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ON SOME PROPERTIES OF FLAT GRAPHS 

Let 7T a f i xed plane. We sha l l consider graphs G = (X,U), 
where X is a f i n i t e set o f points o f th i s plane ca l led v e r -
t i c e s 0-".' the graph, U i s a f i n i t e set o f arcs ly ing in the 
plane i t , an6 the end-points o f each arc in the set U are 
d is t inc t v e r t i c e s of the' graph. The arcs in the set U are 
ca l led the edges o f the graph. The terminology used in the 
sequel i s consistent with paper [ 1 ] . 

Let G=(X,U) be a f i xed graph. For any set CsUvje form 
a graph Gc = ( x ' , C ) t where 

x ' = < x £ X : there ex is ts an edge u e C incident with i . 

D e f i n i t i o n 1. a ) A set C QU is" called a quasi-
cycle i f every vertex o f the graph Gc i s incident with an 
even number o f edges, b ) A set CQU is ca l l ed a cycle i f G c 
i s a connected graph and i t s every ver tex i s incident with 
i t s two edges. An edge u o f the graph G is said to be a 
cyc l i c edge i f i t belongs to some quasicycle o f the graph G. 
In the set Q(G> of a l l quasicycles of the graph G we def ine 
addi t ion o f quasicycles 

Moreover we de f ine mul t ip l i ca t ion o f quasicycles by the e l e -
ments of the f i e l d of remainders mod 2 

c1 + c 2 = (c-jU c 2 ) - ( c 1 n c 2 ) , c- 1 tc 2e q (g ) ì 

O'C = 0, 1-C = C, c e Q(G) 
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2 K.Dworakowslci, J.Kaozmarski 

I t Is easy to see that the set Q(G) with the so-defined 
operations forms a l inear space over the f i e l d of remainders 
mod 2. This l inear space i s ca l led the space of cycles of the 
graph G. I t can be shown (see [ 1 ] p.166) that the dimension 
o f the space Q(G) equals the cyclomatic number A of the 
graph. 

We shal l use the fo l lowing lemma. 
L e m m a 1. I f quasicycles form a basis 

o f the space Q(G), then the set o f quasicycles ^ U ^ . . . , ^ ! 
defined by 8ny of the fo l l owing three condit ions 

(W.,) Uj. = CL + C i + 1 f o r 1 = 1 , . . . , A -1- and Û  ; 

(W2 ) Uĵ  = C1 + . . . + C._ fo r / i = 1 , . . . ,J\; 

{W j ) = C^ for i = 1 , . . . ,k-1 ,k+1 and Ufc = C1 + . . . + C^; 

form a basis for Q(G). 

D e f i n i t i o n 2 . A graph G is said to be f l a t i f 
there ex is ts a graph L=(X,U) isomorphic to G such that 

x e u n v x e x . 
x e or u,veU 

Flat graphs are characterized by the fo l lowing c l ass i ca l 
theorem. 

T h e o r e m 1. (Kuratowski) . A graph G is f l a t i f 
and only i f i t s skeleton does not contain parts homeomorphic 
to i1^ or parts homeomorphic to f u l l Konig 's graph K^ 3«*^ 

The terms: part of a graph, homeomorphic part, the graph 
the graph K^ ^ B r e also taken from the monograph [1 ] p.428. 5 
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The present work i s based on the following characterization 
of f l a t graphs given by Mac Lane. 

T h e o r e m 2. ([1] p .428) . A graph G i s f l a t if and 
only i f the space of cycles Q(G) has a b a s i s such that each 
edge of the graph G belongs to at most two quas icycles of 
th i s b a s i s . 

The b a s i s defined by Theorem 2 wi l l be ca l led a Mac Lane 
b a s i s . 

D e f i n i t i o n 3. We say that a graph G=(X,U) s a -
t i s f i e s condition (K) i f the space of cycles Q(G) has a b a s i s 

= I I such that 

I t turns out that property (K) character izes f l a t graphs. 
In f a c t , we have the following theorem. 

T h e o r e m 3. A graph G=(X,U) i s f l a t i f and only i f 
i t s a t i s f i e s condition (K). 

P r o o f . Assume that a set of cycles cons-
t i t u t e s a Mac Lane b a s i s of Q(G). We sha l l show that the se-
quence of s e t s where C^ = U1 + . . . + Û  , s a t i s f i e s the 
condition (K). To t h i s aim we sha l l prove that for any cyclic 
edge u, the indices of the quas icycle Ĉ  containing th i s 
edge form a sequence of. consecutive numbers.Observe that the 
following two oases are poss ib le« 

1) u belongs- to Û . and only to U .̂. Then u belongs to 
a l l quas icycles in the sequence C^.C^ ^ , . . . and only to 
those quas icyc les ; 

-2) u£U k and a6Um ( l e t k < m). Then u belongs to a l l 
quas icycles C k > C k + i » • • • > c m _ i a n d only to them. 

Conversely, l e t a family & = form a b a s i s 
from Definit ion 3. We form a b a s i s % = -flL , . . . ,Ui } such that 

(K) 
u e U H a ^ p l 

for i =1 ,2 , • • •, A -1 and U-, =C 
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In view of Theorem 2 i t su f f i ces to show that an arbitrary 
edge u belongs to at most two quasicycles of the basisW.Then 
one of the following cases holds: 

1) a belongs to no cycle of the basis R , which implies 
that u belongs to no quasicyc le of the basis I t ; 

2) u belongs to a l l quasicycles C - j . . . . » ^ , ( a > 1 ) , and 
only to them. Then u belongs to the quasicycle U^ only; 

3) u belongs only to a l l quasicycles C^, C , j , . . . tGg» 
(1 < -ot < < X ) . Then the edge u belongs to the quasicycles 
Uq(_1 and Up and only to them. 

L e m m a 2. For every cyc l ic edge u of a f l a t graph 
(X,U) there exists a Mac Lane basis such that the edge a be-
longs only to one quasicycle of this basis. 

P r o o f . Let UL = j u . , , . . . be an arbitrary Mac Lane 
basis for the graph G. Since the numeration of the cycle's in 
this basis i s not essent ia l , i t su f f i ces to consider the case 
u e U-,0 U2. Then the basis = j ï ï î , , . . . ,Uj( j , where =Ut 

for i/2, U2 = U - j + . . . + U^, sa t i s f i e s the required condi-
t ions. 

C o r o l l l a r y 1. For every cycl ic edge u of a f l a t 
graph G=(X,U) there exists a basis di , . . . s a t i s f y -
ing condition (K) and such that 

P r o o f . Let u e U be a cyc l ic edge of the graph G. 
Then there exists a Mac Lane basis such that the 
edge u. belongs to Û  only. Repeating the reasoning given in 
the proof of Theorem 3 we can show that the basis Ci=U1 + . . . 

( 1 = 1 , s a t i s f i e s condition (K) . 
D e f i n i t i o n 4 . -A basis C f for the space of 

cycles of a graph G is said to be foundamental i f every 
quasicycle of this basis has an edge not belonging to any 
other quasicycle of the basis Cf. 

U 6 C 
1< UA 
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I t can be shown ( [1] p.166) that every graph with at least 
one quasicycle has a foundament8l basis and the quasicycles of 
any foundamental "basis are oycles. 

D e f i n i t i o n 5. A graph G=(XfU) is said to be 
elementary i f G has a foundamental basis satisfying condi-
tion (K) such that there existB an edge of G belonging to 
every cycle of this basis. 

I t is easy to see that every elementary graph is a f l a t 
graph without disconnecting points and bridges. An example of 
a f la t graph that is not elementary is the graph represented 
in f i g .1 . 

Fig.1 Fig. 2 Fig «3 

An essential property of f lat graphs that are not elemen-
tary is given in the following theorem. 

T h e o r e m 4. I f a graph G=(X,U) possesses a found-
amental basis Pf for which there exists an edge of the graph 
belonging to every cycle C f , and i f the cyole of this basis 
cannot be numbered to sat is fy condition (K), then the graph 
is not f l a t . 

P r o o f . Let C f = |c 1 f . . . , c^| be a foundamental basis 
and uQ an edge belonging to each of the cycles C f . Suppose 
that G is f l a t . Let U = {u 1 , . . . .U,} be i t s Mac Lane basis 
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such that a belongs only to the quasicycle U-j. The existence 
of a bas is with this property i s guaranteed by Lemma 2. The 
quasicycles of the bas is IX can be expressed in the form of 
sums cycles of the basis C .̂. Moreover, from the properties 
of the bas is H and C f i t directly follows that 
1) every quasicycle of the basis % , with exception of the 

quasicycle U1, i s the sum of an even number of cycles of 
the basis Cf; 

2) every cycle of the b s s i s C f appears as a component in 
at most two cycles of the bas is Zt. 

First we shall show that from conditions 1) and 2) it 
follows that 

E 1 ) every quasicycle of the basis 21 , except U1, is a sum 
of two quasicycles of the basis C f . The cycle U1 equals s®me 
cycle of the basis C .̂; 

Eg) every cycle of the bas i s C^, except one, appears as 
a component in two quasicycles of the basis 11 . 

Let m̂  denote the number of those elements of the bas is 
C f whose sum i s equal to U^. Prom condition 1)^ i t follows 
that m.j > 1, m i > 2 , ( i = 2 , 3 , . . . ,^) .This implies t m^ 2$-1 )+1 = 
=2% -1 . Next, let k^ denote the number of quasicycles of the 
basils IX. which contain the cycle Ĉ  as a component .Prom-con-
dition 2) i t follows that K k ^ a , ( i = 1 , 2 , . . . , A ) , where at 
least one of the numbers k^ must be least than 2, because 
otherwise the sum of a l l quasiojvcles of the basis 1% would be 
the empty se t . Hence we have Ek, <2A But clearly the 

a a 
following equality holds» ^ m̂  = £ k^. Consequently, the 
numbers m̂  and k^ s a t i s f y the equations 

(r.j) m1 + m2 + . . . + m̂  = 22 -1, 

( r 2 ) k1 + k2 + . . . + k-, = 22 -1 . 

It i s easy to see that a f ter taking into account the l imita-
tions put on the numbers m̂  and k^, we obtain, as the only 
solution of (r-j)! m1=1, m2=m-j=... =m^=2. Similarly, the only 
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solution of (r2) is as follows: =k2=.. .=kc(_1 =1^^=... 
k^rrl. This shows the validity of (E1 ) and (R2). 

We now number the quasicycles of the basis Û and the ba-
sis C f as follows. 

U^ denotes the quasicycle ïï^. The cycle of the basis C f 

equal to u!| is denoted by Ĉ j. Prom conditions (E^ and (R2) 
it follows that there exists exactly one quasicycle of the ba-
sis VL , to be denoted by U 2, which is the sum of the cycle 
c!| and another cycle C 2 of the basis Cf. Suppose that for 
some n <A we have numbered "the quasicycles of the basis VL 
and the cycles of the basis C^ such that = C^, U 2 =C:j + 
+ C2,... ,u'n = + C^ , where for W j , (i, J = 1,2,... ,n ), 
we have Ui é U', and Ci 4 c'.. 

. J ^ J 
Let U n +i denote that of the remaining quasicycles of the 

basis VL which contains C^ as a component. If such a cycle 
did not exist, then by (R2) the sum of all quasicycles U 
different from u'-|,...,ujj would be empty, which is obviously 
impossible. The uniqueness of this choice is guaranteed by 

Let denote the other component of the quasicycle 
Un+1' F r o m i-t f o l l o w s t h a t Cq + 1 ^ ci f o r 1=1,...,n. 

Continuing this numbering we obtain after % steps: 

= ' ^2 = + ^2' * * * ' Ui = ^i-1 + ci» • • • '̂ pi = ^ -1 + 

where 

Repeating thé reasoning given in the proof of Theorem 3 
one can show that the sequence of sets 

cî, = u!j, c 2 = + u2,...,c^ = + u 2 + ... 

satisfies condition (K). This contradiction ends the proof. 
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Concluding this paper let us observe that 
a) the olass of graphs defined In Theorem 4 is not empty 

(for example, the gjraph in fig.2 has a basis C^ = {l, 5, 6}, 
C2 = {1,2,3,7}, C3 = {1,2,3,5,8}, C 4 = {l,2,3,4,5,9}, C 5= 
= {1,2,5,10}, C 6 = {1,2,4,5,11}, C7 ={1,2,12}, C8 ={1,4, 
5 , 1 3 } satisfying the hypothesis of Theorem 4)?; 

b) Theorem 4 cannot be strengthened by rejecting the hy-
pothesis that the basis is foundamental (e.g. the graph in 
fig.3 has a basis C1 = {1,2,3,4}, C2 = {1 ,2,7,8}, C3 = {1, 
4,5,6'}, C^ = { 1 , 6 , 7 } . This graph is clearly flat; moreover, 
it is an elementary graph). 
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