

Helena Jakuszenkow

ON PROPERTIES OF THE GENERALIZED GAMMA DISTRIBUTION

1. Introduction

Let variables X_0, X_1, \dots, X_n be subject to distributions determined by densities $f_j(x)$ for $j = 0, 1, \dots, n$. If variables Y_k , $k = 1, \dots, n$ are known functions of the variables X_j , $j = 0, 1, \dots, n$, then the joint distribution of the n -dimensional random variable (Y_1, \dots, Y_n) is strictly determined by the functions $f_j(x)$. One can ask whether a multidimensional distribution of the variable (Y_1, \dots, Y_n) determines the distributions of the variables X_j , $j = 0, 1, \dots, n$. Of course, in the general case the answer to this question is negative, so there arises a question for what transformations $Y_k = \Psi_k(X_0, X_1, \dots, X_n)$ a distribution of the variable (Y_1, \dots, Y_n) determines the distributions of the variables X_j and whether it determines them uniquely.

The problem formulated above has been dealt with by I. Kotlarski [1], J. Aitchison [2], K. Królikowska [3]. These authors gave theorems concerning the cases where the variables X_j are subject to the gamma distribution or to the generalized gamma distribution, and the variables Y_k are some concrete functions of the random variables X_j .

In the present paper we shall give some theorems that generalize all theorems in the papers mentioned above.

2. A characterization of the generalized gamma distribution

Theorem 1. A necessary and sufficient condition in order that independent random variables X_0, X_1, \dots, X_n , $n \geq 2$

have the generalized gamma distribution

$$(1) \quad f_j(x) = \begin{cases} 0 & x \leq 0 \\ \frac{|\alpha|}{\Gamma\left(\frac{p_j}{\alpha}\right) a^\alpha} x^{p_j-1} \exp\left(-\frac{x^\alpha}{a}\right) & \text{where } a, \alpha, p_j: x > 0, \\ & j=0, \dots, n \end{cases}$$

is that the n -dimensional random variable (Y_1, \dots, Y_n) defined as follows

$$(2) \quad Y_k = \Psi_k\left(\frac{X_1}{X_0}; \dots; \frac{X_n}{X_0}\right) \quad k=1, \dots, n$$

have a generalized Dirichlet distribution with the density

$$(3) \quad k(y_1, \dots, y_n) = \frac{|\alpha| \Gamma\left(\frac{1}{\alpha} \sum_0^n p_j\right)}{\prod_0^n \Gamma\left(\frac{p_j}{\alpha}\right)} \prod \eta_k^{p_k-1}(y_1, \dots, y_n) \left[1 + \sum_1^n \eta_k^\alpha(y_1, \dots, y_n) \right]^{-\frac{1}{\alpha} \sum_0^n p_j} \cdot |J|$$

for $p_j \alpha > 0$, $j=0, 1, \dots, n$ $(y_1, \dots, y_n) \in \Omega$. Here Ω is the image of $\{x_k | x_k > 0, k=0, 1, \dots, n\}$ under the transformation (2). This transformation is assumed to be one-to-one with respect to the variables $Z_k = \frac{X_k}{X_0}$, $k=1, \dots, n$ for $x_k > 0$. The functions $Z_k = \eta_k(Y_1, \dots, Y_n)$ $k=1, \dots, n$ are inverse to the functions (2) and are of class C_1 , J is the jacobian of the transformation

$$(4) \quad Z_k = \frac{X_k}{X_0} = \eta_k(Y_1, \dots, Y_n) \quad k=1, 2, \dots, n$$

and $J \neq 0$ for $(y_1, \dots, y_n) \in \Omega$.

P r o o f. N e c e s s i t y. In the random variables X_0, X_1, \dots, X_n are independent and have distribution (1), then the joint $(n+1)$ -dimensional random variable (X_0, X_1, \dots, X_n) has a distribution with the density

$$(5) \quad f(x_0, x_1, \dots, x_n) = \prod_0^n f_j(x_j) =$$

$$= \frac{|\alpha|^{n+1}}{\prod_0^n \Gamma\left(\frac{p_j}{\alpha}\right)} a^{-\frac{1}{\alpha} \sum_0^n p_j} \cdot \prod_0^n x_j^{p_j-1} \cdot \exp\left(-\frac{1}{a} \sum_0^n x_j^\alpha\right)$$

for $p_j \alpha, a, x_j > 0, j=0, 1, \dots, n.$

Next let us introduce new random variables defined as follows

$$(6) \quad z_k = \frac{x_k}{x_0} \quad k=1, 2, \dots, n.$$

The density of the n -dimensional random variable (z_1, \dots, z_n) has the form

$$h(z_1, \dots, z_n) = \int_0^\infty f(x_0, x_0 z_1, \dots, x_0 z_n) x_0^n dx_0,$$

that is

$$h(z_1, \dots, z_n) = \frac{|\alpha|^{n+1}}{\prod_0^n \Gamma\left(\frac{p_j}{\alpha}\right)} a^{-\frac{1}{\alpha} \sum_0^n p_j} \prod_1^n z_k^{p_k-1} \int_0^\infty x_0^{\sum_0^n p_j-1} \cdot \exp\left[-\frac{x_0^\alpha}{a} \left(1 + \sum_1^n z_k^\alpha\right)\right] dx_0.$$

Substituting $x_0^\alpha = t$ under the integral, we obtain

$$(7) \quad h(z_1, \dots, z_n) = \frac{|\alpha| \Gamma\left(\frac{1}{\alpha} \sum_0^n p_j\right)}{\prod_0^n \Gamma\left(\frac{p_j}{\alpha}\right)} \prod_1^n z_k^{p_k-1} \cdot \left(1 + \sum_1^n z_k^\alpha\right)^{-\frac{1}{\alpha} \sum_0^n p_j}$$

where $p_j \alpha, z_k > 0$ for $j=0, 1, \dots, n. k=1, \dots, n.$

Applying (6) to (2), we get

$$(8) \quad Y_k = \Psi_k(z_1, \dots, z_n) \quad k=1, 2, \dots, n.$$

From the hypotheses of the theorem it follows that there exists a transformation inverse to (8), namely (4). Moreover, by assumption the jacobian J of this transformation is different from 0. Hence the density of the n -dimensional random variable (Y_1, \dots, Y_n) can be expressed by the formula

$$k(y_1, \dots, y_n) = h[\eta_1(y_1, \dots, y_n), \dots, \eta_n(y_1, \dots, y_n)] \cdot |J|$$

where J is the Jacobian of transformation (4). This shows that the condition is necessary.

P r o o f o f s u f f i c i e n c y. By assumption, the n -dimensional random variable (Y_1, \dots, Y_n) is subject to the generalized Dirichlet distribution (3), where the variables Y_k , $k=1, 1, \dots, n$ are functions (2) of independent and positive random variables X_j , $j=0, 1, \dots, n$. Then the random variable (Z_1, \dots, Z_n) has the distribution with density (7), since the transformations (4) and (8) are one-to-one in view of the hypotheses of the theorem.

Next we make use of a theorem on characteristic functions of random variables $\ln X_0, \ln X_1, \dots, \ln X_n$ and the random variable $(\ln Z_1, \dots, \ln Z_n)$, where $Z_k = \frac{X_k}{X_0}$, $k=1, \dots, n$. This theorem says (see [1] and [3]) that if random variables X_0, X_1, \dots, X_n are independent and positive, and the characteristic functions of the variables $\ln X_0, \ln X_1, \dots, \ln X_n$ do not vanish at any point, then the characteristic function of the n -dimensional random variable $(\ln Z_1, \dots, \ln Z_n)$ determines the characteristic functions of the variables $\ln X_0, \ln X_1, \dots, \ln X_n$ up to a factor $\exp(itb)$ which is the same for all the characteristic functions in question.

Accordingly, let $\varphi(t_1, \dots, t_n)$ be the characteristic function of the variable $(\ln Z_1, \dots, \ln Z_n)$, and let $\varphi_j(t)$, $j=0, 1, \dots, n$ denote the characteristic functions of the variables $\ln X_j$, respectively. As is easy to show, these functions satisfy the condition

$$(9) \quad \varphi(t_1, \dots, t_n) = \varphi_1(t_1) \dots \varphi_n(t_n) \varphi_0\left(-\sum_1^n t_k\right).$$

The random variable (Z_1, \dots, Z_n) is subject to the distribution with density (7), so that the characteristic function of the variable $(\ln Z_1, \dots, \ln Z_n)$ has the form

$$\varphi(t_1, \dots, t_n) = \frac{|\alpha|^n \Gamma\left(\frac{1}{\alpha} + \sum_0^n p_j\right)}{\prod_0^n \Gamma\left(\frac{p_j}{\alpha}\right)} \int_0^\infty \dots \int_0^\infty \prod_1^n z_k^{p_k + it_k} \cdot \left(1 + \sum_1^n z_k^\alpha\right)^{-\frac{1}{\alpha} \sum_0^n p_j} \cdot \prod_1^n dz_k.$$

In order to compute the above n -fold integral we make use of formula 4.638 in [4]

$$\varphi(t_1, \dots, t_n) = \frac{\Gamma\left(\frac{1}{\alpha} \sum_0^n p_j\right)}{\prod_0^n \Gamma\left(\frac{p_j}{\alpha}\right)} \cdot \frac{\prod_1^n \Gamma\left(\frac{it_k}{\alpha} + \frac{p_k}{\alpha}\right) \cdot \Gamma\left(\frac{1}{\alpha} \sum_0^n p_j - \sum_1^n \left(\frac{it_k + p_k}{\alpha}\right)\right)}{\Gamma\left(\frac{1}{\alpha} \sum_0^n p_j\right)}$$

hence

$$\varphi(t_1, \dots, t_n) = \frac{\Gamma\left(\frac{p_0}{\alpha} - \frac{i}{\alpha} \sum_1^n t_k\right)}{\Gamma\left(\frac{p_0}{\alpha}\right)} \cdot \prod_1^n \frac{\Gamma\left(\frac{p_k + it_k}{\alpha}\right)}{\Gamma\left(\frac{p_k}{\alpha}\right)}.$$

Taking into account formula (9) and the theorem cited above we see that the characteristic function of the variable $\ln X_j$, $j=0, 1, \dots, n$ has the form

$$\varphi_j(t) = \frac{\Gamma\left(\frac{it_j p_j}{\alpha}\right)}{\Gamma\left(\frac{p_j}{\alpha}\right)} \cdot \exp\left(\frac{it_j \ln a}{\alpha}\right), \quad p_j \alpha, \quad a > 0, \quad j=0, 1, \dots, n$$

where $\exp\left(\frac{it_j \ln a}{\alpha}\right)$ is the arbitrary factor equal for each characteristic function of the variable $\ln X_j$, and the pa-

rameters p_j and α are determined by the n -dimensional distribution (3).

It is easy to show that the density of the random variable X_j is of the form (1), q.e.d.

The following transformations are special cases of this theorem

1°. for $n=2$ and $\alpha=1$

$$Y = \frac{X_k - X_0}{\sqrt{X_k X_0}}, \quad \sqrt{\frac{p_k}{2}}, \quad k=1,2,$$

which was dealt with by I.Kotlarski [1].

$$2° \quad Y_k = \frac{X_k - Y_0}{\sqrt{X_k X_0}}, \quad \sqrt{\frac{p_k}{2}} \quad k=1,2,\dots,n \quad n \geq 2, \alpha > 0.$$

This case was dealt with by the Author in [5]. In this case the density of the variable (Y_1, \dots, Y_n) is of the form

$$(3a) \quad k(y_1, \dots, y_n) =$$

$$= \frac{(2\alpha)^n \cdot \Gamma\left(\frac{1}{\alpha} \sum_0^n p_j\right) \cdot \prod_1^n \left(\frac{y_k}{\sqrt{2p_k}} + \sqrt{\frac{(y_k)^2}{2p_k} + 1} \right)^{2p_k}}{\prod_0^n \Gamma\left(\frac{p_j}{\alpha}\right) \cdot \prod_1^n \sqrt{2p_k y_k^2 + 2p_k}}.$$

$$\cdot \left[1 + \sum_1^n \left(\frac{y_k}{\sqrt{2p_k}} + \sqrt{\frac{y_k^2}{2p_k} + 1} \right)^{2\alpha} \right]^{-\frac{1}{\alpha} \sum_0^n p_j}$$

The density (3a) determines densities of the variables X_j , $j=0,1,\dots,n$ up to a constant parameter a which is arbitrary and equal for all variables X_j .

3^o $n \geq 2$, $\alpha = 1$. For example, the transformations

$$Y_k = \frac{X_k}{\sum_0^n X_j} \quad \text{or} \quad Y_k = \frac{\sum_0^n X_i}{\sum_0^{k-1} X_i}$$

and others were considered by J. Aitchison in [2].

$$4^o \quad Y_k = \frac{X_{k-1}}{X_n} \quad k=1, \dots, n.$$

The density of the variable (Y_1, \dots, Y_n) was found by K. Królikowska [3].

Theorem 2. A necessary and sufficient condition for independent random variables X_0, X_1, \dots, X_n , $n \geq 2$ to have the generalized gamma distribution

$$(10) \quad f_j(x) = \frac{|\alpha_j|}{\Gamma\left(\frac{p_j}{\alpha_j}\right)} x^{\frac{p_j-1}{\alpha_j}} \exp\left(-\frac{x^{\alpha_j}}{a}\right), \quad \alpha_j p_j, a, x > 0, \quad (j=0, 1, \dots, n)$$

is that the n -dimensional random variable

$$(11) \quad Y_k = \Psi_k\left(\frac{X_1^{\alpha_1}}{X_0^{\alpha_0}}, \dots, \frac{X_n^{\alpha_n}}{X_0^{\alpha_0}}\right) \quad k=1, \dots, n$$

have a generalized Dirichlet distribution with the density

$$(12) \quad k(y_1, \dots, y_n) = \frac{\Gamma\left(\sum_0^n p_j\right)}{\prod_0^n \Gamma\left(\frac{p_j}{\alpha_j}\right)} \prod_1^n \eta_k^{\frac{p_k}{\alpha_k}-1} (y_1, \dots, y_n) \cdot \left[1 + \sum_1^n \eta_k(y_1, \dots, y_n)\right]^{-\sum_0^n \frac{p_j}{\alpha_j}} |J|$$

for $p_j \alpha_j > 0$, $j=0, 1, \dots, n$, $(y_1, \dots, y_n) \in \Omega$, where the functions $\Psi_k(y_1, \dots, y_n)$ are of class C_1 and there exists transformation inverse to transformation (11) with respect to $Z_k = \frac{X_k^{\alpha_k}}{X_0^{\alpha_0}}$, $k=1, \dots, n$ and $x_k > 0$. As usual, J is the jacobian of the transformation

$$Z_k = \frac{X_k^{\alpha_k}}{X_0^{\alpha_0}} = \eta_k(y_1, \dots, y_n), \quad k=1, \dots, n \text{ and } J \neq 0$$

for $(y_1, \dots, y_n) \in \Omega$, and $\eta_k(y_1, \dots, y_n)$ are the functions of the transformation inverse to (11).

P r o o f. If the variables X_j , $j=0, 1, \dots, n$ are independent and subject to the generalized gamma distribution (10), then the variables $V_j = X_j^{\alpha_j}$ are also independent and have a gamma distribution with the density

$$g_j(v) = \frac{1}{\Gamma\left(\frac{p_j}{\alpha_j}\right) a^{\frac{p_j}{\alpha_j}}} v^{\frac{p_j}{\alpha_j} - 1} \cdot \exp\left(-\frac{v}{a}\right) \quad p_j \alpha_j, a, v > 0, \\ j=0, 1, \dots, n.$$

Therefore the variables V_j satisfy the hypotheses of Theorem 1, where we put $\alpha=1$ and replace p_j by the parameter $\frac{p_j}{\alpha_j}$. Theorem 2 generalizes several theorems of paper [3].

3. A characterization of the beta distribution of second kind

T h e o r e m 3. A necessary and sufficient condition in order that variables Z_1, \dots, Z_n have the generalized beta distribution of second kind with density

$$(13) \quad g_k(z) = \frac{z^{p_k - 1}}{(1+z)^{p_k + p_0}} \cdot \frac{\Gamma(p_k + p_0)}{\Gamma(p_k) \Gamma(p_0)} \quad k=1, \dots, n, j=0, \dots, n \\ p_j > 0, z > 0$$

is that the n -dimensional random variable (Y_1, \dots, Y_n) , where

$$(14) \quad Y_k = \Psi_k(Z_1, \dots, Z_k), \quad k=1, \dots, n$$

have a generalized Dirichlet distribution with the density

$$(15) \quad k(y_1, \dots, y_n) =$$

$$= \frac{\Gamma\left(\sum_0^n p_j\right)}{\prod_0^n \Gamma(p_j)} \prod_1^n \eta_k^{p_k-1} \cdot k(y_1, \dots, y_n) \cdot \left[1 + \sum_1^n \eta_k(y_1, \dots, y_n) \right]^{-\sum_0^n p_j} |J|$$

$$p_k > 0, \quad k=0, 1, \dots, n, \quad (y_1, \dots, y_n) \in \Omega.$$

Moreover, the transformation (14) is one-to-one with respect to Z_k , $k=1, \dots, n$, the functions $Z_k = \eta_k(Y_1, \dots, Y_n)$ of class C_1 are inverse to the functions of (14), and J is the jacobian of the transformation

$$Z_k = \eta_k(Y_1, \dots, Y_n), \quad k=1, \dots, n \quad \text{where } J \neq 0 \text{ for } (y_1, \dots, y_n) \in \Omega.$$

P r o o f. It suffices to observe that if in Theorem 1 we put $\alpha=1$, then the variables X_j have the gamma distribution

$$f_j(x) = \frac{1}{\Gamma(p_j)a^{p_j}} x^{p_j-1} \exp\left(-\frac{x}{a}\right), \quad a, p_j, x > 0, \quad j=0, \dots, n.$$

Hence the variables $Z_k = \frac{X_k}{X_0}$, $k=1, \dots, n$ have the generalized beta distribution of second kind with density (13). This ends the proof of Theorem 3.

BIBLIOGRAPHY

- [1] I. Kotlarski: On characterizing the chi-square distribution by the Student law, *J.Amer.Statist.Assoc.* 61(1966) 976-981.
- [2] J. Aitchison: Inverse distributions and independent gamma distributed products of random variables, *Biometrika* 50(1963) 505-508.
- [3] K. Królikowska: On the characterization of some families of distributions, *Comment. Math. Prace Mat.* (Warsaw) 17(1973) 243-260.
- [4] J. Ryžik, I. Gradsztajn: *Tablice integralów, summ,ria-
dow, proizwodienij.* Moskwa 1962.
- [5] H. Jakuszenkow: On some property of the generalized gamma-distribution, *Comment.Math. Prace Mat.* (Warsaw) 17(1973) 237-242.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF ŁÓDŹ

Received October 25th, 1972.