

Aruna Nigam

ON CURVATURE TENSORS
IN A SPECIAL NORMAL (f, g, u, v, λ) -STRUCTURE MANIFOLD

Many mathematicians including Blair, Ludden, Yano, Okumura, and Goldberg have studied submanifolds of codimension 2 of almost complex manifolds and hypersurfaces of almost contact manifolds. These manifolds admit under certain conditions, what we call an (f, g, u, v, λ) -structure. In 1970 Yano and Okumura defined and studied normal (f, g, u, v, λ) -structure, which is a particular case of an (f, g, u, v, λ) -structure.

In the present paper we define a special normal (f, g, u, v, λ) -structure and study different type of curvature tensors, viz curvature tensor, Weyl (projective) curvature tensor and conformal curvature tensor in a special normal (f, g, u, v, λ) -structure manifold.

I am grateful to Dr. (Mrs) K.D. Singh for her kind help and guidance in the preparation of this paper.

1. Introduction

Let us consider an $n (=2m)$ dimensional differentiable manifold M of class C^∞ which admits an (f, U, V, u, v, λ) -structure (see [6]), that is, there exist on M a tensor field f of type (1.1), vector fields U and V , 1-forms u and v , and a function λ satisfying the following conditions:

$$(1.1) \quad u(U) = 1 - \lambda^2, \quad u(V) = 0,$$

$$(1.2) \quad v(U) = 0, \quad v(V) = 1 - \lambda^2,$$

$$(1.3) \quad \bar{\bar{X}} + X = u(X)U + v(X)V ,$$

$$(1.4) \quad \bar{U} = -\lambda V, \quad \bar{V} = \lambda U ,$$

and

$$(1.5a) \quad u \cdot f = \lambda v , \quad v \cdot f = -\lambda u ,$$

where $\bar{X} = fX$ and 1-forms $u \cdot f$ and $v \cdot f$ are respectively defined by

$$(u \cdot f)(X) = u(fX) = u\bar{X} ,$$

and

$$(v \cdot f)(X) = v(fX) = v\bar{X} ,$$

for any vector field X , hence the last condition (1.5a) may be written as

$$(1.5b) \quad u\bar{X} = \lambda v(X) , \quad v\bar{X} = -\lambda u(X) .$$

Next, we assume that in M with an (f, U, V, u, v, λ) -structure, there exists a positive definite Riemannian metric g such that

$$(1.6a) \quad g(U, X) = u(X) ,$$

$$(1.6b) \quad g(V, X) = v(X) ,$$

and

$$(1.7) \quad g(\bar{X}, \bar{Y}) = g(X, Y) - u(X)u(Y) - v(X)v(Y) ,$$

for any vector fields X and Y of M . Such structure is called an (f, g, u, v, λ) -structure and an (f, g, u, v, λ) -structure is said to be normal if the Nijenhuis tensor N of f satisfies (see [6]):

$$S(X, Y) = N(X, Y) + du(X, Y)U + dv(X, Y)V = 0 ,$$

where du and dv are exterior derivatives of 1-forms u and v respectively.

Let F be a tensor field of type $(0,2)$ of M defined by

$$(1.8) \quad F(X, Y) = g(\bar{X}, Y) ,$$

for any vector fields X and Y of M , then we have

$$(1.9) \quad F(X, Y) = - F(Y, X) ,$$

that is, F is a 2-form [6].

Definition. A normal (f, g, u, v, λ) -structure is said to be a special normal (f, g, u, v, λ) -structure, if the function $\lambda(1 - \lambda^2)$ is almost everywhere non-zero and the following two conditions are satisfied:

$$(1.10) \quad 2F(X, Y) = (D_X v)(Y) - (D_Y v)(X) ,$$

and

$$(1.11) \quad (D_X u)(Y) - (D_Y u)(X) = 0 ,$$

D_X being the Riemannian connection on the manifold M .

As a consequence of the equation (1.10) we can obtain

$$(1.12) \quad (D_X F)(Y, Z) + (D_Y F)(Z, X) + (D_Z F)(X, Y) = 0 .$$

Let M be a special normal (f, g, u, v, λ) -structure manifold, then we can verify the following identities [6]

$$(1.13) \quad D_X \lambda = u(X) ,$$

$$(1.14) \quad (D_X u)(Y) = - \lambda g(X, Y) ,$$

i.e., $\text{div } U = - \lambda n$,

$$(1.15) \quad (D_X v)(Y) + (D_Y v)(X) = 0 ,$$

i.e., V is a Killing vector field,

$$(1.16) \quad (D_Z F)(X, Y) = g(Z, Y)v(X) - g(Z, X)v(Y) ,$$

and

$$(1.17) \quad F(X, Y) = (D_X v)(Y) = - (D_Y v)(X).$$

2. Curvature tensors in a special normal (f, g, u, v, λ) -structure manifold

The curvature tensor K of a special normal (f, g, u, v, λ) -manifold is a tensor field of type $(1, 3)$ defined by (see [7])

$$(2.1) \quad K(X, Y, Z) \equiv D_X D_Y Z - D_Y D_X Z - D_{[X, Y]} Z,$$

where $[X, Y] \equiv D_X Y - D_Y X$. The following Ricci identities are also well known (see [7])

$$(2.2) \quad (D_X D_Y w)(Z) - (D_Y D_X w)(Z) - (D_{[X, Y]} w)(Z) = - w(K(X, Y, Z)),$$

for a 1-form w and

$$(2.3) \quad (D_X D_Y S)(Z, T) - (D_Y D_X S)(Z, T) - (D_{[X, Y]} S)(Z, T) = \\ = K(X, Y; S(Z, T)) - S(K(X, Y, Z), T) - S(Z, K(X, Y, T)),$$

for a tensor field S of type $(1, 2)$.

The tensor field ' K ' of type $(0, 4)$ defined by

$$(2.4) \quad 'K(X, Y, Z, T) \equiv g(K(X, Y, Z), T)$$

is called the covariant curvature tensor. Now we will prove the following theorems

Theorem 2.1. In a special normal (f, g, u, v, λ) -structure manifold, we have

$$(2.5a) \quad (D_Z F)(X, Y) = 'K(X, Y, Z, V) = g(Z, Y)v(X) - g(Z, X)v(Y),$$

and consequently

$$(2.5b) \quad (D_V F)(X, Y) = 0.$$

P r o o f. From the equation (1.17), we have

$$(D_X^F)(Y, Z) = (D_X D_Y v)(Z) + (D_Y v)(D_X Z) .$$

Consequently

$$\begin{aligned} (D_X^F)(Y, Z) - (D_Y^F)(X, Z) &= \\ &= (D_X D_Y v)(Z) - (D_Y D_X v)(Z) - (D_{[X, Y]} v)(Z) . \end{aligned}$$

Solving the above equation with the help of the equations (1.6b), (1.12), (1.16), (2.2) and (2.4), we get

$$\begin{aligned} (D_Z^F)(X, Y) &= v(K(X, Y, Z)) = g(K(X, Y, Z), V) = 'K(X, Y, Z, V) = \\ &= g(Z, Y)v(X) - g(Z, X)v(Y) , \end{aligned}$$

which completes the proof of (2.5a) and (2.5b).

T h e o r e m 2.2. In a special normal (f, g, u, v, λ) -structure manifold, we have

$$(2.6) \quad 'K(X, Y, Z, U) = g(Z, Y)u(X) - g(Z, X)u(Y) .$$

P r o o f. From the equations (1.13) and (1.14), we have

$$(D_X D_Y u)(Z) + (D_Y u)(D_X Z) = - u(X)g(Y, Z) .$$

Interchanging X and Y and subtracting, we get

$$u(K(X, Y, Z)) = u(X)g(Y, Z) - u(Y)g(X, Z) .$$

Using (1.6a) and (2.4), we obtain (2.6).

T h e o r e m 2.3. In a special normal (f, g, u, v, λ) -structure manifold, the following relations hold

$$(2.7) \quad v(D_X^f)(Y) = v(X)v(Y) - (1 - \lambda^2)g(X, Y) ,$$

$$(2.8) \quad u(D_X^f)(Y) = u(X)v(Y) ,$$

$$(2.9) \quad (D_Z^F)(X, Y) = g((D_Z^f)(X), Y) .$$

P r o o f o f (2.7). From the second part of the equation (1.5b), we get

$$v(\bar{Y}) = -\lambda u(Y), \quad \text{i.e.,} \quad v(fY) = -\lambda u(Y).$$

Taking covariant derivative of the above equation in the direction of X and using (1.7), (1.8), (1.13) and (1.14), we obtain

$$\begin{aligned} v(D_X \bar{Y}) &= - (D_X v)(\bar{Y}) - (D_X \lambda)u(Y) - \lambda(D_X u)(Y) - \lambda u(D_X Y) \\ &= - F(X, \bar{Y}) - u(X)u(Y) - \lambda(D_X u)(Y) - \lambda u(D_X Y) \\ &= - g(\bar{X}, \bar{Y}) - u(X)u(Y) + \lambda^2 g(X, Y) - \lambda u(D_X Y) \\ &= - (1 - \lambda^2)g(X, Y) + v(X)v(Y) - \lambda u(D_X Y), \end{aligned}$$

while on the other hand,

$$v(D_X \bar{Y}) = v[(D_X f)(Y) + \bar{D}_X Y] = v(D_X f)(Y) - \lambda u(D_X Y),$$

which completes the proof of (2.7).

P r o o f o f (2.8). Since,

$$u(\bar{Y}) = \lambda v(Y), \quad \text{i.e.,} \quad u(fY) = \lambda v(Y),$$

therefore as a consequence of (1.5b), (1.8), (1.13), (1.14) and (1.17), we obtain

$$\begin{aligned} u(D_X \bar{Y}) &= - (D_X u)(\bar{Y}) + u(X)v(Y) + \lambda F(X, Y) + \lambda v(D_X Y) \\ &= \lambda g(X, \bar{Y}) + u(X)v(Y) - \lambda g(X, \bar{Y}) + \lambda v(D_X Y) \\ &= u(X)v(Y) + \lambda v(D_X Y), \end{aligned}$$

while,

$$\begin{aligned} u(D_X \bar{Y}) &= u[(D_X f)(Y) + \bar{D}_X Y] = \\ &= u(D_X f)(Y) + \lambda v(D_X Y) \end{aligned}$$

and (2.8) is proved. The relation (2.9) follows directly from (1.8).

In terms of the n local orthonormal vector fields X_1, X_2, \dots, X_n we can define a global tensor field R of type $(0,2)$

$$R(Y, Z) = \sum_{i=1}^n 'K(X_i, Y, Z, X_i)$$

and a global scalar field

$$R' = \sum_{i=1}^n R(X_i, X_i).$$

The tensor field R and the scalar R' are called the Ricci tensor and the scalar curvature respectively.

We will now establish the following

Theorem 2.4. In a special normal (f, g, u, v, λ) -structure manifold, we have

$$(2.10) \quad 'K(V, Y, Z, V) = (1 - \lambda^2)g(Z, Y) - v(Y)v(Z),$$

$$(2.11) \quad 'K(V, Z, Y, X) = v(X)g(Z, Y) - v(Y)g(Z, X),$$

$$(2.12) \quad K(V, Z, Y) = g(Z, Y)V - v(Y)Z,$$

$$(2.13) \quad K(X, Y, V) = v(Y)X - v(X)Y,$$

$$(2.14) \quad R(Y, V) = (n-1)v(Y),$$

$$(2.15) \quad r(V) = (n-1)V,$$

where

$$g(r(Y), Z) = R(Y, Z).$$

Proof. Proof of (2.10) is trivial. Using symmetric and skew-symmetric properties of the curvature tensor in the equation (2.5a), (2.11) can be obtained. Equation (2.11) may be written as

$$g(K(V, Z, Y,), X) = v(X)g(Z, Y) - v(Y)g(Z, X).$$

Contraction of the last equation by X gives (2.12).

From the equation (2.5a), we have

$$'K(X, Y, V, Z) = v(Y)g(Z, X) - v(X)g(Z, Y)$$

or

$$g(K(X, Y, V), Z) = v(Y)g(Z, X) - v(X)g(Z, Y) .$$

Contracting the above equation by Z , we obtain (2.13).

Equations (2.14) and (2.15) are direct consequence of the equations (2.13) and (2.14) respectively.

Similarly we can prove

Theorem 2.5. In a special normal (f, g, u, v, λ) -structure manifold

$$'K(U, Y, Z, U) = (1 - \lambda^2)g(Z, Y) - u(Y)u(Z) ,$$

$$K(U, Z, Y) = g(Z, Y)U - u(Y)Z ,$$

$$K(X, Y, U) = u(Y)X - u(X)Y ,$$

$$R(Y, U) = (n-1)u(Y) ,$$

and

$$r(U) = (n-1)U .$$

Theorem 2.6. A special normal (f, g, u, v, λ) -structure manifold can not be flat.

Proof. Let us assume that a special normal (f, g, u, v, λ) -structure manifold M is flat, that is,

$$'K(X, Y, Z, S) = 0 ,$$

which implies

$$'K(V, Y, Z, V) = 'K(U, Y, Z, U) = 0 ,$$

i.e.,

$$(1 - \lambda^2)g(Z, Y) = u(Z)u(Y) = v(Z)v(Y) ,$$

which is not possible.

Theorem 2.7. If a special normal (f, g, u, v, λ) -structure manifold is symmetric, then it is an Einstein manifold of constant scalar curvature.

Proof. Let manifold be symmetric, that is,

$$(D_Y K)(Z, S, T) = 0.$$

Consequently,

$$(D_X D_Y K)(Z, S, T) - (D_Y D_X K)(Z, S, T) - (D_{[X, Y]} K)(Z, S, T) = 0.$$

Using the Ricci identity, we get

$$\begin{aligned} K(X, Y, K(Z, S, T)) - K(K(X, Y, Z), S, T) - \\ - K(Z, K(X, Y, S), T) - K(Z, S, K(X, Y, T)) = 0. \end{aligned}$$

Now putting V for both X and Z in the last equation and applying Theorem 2.4, we have

$$\begin{aligned} K(V, Y, K(V, S, T)) - K(K(V, Y, V), S, T) - \\ - K(V, K(V, Y, S), T) - K(V, S, K(V, Y, T)) = 0 \end{aligned}$$

or

$$\begin{aligned} g(Y, K(V, S, T))V - v(K(V, S, T))Y - v(Y)K(V, S, T) + \\ + (1 - \lambda^2)K(Y, S, T) - g(K(V, Y, S), T)V + \\ + v(T)K(V, Y, S) - g(S, K(V, Y, T))V + v(K(V, Y, T))S = 0 \end{aligned}$$

or

$$\begin{aligned} g(Y, g(S, T)V)V - g(Y, v(T)S)V - (1 - \lambda^2)g(S, T)Y + v(S)v(T)Y - \\ - v(Y)g(S, T)V + v(Y)v(T)S + (1 - \lambda^2)K(Y, S, T) - g(g(Y, S)V, T)V + \\ + g(v(S)Y, T)V + v(T)g(Y, S)V - v(T)v(S)Y - g(S, g(Y, T)V)V + \\ + g(S, v(T)Y)V + (1 - \lambda^2)g(Y, T)S - v(Y)v(T)S = 0 \end{aligned}$$

or

$$(1 - \lambda^2) [K(Y, S, T) + g(Y, T)S - g(S, T)Y] = 0.$$

Since $\lambda(1 - \lambda^2)$ is almost everywhere non-zero,

$$K(Y, S, T) = g(S, T)Y - g(Y, T)S.$$

Contracting the above equation by Y, we get

$$R(S, T) = (n-1)g(S, T).$$

Transvecting with respect to S and T, we obtain

$$R' = n(n-1).$$

Hence the theorem is proved.

Theorem 2.8. For a recurrent special normal (f, g, u, v, λ) -structure manifold

$$(D_Y b)T = (D_T b)V,$$

where b is the parameter of recurrence.

Proof. For a recurrent manifold,

$$(D_Y K)(Z, S, T) = b(Y)K(Z, S, T),$$

that is,

$$\begin{aligned} (D_X D_Y K)(Z, S, T) &= (D_Y D_X K)(Z, S, T) = (D_{[X, Y]} K)(Z, S, T) = \\ &= ((D_X b)Y)K(Z, S, T) - ((D_Y b)X)K(Z, S, T). \end{aligned}$$

Again using the Ricci identity in the last equation and putting V for both X and Z, we get

$$\begin{aligned} (1 - \lambda^2) [K(Y, S, T) - g(S, T)Y + g(Y, T)S] &= \\ &= \{ (D_Y b)Y - (D_Y b)V \} \{ g(S, T)V - v(T)S \}. \end{aligned}$$

Taking the skew-symmetric part of this equation, we have

$$(2.16) \quad 2(1 - \lambda^2) [K(Y, S, T) - g(S, T)Y + g(Y, T)S] = \\ = \left\{ (D_Y b)Y - (D_Y b)V \right\} \left\{ g(S, T)V - v(T)S \right\} - \\ - \left\{ (D_Y b)S - (D_S b)V \right\} \left\{ g(S, T)V - v(T)Y \right\}.$$

Contraction of this equation yields

$$2(1 - \lambda^2) [R(S, T) - (n-1)g(S, T)] = \\ = (n-2)v(T) \left\{ (D_Y b)S - (D_S b)V \right\}.$$

Taking skew-symmetric part of the above equation, we get

$$4(1 - \lambda^2) [R(S, T) - (n-1)g(S, T)] = \\ = (n-2)v(T) \left\{ (D_Y b)S - (D_S b)V \right\} + (n-2)v(S) \left\{ (D_Y b)T - (D_T b)V \right\}.$$

Putting V for S and applying Theorem 2.4, we get

$$(n-2)(1 - \lambda^2) \left\{ (D_Y b)T - (D_T b)V \right\} = 0.$$

Since $n > 2$ and $\lambda(1 - \lambda^2)$ is almost everywhere non-zero,

$$(D_Y b)T = (D_T b)V.$$

Hence proved.

Theorem 2.9. A recurrent special normal (f, g, u, v, λ) -structure manifold is a manifold of constant Riemannian curvature.

Proof. Using Theorem 2.8 in the equation (2.16), we get

$$K(Y, S, T) = g(S, T)Y - g(Y, T)S.$$

Contraction of this equation by Y yields

$$R(S, T) = (n-1)g(S, T),$$

i.e.,

$$R' = n(n-1) ,$$

which completes the proof of the theorem.

3. Weyl (projective) curvature tensor in a special normal (f, g, u, v, λ) -structure manifold

We will now consider Weyl (projective) curvature tensor, which is a tensor of type $(1, 3)$ given by

$$W(X, Y, Z) = K(X, Y, Z) - \frac{1}{n-1} [R(Y, Z)X - R(X, Z)Y] .$$

We put ' $W(X, Y, Z, S) = g(W(X, Y, Z), S)$ '. Then we have

$$'W(X, Y, Z, S) = 'K(X, Y, Z, S) - \frac{1}{n-1} [R(Y, Z)g(X, S) - R(X, Z)g(Y, S)].$$

Theorem 3.1. A special normal (f, g, u, v, λ) -structure manifold satisfies the following relations

$$W(V, Y, Z) = [g(Y, Z) - \frac{1}{n-1} R(Y, Z)]V ,$$

$$W(X, Y, V) = 0 ,$$

$$'W(X, Y, Z, V) = v(X) [g(Y, Z) - \frac{1}{n-1} R(Y, Z)] -$$

$$- v(Y) [g(X, Z) - \frac{1}{n-1} R(X, Z)] ,$$

$$'W(V, Y, Z, S) = v(S) [g(Y, Z) - \frac{1}{n-1} R(Y, Z)] ,$$

$$'W(V, Y, Z, V) = (1 - \lambda^2) [g(Y, Z) - \frac{1}{n-1} R(Y, Z)] ,$$

$$'W(X, Y, V, S) = 0 .$$

The proof follows trivially from the definition of the Weyl curvature tensor.

Similarly we can obtain

Theorem 3.2. In a special normal (f, g, u, v, λ) -structure manifold, the following relations hold

$$W(U, Y, Z) = \left[g(Y, Z) - \frac{1}{n-1} R(Y, Z) \right] U,$$

$$W(X, Y, U) = 0,$$

$$'W(X, Y, Z, U) = u(X) \left[g(Y, Z) - \frac{1}{n-1} R(Y, Z) \right] -$$

$$- u(Y) \left[g(X, Z) - \frac{1}{n-1} R(X, Z) \right],$$

$$'W(U, Y, Z, S) = u(S) \left[g(Y, Z) - \frac{1}{n-1} R(Y, Z) \right],$$

$$'W(U, Y, Z, U) = (1 - \lambda^2) \left[g(Y, Z) - \frac{1}{n-1} R(Y, Z) \right],$$

$$'W(X, Y, U, S) = 0.$$

Theorem 3.3. A projectively flat special normal (f, g, u, v, λ) -structure manifold is an Einstein manifold and is of constant Riemannian curvature.

Proof. Suppose that a special normal (f, g, u, v, λ) -structure manifold is projectively flat, that is,

$$'W(X, Y, Z, S) = 0,$$

i.e.,

$$'W(U, Y, Z, U) = 'W(V, Y, Z, V) = 0,$$

i.e.,

$$(1 - \lambda^2) \left[g(Y, Z) - \frac{1}{n-1} R(Y, Z) \right] = 0.$$

Since $\lambda(1 - \lambda^2)$ is almost everywhere non-zero,

$$R(Y, Z) = (n-1)g(Y, Z)$$

and

$$R' = n(n-1) .$$

Hence the theorem is proved.

Theorem 3.4. If a special normal (f, g, u, v, λ) -structure manifold is projectively symmetric then it is projectively flat.

Proof. Let us assume that the manifold with a special normal (f, g, u, v, λ) -structure is projectively symmetric, that is,

$$(D_Y W)(Z, S, T) = 0 ,$$

which yields

$$(D_X D_Y W)(Z, S, T) - (D_Y D_X W)(Z, S, T) - (D_{[X, Y]} W)(Z, S, T) = 0 .$$

Using the Ricci identity, we get

$$\begin{aligned} K(X, Y, W(Z, S, T)) - W(K(X, Y, Z), S, T) - \\ - W(Z, K(X, Y, S), T) - W(Z, S, K(X, Y, T)) = 0 . \end{aligned}$$

Putting V for both X and Z and using Theorems 2.4 and 3.1, we obtain

$$\begin{aligned} K(V, Y, W(V, S, T)) - W(K(V, Y, V), S, T) - \\ - W(V, K(V, Y, S), T) - W(V, S, K(V, Y, T)) = 0 , \end{aligned}$$

or

$$\begin{aligned} & g(Y, (g(S, T) - \frac{1}{n-1} R(S, T)) V) V - (1 - \lambda^2) (g(S, T) - \frac{1}{n-1} R(S, T)) Y - \\ & - v(Y) (g(S, T) - \frac{1}{n-1} R(S, T)) V + (1 - \lambda^2) W(Y, S, T) + \\ & + v(S) (g(Y, T) - \frac{1}{n-1} R(Y, T)) V + v(T) (g(S, Y) - \frac{1}{n-1} R(S, Y)) V = 0 , \end{aligned}$$

or

$$(3.1) \quad (1 - \lambda^2)W(Y, S, T) - (1 - \lambda^2) \left(g(S, T) - \frac{1}{n-1} R(S, T) \right) Y + \\ + v(S) \left(g(Y, T) - \frac{1}{n-1} R(Y, T) \right) V + v(T) \left(g(S, Y) - \frac{1}{n-1} R(S, Y) \right) V = 0.$$

Contracting (3.1) by Y, we get .

$$n(1 - \lambda^2) \left[g(S, T) - \frac{1}{n-1} R(S, T) \right] = 0.$$

Since $n \neq 0$, and $\lambda(1 - \lambda^2)$ is almost everywhere non-zero,

$$(3.2) \quad R(S, T) = (n-1)g(S, T).$$

By virtue of (3.2), the equation (3.1) reduces to

$$(1 - \lambda^2)W(Y, S, T) = 0,$$

i.e.,

$$W(Y, S, T) = 0.$$

Hence, proof of the theorem is completed.

Next let us assume that a special normal (f, g, u, v, λ) -structure manifold is projectively recurrent. In this case, working on the lines similar to that of Theorem 2.8, the integrability conditions of

$$(D_Y W)(Z, S, T) = b(Y)W(Z, S, T)$$

yield

$$W(Z, S, T) = 0,$$

which provides the proof of the following theorem.

Theorem 3.5. If a special normal (f, g, u, v, λ) -structure manifold is projectively recurrent, then its Weyl (projective) curvature tensor is zero.

4. Conformal curvature tensor in a special normal (f, g, u, v, λ) -structure manifold

In this section we will study conformal curvature tensor, which is a tensor of type $(1, 3)$ and is given by

$$C(X, Y, Z) = K(X, Y, Z) - \frac{1}{n-2} [R(Y, Z)X - R(X, Z)Y - g(X, Z)r(Y) - g(Y, Z)r(X)] + \frac{R'}{(n-1)(n-2)} [g(Y, Z)X - g(X, Z)Y].$$

Putting $'C(X, Y, Z, S) = g(C(X, Y, Z), S)$, we get

$$'C(X, Y, Z, S) = 'K(X, Y, Z, S) - \frac{1}{n-2} [R(Y, Z)g(X, S) - R(X, Z)g(Y, S) - g(X, Z)R(Y, S) + g(Y, Z)R(X, S)] + \frac{R'}{(n-1)(n-2)} [g(Y, Z)g(X, S) - g(X, Z)g(Y, S)].$$

Theorem 4.1. In a special normal (f, g, u, v, λ) -structure manifold, we have

$$(n-2)'C(X, Y, Z, V) = \alpha (v(Y)g(X, Z) - v(X)g(Z, Y)) - v(X)R(Y, Z) + v(Y)R(X, Z),$$

$$(n-2)'C(V, Y, Z, V) = (\alpha + n-1)v(Y)v(Z) - \alpha(1-\lambda^2)g(Y, Z) - (1-\lambda^2)R(Y, Z),$$

$$(n-2)'C(V, Y, Z, S) = \alpha (v(Z)g(Y, S) - v(S)g(Y, Z)) - v(S)R(Y, Z) + v(Z)R(Y, S),$$

$$(n-2)C(X, Y, V) = \alpha (v(X)V - v(Y)X) + v(X)r(Y) - v(Y)r(X),$$

$$(n-2)C(V, Y, Z) = \alpha (v(Z)V - g(Y, Z)V) - R(Y, Z)V + v(Z)r(Y),$$

$$(n-2)C(V, Y, V) = (1-\alpha-n)v(Y)V + (1-\lambda^2)[\alpha Y + r(Y)],$$

where

$$\alpha = (1 - \frac{R'}{n-1}).$$

P r o o f. The proof follows trivially from the definition of the conformal curvature tensor.

T h e o r e m 4.2. If a special normal (f, g, u, v, λ) -structure manifold is conformally flat, then the following relations hold

$$(4.1) \quad R(Y, Z) = \beta v(Y)v(Z) - \alpha g(Y, Z),$$

$$(4.2) \quad r(Y) = \beta v(Y)V - \alpha Y.$$

Consequently,

$$(4.3) \quad (n-2)K(X, Y, Z) = \beta v(Z)[v(Y)X - v(X)Y] - \\ -(\alpha+1)[g(Y, Z)X - g(X, Z)Y] + \beta[g(Y, Z)v(X) - g(X, Z)v(Y)]V,$$

where

$$\beta = \frac{\alpha+n-1}{1-\lambda^2}.$$

P r o o f o f (4.1). Let us assume that a special normal (f, g, u, v, λ) -structure manifold is conformally flat, that is,

$$'C(X, Y, Z, S) = 0,$$

and as a particular case

$$'C(V, Y, Z, V) = 0,$$

i.e.,

$$(1-\lambda^2)R(Y, Z) = (\alpha+n-1)v(Y)v(Z) - \alpha(1-\lambda^2)g(Y, Z) .$$

Putting $\beta = \frac{\alpha+n-1}{1-\lambda^2}$, we get

$$R(Y, Z) = \beta v(Y)v(Z) - \alpha g(Y, Z) .$$

Proof of (4.2). The equation (4.1) may also be written as

$$g(r(Y), Z) = \beta v(Y)v(Z) - \alpha g(Y, Z) .$$

Contracting by Z , we get

$$r(Y) = \beta v(Y)V - \alpha Y .$$

Proof of (4.3) is trivial.

Similarly we can prove the following two theorems

Theorem 4.3. A special normal (f, g, u, v, λ) -structure manifold satisfies the following relations:

$$(n-2)'C(X, Y, Z, U) = \alpha (u(Y)g(X, Z) - u(X)g(Z, Y)) - \\ - u(X)R(Y, Z) + R(X, Z)U(Y) ,$$

$$(n-2)'C(U, Y, Z, U) = (\alpha+n-1)u(Y)u(Z) - (1-\lambda^2)[\alpha g(Z, Y) + R(Y, Z)] ,$$

$$(n-2)'C(U, Y, Z, S) = (u(Z)g(Y, S) - u(S)g(Y, Z)) - \\ - u(S)R(Y, Z) - u(Z)R(Y, S) ,$$

$$(n-2)C(X, Y, U) = \alpha (u(X)Y - u(Y)X) + u(X)r(Y) - u(Y)r(X) ,$$

$$(n-2)C(U, Y, Z) = \alpha (u(Z)Y - g(Y, Z)U) - R(Y, Z)U + u(Z)r(Y) ,$$

$$(n-2)C(U, Y, U) = (1-\alpha-n)u(Y)U + (1-\lambda^2)(\alpha Y + r(Y)) .$$

Theorem 4.4. If a special normal (f, g, u, v, λ) -structure manifold is conformally flat, then we have

$$R(Y, Z) = \beta u(Y)u(Z) - \alpha g(Y, Z) ,$$

$$r(Y) = \beta u(Y)U - \alpha Y$$

and consequently,

$$(n-2)K(X, Y, Z) = \beta u(Z) [u(Y)X - u(X)Y] - \\ - (\alpha + 1) [g(Y, Z)X - g(X, Z)Y] + \beta [g(Y, Z)u(X) - g(X, Z)u(Y)] U .$$

It is well known that conformally symmetric and recurrent manifolds respectively satisfy the following conditions

$$(D_Y C)(Z, S, T) = 0 ,$$

and

$$(D_Y C)(Z, S, T) = b(Y)C(Z, S, T) .$$

Theorem 4.5. If a special normal (f, g, u, v, λ) -structure manifold is conformally symmetric or recurrent then its conformal curvature tensor vanishes.

Proof is similar to that of Theorems 3.4 and 3.5.

REFERENCES

- [1] D.E. Blair, G.D. Ludden: Hypersurfaces in almost contact manifolds. *Tôhoku Math. J.* 22(1969) 354-362.
- [2] D.E. Blair, G.D. Ludden, K. Yano: Induced structures on submanifolds. *Kôdai Math. Sem. Rep.* 22(1970) 188-198.
- [3] S.I. Goldberg, K. Yano: Polynomial structures on manifolds. *Kôdai Math. Sem. Rep.* 22(1970) 198-218.
- [4] N.J. Hicks: Notes on differential geometry. Princeton 1965.
- [5] M. Okumura: Certain hypersurfaces of an odd dimensional sphere. *Tôhoku Math. J.* 19 (1967) 381-395.

[6] M. Okumura, K. Yano: On (f, g, u, v, λ) -structure. *Kōdai Math. Sem. Rep.* 22 (1970) 401-423.

[7] K. Yano: Integral formulas in Riemannian geometry. New-York 1970.

DEPARTMENT OF MATHEMATICS, LUCKNOW UNIVERSITY, LUCKNOW (INDIA).

Received February 15th, 1973.