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THE DETERMINATION OF NON-HOMOGENEOUS LINEAR GEOMETRIC
OBJECTS OF THE FIRST CLASS FOR WHICH THE NUMBER
OF COORDINATES IS NOT GREATER
THAN THE DIMENSION OF THE SPACE

In this article we shall determine non-~homogeneous linear
geometric objects of the type [m,n,ﬂ] where m < n, with the
following transformation rule:

(*) _ w'= F(A)w+g(h),
or
(x %) _ w'= F(JNuw+g(d),

where J = Det A.

In the case (%) we assume no regularity condition con-
cerning the matrix functions F(X) and g(X) (Theorem I),
but in the case (**) we assume that F(J) 1is a measurable
function and g(J) is a continuous function. (Theorem II).
In the proof of Theorem I we apply the results of M. Kucha-
rzewski and A. Zajtz [2] concerning the determination of ho-
mogeneous linear geometric objects of the type [m,n,1] where
m < ne. In the proof of Theorem II we use the results of
M. Euczma and A. Zajtz [5].

First let us recall some definitions.

An object w 1is called a non-homogeneous linear geometric
object of the first class if with a transformation of the co-
ordinate system

£ = o7 (A, A= 1,2,000,n)
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2 J. Luchter

the coordinates of the objects transform according to the rule

1) ot = @ el s gt (1)) C(I,T = 1,2y0..,m),
where w(uﬂ,...,wm) and co(u;‘,...,wmf) are the coordinates
of the object in the systems (&) and (&*), respectively.
Moreover, F%l and Aﬁ are matrices of dimension m x m and
n x n, respectively, where the latter matrix satisfies the
condition

: a ,
A’i:—g—za— and Det [AX] # 0.

The object w is called an object of the type J if the ma-
trix functions F and g are functions of the determinant
of the matrix [Ai] only, i.e. if.

@) Wl = # (Wl + g @D,

where J = Det[A}].
To simplify the notation we assume the following matrix
notation:

o | | 18" )
w= E , A = [A}:I , F(A) = F% ), gl = E . .
wit gh(a)

With this notation, formulas (1) and (2) take the form
(3 w'= F(A)w+g(A)

) W= F(INw+g(T).

In order to determine all non-homogeneous linear geometric
objects of the first class we must solve the following system
of matrix functional equations:

5 F(BA) = F(B)F(A),
(63 g(BA) = F(B)g(A)+a(B);
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-Non=homogeneous linear geometric objects 3

or, in the special case of J-objects, the system

&) F(I,0q) = F(I)F(,),
(8) e(T34) = F(I,)6(T)+8(,) ™.

Now we give a general solution (without any regularity
assumption about the functions F(X) and g(X)) to the system
of equations (5) and (6), where F,A and B are nonsingular
matrices of dimension m xm, nx b and @ x 1, respective-
ly, where 2 <m é‘n**).

The equation (5) does not involve the function g, hence
i1t can be considered independently of +the equation (6). The
general solution 'of equation (5) has been given by M. Kucha-
rzewski and A. Zajtz in [2]. Namely, in order that the func-
tion F(X) satisfy equatioﬁ (5) for non-singular matrices A
and B, it must have one of the following forms:

-1

(9 F(X) =$(I)C X O (m=n)
(103 F(X) = §(IoEH1¢ ' (m=n)
11) F(X) = G(3), J = Det X (men).

In these formulas C is an arbitrary non-singular constant
matrix, #(J) - an arbitrary scalar matrix satisfying the
functional equation ¢(J2J1) = ¢(J2) ¢(J1), and G(J) - an
arbitrary matrix of a real variable satisfying the functional
equation G(I,04). = G(I,)G(T4). Since in (9) amnd (10) ¢ (J)
is a scalar matrix function, it has the form ¢(J)E where ¢(J)
is a scalar multiplicative function satisfying the equation

Replacing multiplication by the scalar matrix ¢(J) with
multiplication by the scalar function ¢ (J), we can write the
solutions (9) - (11) in the following form:

*) This system has been solved in [4].
*%) In the case m=n=2, the system (5) and (6) has been solved in [1].
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(12) F(X) = ¢(3) ¢ X ¢
(13) F(X) = ¢(3) cx)™T ¢
(14) F(X) = G(J).

We now interpret equation (6) as follows: given a matrix
function of one of the forms (12), (13), (14), we seek a
vector function g, about which we make no regularity as-
sumption.

In the course of solving +this problem we shall use the
following lemmas proved in [ﬁ] and [5].

Lemma 1. If the solution of equation (5) 1is of the
form F = CFC-1, then the solution g corresponding to i1t
has the form E=CE (see [1]).

Lemma 2. If there exists a scalar matrix AE (1£1)
such that the matrix F(AE) - E is noun-singular, then the

general solution of equation (6) has the form

(15) ga) = [F(A)-E]v,

where v 1is an arbitrary constant vector. {(see [1]).
Lemma 3. If the matrix

g
1
1
is non-singular, then the general solution of equation (6)
has the form (15) (see [5]).

In virtue of Lemma 1 it suffices to consider equation
(6) assuming that (12), (13) and (14) have the form

(16) 1Ia. F(A) = ¢(J3)A
(17)  Ib.  F(a) = p(3)aT)™
(18) II.  F(A) = G(J),

where ¢(J) and G(J) are the same as in (12), (13) and (14).
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Non-homogeneous linear geometric objects 5

We consider +three cases depending on +the form of the
function F(X) in (16) - (18).
Ia. The function F(X) is of the form F(A) = p(J). We

_1
shall show that if (J) #J ", then the assumption of Lemma 2
holds, so that the general solution of equation (6) has the
form (15), i.e.

g(a) = [F(A)-E] v.

Indeed, we can confirm +this as follows: we examine for
what function F +there is no scalar matrix AE (A #1) such that
the matrix F(AE)-E 1is non-singular, Accordingly, substi-
tute AE for A, then the matrix F(AE)-E = ¢(a%) AE-E =
= [WCF)A—{]E is singular if and only if ¢(a™)a-1=0, that
is if

(*) p(A) = 5 -

Let A >0 and put A% = x, i.e. A= x . Substituting this

1 L
into (x) we get ¢(x) = x". Hence only for ¢(J)=J7 (J > 0)
there is no scalar matrix AE such +that F(AE)-E is non-
-singular. This implies that if the function F(X) is of the

form (16) and Q(J)#tf%'then the assumption$ of. Lemma 2 hold
and the general solution of equation (6) has the form (15).
Ib. The function F(X) is of the form (17), i.e. F(A) =
= (p(J)(AT)-/I By a reasoning similar to that in case Ia, we
conclude that only for ¢(J) = J there is no scalar matrix
AE such that the matrix F(AE)-E is non-singular. Conse-

quently, if ¢(J) # Jr%; then the general solution of, equa-
tion (6) has the form (15).

Hence it remains to solve equation (6) in case Ia and Ib,
when we have, respectively:

1
S"(J) = J-n_ or SO(J) = J%.
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Theorenm I. All non-homogeneous linear geometric
objects of the type [m,n,1], where m=n have the form (3),
where F 1is defined by formula (12) or (13), and g 1is of
the form (15).

II. The function F(X) has the form (18), i.e.

F(a) = G(J).

Although the solution (18) applies to the case m=n, this
agsumption will play no role in the sequel and the results to
be given now concern arbitrary non-homogeneous linear J~ob-
jects of the first class without any limitation on the unumber
of coordinates. )

To determine all objects of the type J we must solve
the system of equations (7) and (8).

The general solution for the multiplicative equation (7), un-
der the assumption that F(J) is measurable, has been given
by M. Kuczma and A, Zajtz in paper [5].

Following [3], let us introduce the notation

B 1 -1
Eiks }! 1712 1n1dl 15! 1512 128151 ... (p—_;)—!IJIa (anlal ) 1
a a 1 a p=2
(a1 fg1* 1o a3l ... (p_z)!|J| (Anigl)
M = seceses0tascee eee 00 esesstesseses s
L Eiks
i 1 2 1 s-1“
A &b 1in |d1) EjA(b mlal)® ... -1 A(b 1nlJl)
-2
A(b 1nldl) .o TE%EST A 1nla)®
A -
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Non-homogeneous linear geometric objects 9

where A denotes a matrix of the form

|71 cos(b 1nlJ])  131® sin(b 1nlJl)

| 712 sin(b 1n]d}) |T1® cos(b 1n|J])

and p,s are natural numbers equal to the dimensions of the
square matrices M and N, respectively, and a,b are real
parameters.

With this notation, +the function F(J) being the solu-
tion of equation (7) can be written as follows:

(24) P®(3) =¢C L ﬁ?&)c, where Bq(J) E

7(7) = Chedl

In the formula above C 1is a constant non-singular matrix
and F(J) is a quasi-diagonal matrix in which each block
B.(J) on the diagonal has the form M,N, or (sgn J) M,
(sgn J) N (compére [3]). According to ILemma 1 if C=E it
suffices to determine the solution of egquation (8) for the
function F(J) only.

Now we prove the following lemmas,

Lemma 4, If +the matrix F(J) is quasi-diagonal
(it splits into at 1least +two cells on the diagonal), then
each solution g(J) has the form

g(J) =

(p).

where g J (J) is a vector function with +the number of
coordinates equal to the order of the block Bj(J) corres—
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ponding to it, and g(pj)(J) satisfies equation
F(J) replaced by Bj(J).

Proof. It suffices to prove the lemma when the me-
trix F consists of two cells, since by induction it is easy
to extend the proof for an arbitrary number of cells.’
Accordingly, assume that

(8) with

qu(J) 0
F(J) =
0 BP2(J)
and
(p,)
g 1 (@)
g(d) = .

(p2)

(7)

Introducing the matrices F and g into (8) we obtain

(p,)

(p,y)

(359,)

(J534)

This implies

(p,)

qu(Ja)

qu(Ja) g

BPz(JZ) 8

B
P>

-

0]

(J

5)

(pq)(J1)

(PZ)(J,‘)

(p,)
(J594) = qu(J2) & | (3,) +g
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[ (o.)
g 1 (3,)

(p2)

(3,

- -
pq)(Jz)

g(Pa)(J2)

pq)

(p,)
g i

(p2)

(3,)

(3,)

(3,)
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Non=-homogeneous linear geometric objects 1

and

<P2) ( 2) (P2)

g ° (3,3,) = Bpa(Ja)g F (7)) +8 © ().
Lemma 5. The set of all solutions of equation (8)
is closed with respect to the operation of addition and mul-
tiplication by a number (that is,any linear combination, with
constant coefficients, of solutions is again a solution).
Proof. Let gq(J), and g2(J) be solutions of equa-
tion (8), and let Aqs Ao Dby any constant numbers. By di-
rect verification we show that the function h(J) = ang(J) +

+ A2g2(J) is also a solution of equation (8). In fact,

h(T0,) = 2484 (T30, )+258,(I5T,) =

1]

21[F(J1)51(J2)+g1(J1)+22[F(J1)32(J2)+g2(J1ﬂ =

P (31 [A484T 3+ Aptip ()] + [248.091 142,85 (3] =

F(Jq)n(J2)+ h(3,)-

This author in [ﬁ] has proved a theorem on the solution of
equation (8).

Theorem 2, Assume that in equation (8) the ma-
trix function F(J) is me;surable and the sought wvector
function g(J) is continuous. The general solutiorn of eguation
(8),. in which the function F(J) has a canonical gquasi-dia-
gonal form, is a vector function g(J) of the form

(p,)
g il ()
S(J) = 5 ’

(p,.)
& Pn (J)

(ps)

where g 9 (J) is a vector function with the number of co-
ordinates p. equal to the dimension of the respective cell
BJ(J), satisfying equation (8) with F(J) replaced by B.(J).
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