tends eXpo-
nentially to the trivial solution ag t —*e<, The solution
x(t) is stable and asymptotically stable.
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Homogeneous linear differential equations 3

Proo f. We shall seek a solution of equation (1) in the
form of a series

x(t) = 21, T, (4)x,
n=

where x, are eigenfunctions of the operator K, Tn(t) € R

for every t€lI, n=1,2,..., and each function T (¢ )xn is a
solution of equation (1).
Under this assumption, for each neN we have

To(8)x, + ()T ()X, + B(EIT, (8)x, + K2T (4)x, =0,

n
The operator K ©being linear, K2 is also linear, and hence

T} (6)x, + ot ()T (8 )x, + B()T,(t)x, + T ()K°x, = O.

Here we used the fact that Kx = ﬁnxn, so that x € D(KZ).

2 2
Since K°x, = K(Kxn) = K(anxn) = 7anxn =knxn we obtain

[T0(8) + o8I (6) + B(6IDL(6) + 252,(8)] x, = 0.
As X, # 0, +this gives
(3) Tp(t) + o (8T (6) + (Be) + 22)1 (4) = o.

The general solution of the linear equation (3) can be
written in the form

(4) Tn(t) = c1nTn1 (t) + cznTnz(t), D=1.2,....
where CqpsCo, 8are arbiltrary constants, and Tn1 (t), Tnz(t)

are linearly independent solutions. We select +the latter such
that
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4 I.Musial

(5) : T,1(0) =1, T,,(0)=0, T ,(0)=0, T_;2(0)=1.

Hence we look for a solution of the form

(6) x(t) = > (cme(t) + cznTnz(t)>xn.
n=1

The constants Cqpn2Con? n=1,2,... are chosen such that
the solution (6) satisfies the initial conditioms; that is,

o0 oo
(7) x,=x(0)= g LT S99 i:°=§c(0) = nZ=1<:2m::n .

Treating relations (7) as expansions of the elements xo,io
in Fourier series with respect to the system {xn}, we obtaln

oy = (KgaXp)s Oy = (Xge%p)
Hence CipsCop 8TE Fourier coefficients in the expansions of
%, 1in Fourier series with respect to the system {xn}.
In view of assumptions Z.2 and Z.4, fom lemma 6 in [3] it
follows that there exist constants P,R,S,T,Z depending on

a,b,B such that for the solutions of equation (3) under ocon-
ditions (5) we have

Xo,

4 ' _-x't

T < Pe T <= e-'xt
ntl <~ ’ n2 | S A ’
! -%t 1 -lt
(10) 9 Thq £ Rﬂne ’ T £ Pe s
" 2 =3t " -yt
Tn1 £ TAne ’ Tn2 £ Zﬁne s
N

where
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Homogeneoug linear differential equations 5

2\b + 22 -[-—2(2'1’) +A]>
2Vb+ l? + 8

Estimating the norm of the solution x(t),in view of (10)
we obtain '

rolw

y= 0.

= fora ar 0| e meats]}

and next

el < 7% 2 (fogae+ Jea] ).

n=1
so that

5] € (23 forgfAaivs 2 foza] i)

Making use of Cauchy®s inequality we obtain
}1/2>

is convergent.Deno-

n
=3
iMs
:3>'r)\>|4‘

M8

oo A N oo 1/2
o < [Z SR —} [

|_.

By assumption Z.5. the series

12
n=1 n
te 1ts sum by 21—2, 0 <A <oo, Then we can write
oo 12 &= 1/2
: =381 2 .2 1 2
(1) =) < e {Pa[gc“] an] +5 [ n=102n] }

oo
From (7) 1t follows that X, =x(0) = Z, ¢qyXpe Since
n=1 'O
xoeD(K) and K 1is closed, we get

(= o0 oo
KXO = KX(O) =K nz=1 C,ln xn = § C1n Kxnz nZ=1, C1n ann.

- 37 -



6 I.Musial

Here G1n Zn are Fourier coefficients for the expansion of
the function Kx(0) with respect to X te
Using Parceval’s equality we obtain

[~ -]

2 ,2 2
(12) 208, 22 = [ [
As well (7) implies
o0
X, = x(0) = Z°2nxn’
n=1
hence
<- 2
2 o
(13) g o2n = % -

The number series on the right-hand side of 1inequality
(11) are convergent due to (12) and (13). Hence the series
defining =x(t) is absolutely and uniformly convérgent.

We now estimate the norm of the first derivative x(t)
with help of inequality (10):

] <™ 2 (Jora[R3a + [ozaf7):

n=1
-3t 3 2 1 S 1
'l;’c(t)llge {R nzz}|c1n|71n 7l—l-l+ P nz=1 |°2n‘an 7;} .
Again using Cauchy’s inequality we obtain

- ol 2 z 172
oo o] <o [ S, ] m[ S 2]}

2n n
Using (7) and noting that x, € D(K?) (essumption Z.3)and
K is closed,we infer that

2

(= o0 2
K xo=K(Kxo) =K gc.m?lnxn = [‘Z=1 c.mﬂnxn ’
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Homogeneous linear differential equations 7

8o that °1nhg are Fourier coefficients of the expansion of

the function K°x, with respect to {xn}. Therefore

32,18 - |22,

Similarly from assumption Z.3. for the series :Z:cgn Rg
we get

< . o2
2050 Ay = %%, |7

The number series on the right-hand side of (14) are con-
vergent, hence the series defining x(t) is absolutely and
uni formly convergent.

By an analogous reasoning for the secong derivative we get

"i(t)”<°-zt{§|°1n|qm§ + ‘°2n|zan} '

;
Since

oo OO
2 5,6 _ |l«3. |2 2 4 |12 2
Ecm An = ”K x, ,§°2n2n = || K%, ” ,

the series defining %(t) 4is absolutely and uni formly con-
vergent, in analogy to the case of x(t) and =x(t).Thus x(t)
in formula (6) is the classical solution of problem (1), (2).
The uniqueness of the solution of problem (1),(2) follows from
consideration analogous to that given e.g. in [4], p.167.

The convergence of the number series in (11), (14), (15)
implies the boundedness of x(t), x(t), X(t). In view of the

and

[\']8

. -3t
(15) i) < e 1k

, oore ,
1n1n] +Z;1[nz—102nxn-]

1}
N
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factor e~ 3% that appear in these inequalities, 1t follows
that the functions x(t), x(t), X(t) tend exponentially to
zero when t —» oo,

We now show that the solutions sre stable. Let € be an
arbitrary number greater than O, and let

§ = [17 (P+S )]’_15

Let y(t) be another solution of equation (1) such that
00) =7, F(0) =3, (3,£D(K?), F,€D(xD)),
and
(16) "Kx(O) -~Ky(’0)"<6, " %(0) - 7(0) ||<6.

Let us form the difference z(t) = x(t)-y(t) which 1is
also 8 solution of equation (1) (by its linearity) with the
initial condition

(17) 2(0) =x(0)-3(0) =z, € D(K’), %(0) =x(0)-3(0) =3 € D(K3),
We have by (16)
(18) |kz(0)<8 ana | 2(0)]<8.

The function z(t), being a solution of (1), (17), can be
written in the form of a series:

oo

z(t) = Z(ame(T) + EznTn;g(t)) X,
n=

where Cyp = (zo,xn), Sop = (zo,xn).

From (10) we obtain

[t o0

e ™ e+ 5 2 Panl|
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Homogeneous linear differential equations 9

and

gt [ 2] [ S 1%
a9 ol SEal] s 3] 28]
On the other hand we have

Zw 2 .2 2 2 2
~ ~ .
n-1c1n An =I'KZ°| ’ :E:czn =llzol’ *

In view of (19) we have

—yt -
(20) 2] <e 3{1—5(%3)} —ee T,
2‘ .
80 that
(21) | z(t) < €.

Hence the solution x(t) 18 stable. The asymptotical sta-
bility follows from (21). _

The method of investigation of the existence of solutions
for differentiel equations disocussed above is similar to known
methods [5],[6], but here we considered the solution of equ-
gtion (1) for the infinite interval t € <0,+oo) and our pri-
maery aim has been the investigation of boundedness and sta-
bility of this solution.
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