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A r u n a N i g a m 

ON CURVATURE TENSORS 
IN A SPECIAL NORMAL (f, g, u, v, X)-STRUCTURE MANIFOLD 

Many mathematicians including B l a i r , Ludden, Yano, Okumu-
r a , and Goldberg have studied submanifolds of codimension 2 of 
almost complex manifolds and hypersurfaces of almost contact 
manifolds. These manifolds admit under cer ta in conditions, 
what we c a l l an ( f , g ,u ,v , :\)-structure. In. 1970 Yano and Oku-
mura defined and studied normal ( f ,g,u,v,A)—structure, which 
i s a part icular case of an ( f , g , u , v , A)-structure. 

In the present paper we define a special normal ( f , g , u , 
v, ¡^-structure and study dif ferent type of curvature tensors, 
viz curvature tensor, Weyl (pro ject ive) curvature tensor and 
conformal curvature tensor in a special normal ( f , g , u , v , A ) -
- s t ruc ture manifold. 

I am grateful to Dr. (Mrs) K.D. Gingh f o r her kind help 
and guidance in the preparation of th is paper. 

1 . Introduction 
Let us consider an n (=2m) dimensional d i f fe rent iab le ma-

nifold M of c lass C°° which admits an ( f ,U,V,u,v,;\)-structure 
(see [ 6 ] ) , that i s , there ex is t on M a tensor f i e l d f of type 
( 1 . 1 ) , vector f i e l d s U and V, 1-forms u and v, and a function 
A sat is fying the following conditions: 

(1.1) u(U) a 1 - 'A2 u(V) = 0 

(1.2) v(U) = 0 v(V) = 1 - ;\2 

_ _ 



2 A.Higam 

(1.3) X + X = u(X)U + v(X)V , 

(1.4) U = - f V = AU , 

a ad 

(1.5a) u-f = , v f = - , 

where X = fX and 1-forms u»f and v- f are i-espectively de f i -
ned "by 

(u » f ) (X ) = u(fX) = uX , 

and 

( v f ) (X) = v ( fX ) = vX , 

f o r any vector f i e l d X, hence the last condition (1.5a) may 
be written as 

(1.5b) uX = a v(X) , vX = - ? iu (X ) . 

Next, we assume that in M with an (f ,U,V,u,v,a)-structu-
re , there exists a posit ive de f in i te Riemannian metric g such 
that 

(1.6a) g(XT,X) = u(X) , 

(1.6b) g(V,X) = v(X) , 

and 

(1.7) g(X,Y) = g(X,Y) - u(X)u(Y) - v (X)v (Y) , 

f o r any vector f i e l d s X and Y of M, Such structure is called 
an ( f ,g, u,v, ?0-structure and an ( f , g ,u ,v , ?0-structure is said 
to be normal i f the Nijenhuis tensor TS of f sat is f ies (see 
[ e ] ) » 

S(X,Y) = N(X,Y) + du(X,Y)U + dv(X,Y)V = 0 , 

where du and dv are exterior derivatives of 1-forms u and v 
respectively. 
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On curvature tensors 3 

Let F be a tensor f i e l d of type (0»2) of M defined by 

(1.8) F(X,Y) = g(X,Y) , 

f o r any v e c t o r - f i e l d s X and Y of M, then we have 

(1.9) F(X,Y) = - F(Y,X) , 

t h a t i s , F i s a 2-form [6] . 
D e f i n i t i o n . A normal (f , g , u , v , ^ - s t r u c t u r e i s 

saijd to "be a spec ia l normal ( f , g t u , v , * ) - s t r u c t u r e , i f the 
func t ion a (1 - a ) i s almost everywhere non-zero and the 
fol lowing two condi t ions a re s a t i s f i e d : 

(1.10) 2F(X,Y) = (Dxv)(Y) - (Dyv)(X) t 

and 

(1.11) (Dxu)(Y) - (Dyu)(X) = 0 , 

Dx being the Riemannian connection on the manifold M. 
As a consequence of the equation (1.10) we can obtain 

(1.12) (I^FHY.Z) + (IXyFMZ.X) + (DZF)(X,Y) = 0 . 

Let M be a spec i a l normal ( f , g , u , v , A)-s t ruc ture mani*-
f o l d , then we can v e r i f y the fol lowing i d e n t i t i e s [6] 

(1.13) Dxa = u(X) , 

(1.14) (Dxu)(Y) = - ^g(X,Y) , 

i . e . , div U a - Xa , 

(1.15) ( D X V ) ( Y ) + (Dyv)(X) = 0 , 

i ; e . , V i s a Ki l l ing vector f i e l d , 

(1.16) (DZF)(X,Y) = g(Z,Y)v(X) - g(Z,X)v(Y) , 
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4 A.Nigam 

and 

( 1 . 1 7 ) F(X,Y) = (Dxv)(Y) = - (DyV)(X). 

2 . Curvature tensors i a a specia l normal ( f , g , u , v , ?0-
- s t ruoture manifold 

The curvature tensor K of a spec ia l normal ( f , g , u , v , 
-manifold i s a tensor f i e l d of type ( 1 f 3 ) defined by (see 
[ 7 ] ) 

( 2 . 1 ) K(X,Y,Z) e D^Y2 - DYDXZ " D[X X]Z ' 

where [X,Y] = D Ŷ - D^X. The following R i c c i i d e n t i t i e s are 
a lso well known (see [7] ) 

( 2 . 2 ) ( D ^ w K Z ) - (DyDjwHZ) - ( D [ X f Y ] w K z ) = - w(K(X,Y,Z)), 

f o r a 1-form w and 

( 2 . 3 ) (DxDySMZ.T) - (DyDySiiZ.T) - ( D [ x > y j S ) ( Z , T ) = 

= K(X,Y;S(Z,T)) - S(K(X,Y,Z),T) - S(Z,K(X,Y,T)) , 

f o r a tensor f i e l d S of type ( 1 , 2 ) . 
The tensor f i e l d 'K of type ( 0 , 4 ) defined by 

( 2 . 4 ) K(X,Y,Z,T) = g(K(X,Y,Z),T) 

i s cal led the covariant curvature tensQr. Now we w i l l prove 
the following theorems 

T h e o r e m 2 . 1 . In a specia l normal ( f , g , u , v , a ) -
- s t r u c t u r e manifold, we have 

( 2 . 5 a ) (DZF)(X,Y) = 'K(X,Y,Z,V) = g(Z,Y)v(X) - g(Z,X)v(Y), 

and consequently 

(2 .5b) (DVF)(X,T)'= 0 . 
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On curvature tensors 5 

P r o o f . From the equation (1.17)» we have 

(D^FXY.Z) = ( D ^ v H Z ) + (Dyv)(DxZ) . 

Consequently 

( I^FHY.Z) - (DyFKX.Z) = 

= ( D ^ v K Z ) - ( D ^ v K Z ) - (D [ 2 t Y ] v ) ( Z ) . 

Solving the above equation with the help of the equations 
(1.61)), (1.12), (1.16), (2.2) and (2.4) , we get 

(DZF)(X,Y) = v(K(X,Y,Z) ) = g(K(X,Y,Z),V) = 'K(X,Y,Z,V) = 

= g(Z,Y)v(X) - g(Z,X)v(Y) , 

which completes the proof of (2.5a) and (2.5b). 
T h e o r e m 2.2. In a special normal ( f ,g ,u ,v ,%)-

-structure manifold, we have 

(2.6) 'K(X,Y,Z,U) = g(Z,Y)u(X) - g(Z,X)u(Y) . 

P r o o f , i'rom the equations (1.13) and (1.14), we have 

(I^DyuHZ) + (DYu)(DxZ) = - u(X)g(Y,Z) . 

Interchanging X and Y and subtracting, we get 

u(K(X,Y,Z)) = u(X)g(Y,Z) - u(Y)g(X,Z) . 

Using (1.6a) and (2.4) , we obtain (2.6) . 
T h e o r e m 2.J. In a special normal ( f , g ,u , v , > ) -

-structure manifold, the following relations hold 

(2.7) v (D z f ) ( Y ) = v (X)v (Y) - (1 - * 2 ) g (X ,Y ) , 

(2.8) u (D x f ) (Y ) = u(X)v(Y) , 

(2.9) (DZF)(X,Y) = g ( (D z f ) ( X ) , Y ) . 
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6 A.Nigam 

P r o o f o f (2.7) . From the second part- of the equa-
tion (1.5^)» we get 

Taking covariant derivative of the above equation in the d i -
rection of X and using (1.7), (1.8) , (1.13) and (1.14), we 

v(DxY) = - (D xv) (Y) - (Dx*)u(Y) - * (Dxu)(Y) -Au(D xY) 

= - F(X,Y) - u(X)u(Y) - A(Dxu)(Y) - Au(DxY) 

= - g(X,Y) - u(X)u(Y) +A 2 g (X ,Y ) -^u (D x Y) 

= - (1 - a 2 )g (X,Y) + v (X)v (Y) - Au(DxY) , 

while on the other hand, 

v(DxY) = v [ ( D x f ) ( Y ) + D^Y] = v (D x f ) ( Y ) - A u(l>xY) , 

which completes the proof of (2.7) . 
P r o o f o f (2 .8) . Since, 

therefore as a consequence of (1.5b), (1 .8 ) , (1.13), (1.14) 
and (1.17), we obtain 

ud^Y) = - (Dxu)(Y) + u(X)v(Y) + ÀF(X,Y) + A v(DxY) 

= ^S(X,Y) + u(X)v(Y) -Ag (X ,Y ) +Av(D xY) 

= u(X)v(Y) +Av(D xY) , 

v (Y) = - Au(Y) , i . e . , v ( f Y ) = - A u(Y) . 

obtain 

u(Y) = av(Y) , i . e . , u( fY ) = Av(Y) , 

while 

= u (D x f ) (Y ) +Av(D xY) 
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and (2.8) is proved. The re la t ion (2.9) fo l lows d irect ly 
from (1 .8 ) . 

In terms of the n loca l orthonormal vector f i e l d s X^,X2» 
. . . , X Q we can def ine a global tensor f i e l d R of type (0,2) 

n 

R(Y,Z) = ]T 'K (X . f Y ,Z ,X , ) 

and a global scalar f i e l d 
n 

= L H » i , X i ) • 
1 = 1 

The tensor f i e l d R and the scalar R' are called the Ricci ten-
sor and the scalar curvature respect ive ly . 

We w i l l now establish the fo l lowing 
T h e o r e m 2.4. In a special normal ( f t g , u , v , -

-structure manifold, we have 

(2.10) 'K(V,Y,Z,V) = (1 - * 2 ) g ( Z , Y ) - v ( Y ) v ( Z ) , 

(2.11) K(V,Z, Y,X) = v (X )g (Z ,Y ) - v (Y ) g (Z ,X ) , 

(2.12) K(T,Z,Y) = g(Z,Y)V - v (Y)Z , 

(2.13) K(X,Y,V) = v(Y)X - v(X)Y , 

(2.14) R(Y,V) = ( n - 1 ) v ( Y ) , 

(2.15) r(Y) = (n-1)V , 

where 

g ( r ( Y ) , Z ) = R(Y,Z) . 

P r o o f . Proof of (2.10) i s t r i v i a l . Using symmetric 
and skew-symmetric properties of the curvature tensor in the 
equation (2.5a) , (2.11) can be obtained. Equation (2.11) may 
be wri t ten as 

g (K (V ,Z ,Y , ) ,X ) = v (X )g (Z ,Y ) - v (Y )g (Z ,X ) . 

Contraction of the las t equation by X gives (2.12) . 
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From the equation (2.5a), we have 

'K(X,Y,V,Z) = v(Y)g(Z,X) - v(X)g(Z,Y) 

or 

g(K(X,Y,V),Z) = v(Y)g(Z,X) - v(X)g(Z,Y) . 

Contracting the above equation by Z, we obtain (2.13). 
Equations (2.14) and (2.15) are direct consequence of the 

equations (2.15) and (2.14) respectively. 
Similarly we can prove 
T h e o r e m 2.5. In a special normal ( f , g , u , v , * ) -

-structure manifold 

•K(U,Y,Z,U) = (1 - A2 )g(Z,Y) - u (Y)u(Z) , 

K(U,Z,Y) = g(Z,Y)U - u(Y)Z , 

K(X,Y,U) = u(Y)X - u(X)Y , 

R(Y,U) = (n-1)u(Y) , 

and 

r (U) = (n-1)U . 

T h e o r e m 2.6. A special normal ( f , g,u,v,?0-struc-
ture manifold can not be f l a t . 

P r o o f . Let us assume that a special normal ( f , g 9 u, 
v,A)-structure manifold M is f l a t , that is, 

'K(X,Y,Z,S) = 0 , 

which implies 

'K(V,Y,Z,V) = 'K(U,Y,Z,U) = 0 , 

i . e . , 

(1 - * 2 ) g (Z ,Y ) = u(Z)u(Y) = v(Z)v(Y) , 

which is not possible. 
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On curvature tensors 9 

T h e o r e m 2.7. If a special normal (f,g,u,v,a)-
-structure manifold is symmetric, then it is an Einstein 
manifold of constant scalar curvature. 

P r o o f . Let manifold be symmetric, that is, 

(DyK)(Z,S,T) = 0 . 

Consequently, 

(DJDjXHZ.S.T) - (DJDJKXZ.S.T) - (Dj-XfY]K)(Z,S,T) = 0. 

Using the Ricci identity, we get 

K(X,Y,K(Z,S,T)) - K{K(X,Y,Z),S,T) -

- K(Z,K(X,Y,S),T) - K(Z,S,K(X,Y,T)) = 0 . 

Now putting T for both X and Z in the last equation and ap-
plying Theorem 2.4, we have 

K(V,Y,K(V,S,T)) - K(K(V,Y,V),S,T) -

- K(V,K(V,Y,S),T) - K(V,S;E:(V,Y,-T)) a 0 

or 

g(Y,K(V,S,T))V - v(K(V,S,T))Y - v(T)K(V,S,T) + 

+ <1 - *2)K(Y,S,T) - g(K(V,Y,S),T)V + 

+ v(T)K(V,Y,S) - g(S,K(V,Y,T))V + v(K(V,Y,T))S = 0 

or 

g(Y,g(S,T)V)V - g(Y,v(T)S)V - (1 - >2)g(S,T)Y + v(S)v(T)Y -

- v(Y)g(S,T)V+ v(Y)v(T)S + (1 - *2)K(Y,S,T) - g(g(Y,S)V,T V + 

+ g(v(S)Y,T)V + v(T)g(Y,S)V - v(T)v(S)Y - g(S,g(Y,T)V)V + 

+ g(S,v(T)Y)V + (1 - A2)g(Y,T)S - v(Y)v(T)S = 0 
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or 

( 1 - - X 2 ) [ K ( Y , S , T ) + g ( Y , T ) S - S ( S , T ) Y ] = 0 

K ( Y , S , T ) = g ( S , T ) Y - g ( Y , T ) S 

Contracting the above equation by Y, we get 

R(S,T) = (n-1)g(S,T) 

Transvecting with respect to S and T, we obtain 

R' = n(n-1) 

Hence the theorem is proved. 
T h e o r e m 2.8. For a recurrent special normal 

( f ,g ,u,v,a )-structure manifold 

that i s , 

(D^YKKZ.S.T) - (DYD^KKZ.S.T) - (D j - x ^K ) (Z ,S f T ) = 

= ((Dxb)Y)K(Z,S,T) - ((DYb)x)K(Z,S,T) . 

Again using the Ricci identity in the last equation and put-
ting V for both X and Z, we get 

(Dyb)T = (DTb)V v 

where b is the parameter of recurrence. 
P r o o f . For a recurrent manifold, 

( D Y K ) ( Z , S , T ) = b ( Y ) K ( Z , S , T ) 

( 1 - [ K ( Y , S , T ) - g ( S , T ) Y + g ( Y , T ) s ] = 
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Taking the skew-symmetric part of this equation, we have 

(2.16) 2(1 - > 2 ) [K(Y,S,T) - g(S,T)Y + g(Y,T)s] = 

= ( (Dyb)Y - (Dyb)V | jg(S,T)V - v (T )s } -

{ (D-ybJS - (Dsb)T} |g(StT)V - v(T)Y) . 

Contraction of this equation y ie lds 

2(1 - * 2 ) [ r (S,T ) - (n-1 )g(S ,T) ] = 

= (n -2 )v (T ) j (Dyb)S - (Dsb)v| . 

Taking skew-symmetric part of the above equation, we get 

4(1 - [ r ( S , T ) - (n-1)g (S,T) ] = 

(Dyb)S - (Dgb)V = (n-2)v (T) (Dyb)S- (Dsb)V| + (n-2)v(S) j(Dyb)T - (D^b)V 

Putting V for S and applying Theorem 2.4 , we get 

(n-2 ) ( l - O (Dyb)T - (DTb)V = 0 . 

Since n>2 and A (1 - a ) i s almost everywhere non-zero, 

(Dyb)T = (DTb)V. 

Hence proved. 
T h e o r e m 2.-9. A recurrent special normal ( f , g ,u , 

v,A)-structure manifold is a manifold of constant Riemannian 
curvature. 

P r o o f . Using Theorem 2.8 in the equation (2.16), we 
get 

K(Y,S,T) = g(S,T)Y - g(Y,T)S . 

Contraction of this equation by Y y ie lds 

R(S,T) = (n-1)g(S,T) , 
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i . e . , 

R' = n(n-1) , 

which completes the proof of the theorem. 

3. Weyl (project ive) curvature tensor in a speciaï normal 
( f ,g ,u,v,a)-structure manifold 

We w i l l now consider Weyl (project ive ) curvature tensor, 
which i s a tensor of type (1»3) given by 

W(X,Y,Z) - K(X,Y,Z) - [H(Y,Z) Ï - R(X,Z)Y] . 

We put ' W(X,Y,Z,S) = g(W(X,Y,Z),S). Then we have 

'W(X,Y,Z,S) = 'K(X,Ï ,Z,S) - [R(Y,Z)g(X,S) - R(X,Z)g(Y,S)]. 

T h e o r e m 3.1. A special normal ( f ,g,u,v, ^--struc-
ture manifold sat is f i es the following relations 

W(V,Y,Z) = [ g (Y ,Z ) - - ¿ j R(Y,Z) ]v , 

W(X,Y,V) = 0 , 

W(X,Y,Z,V) = v(X) [ g ( Y ,Z ) - ^ R(Y,Z 

- v (Y ) g(X,Z) - R(X,Z)] , 

'W(V,Y,Z,S) = v (S) [g (Y ,Z ) - - ^ f R(Y,Z) 

'W(V,Y,Z,V) = (1 - ^ ) _g(Y,Z) R(Y,Z)_ 

'W(X,Y,V,S) = 0 . 

The proof follows t r i v i a l l y from the def init ion of the 
Weyl curvature tensor. 
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Similarly we can obtain 
T h e o r e m 3.2. In a special normal (f,g,u,v,a)-

-structure manifold, the following relations hold 

W(U,Y,Z) = [g(Y,Z) - -¿f R(Y,Z)] U, 

W(X,Y,U) = 0 , 

'W(X,Y,Z,U) = u(X) [g(Y,Z) - -¿j R(Y,Z) -

- u(Y) [g(X,Z) - -¿f R(X,Z)] , 

W(U,Y,Z,S) = u.(S) [g(Y,Z) R(Y,Z)] , 

'W(U,Y,Z,U) = (1 - a2) [g(Y,Z) --¿j R(Y,Z)] , 

'W(X,Y,U,S) = 0 . 

T h e o r e m 3.3. A protectively flat special normal 
(f,g,u,v ̂ -structure manifold is an Einstein manifold and is 
of constant Riemannian curvature. 

P r o o f . Suppose that a special normal (f,g,u,v, 
-structure manifold is protectively flat, that is, 

'W(X,Y,Z,S) = 0, 

i.e., 
W(U,Y,Z,U) = 'W(V,Y,Z,V) = 0 , 

i.e., 

(1 - >2) [g(Y.Z) --¿i R(Y,Z)J = 0 . 

2 Since - ) is almost everywhere non-zero, 

R(Y,Z) = (n-1)g(Y,Z) 
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and 

R' = n(n-1) . 

Hence the theorem is proved. 
T h e o r e m 3.4. I f a special normal ( f , g ,u ,v ,^ ) -

-structure manifold is protectively symmetric then i t is pro-
tectively f l a t . 

P r o o f . Let us assume that the manifold with a spe-
c ia l normal ( f ,g,u,v,a)-structure is protectively symmetric, 
that is , 

(DyWMZ.S.T) = 0 , 

which yields 

(DxDyW)(Z,S,T) - (DyDxW)(Z,S,T) - (Dj-X TjW ) (Z fSfT) = 0 . 

Using the Ricci identity, we get 

K(X,Y,W(Z,S,T)) - W(K(X,Y,Z),S,T) -

- W(Z,K(X,Y,S),T) - W(Z,S,K(X,Y,T)) = 0 . 

Putting V f o r "both X and Z and using Theorems 2.4 and 3.1, 
we obtain 

K(V,Y,W(V,S,T)) - W(K(V,Y,V),S,T) -

- W(V,K(V,Y,S),T) - W(V,S,K(V,Y,T)) = 0 , 

or 

g (Y, (g (S,T) - R(S,T)) V > - (1 - * 2 ) ( g ( S , T ) - ^ E (S ,T ) ) l -

- v (Y) (g (S,T) - R(S,T))v + (1 - *2)W(Y,S,T) + 

+ v (S) (g (Y,T) - ^ R(Y,T))v+v(T) (g (S,Y) - -¿ f R(S,Y))v = 0 , 
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or 

( 3 . 1 ) ( 1 - * 2 ) W ( Y , S , T ) - ( 1 - A 2 ) ( g ( S , T ) - - ¿ F R ( S , T ) ) Y + 

+ v(S)(g(Y,T) - ^ R(Y,T))v+v(T)(g(S,Y) - R ( S , Y ) ) v = 0. 

Contracting (3.1) by Y, we get 

n(1 - * 2 ) [g(S',T) - - ¿ j R(S,T)] = 0 . 

2 

Since n 0, and a ( 1 - * ) i s almost everywhere non-zero, 

(3.2) R(S,T) = (n-1)g(S,T) . 

By v i r t u e of (3 .2 ) , the equation (3.1) reduces to 
(1 - *2)W(Y,S,T) = 0 , 

i . e . , 

W(T,S,T) = 0 . 

Hence, proof of the theorem i s completed. 
Next l e t us assume tha t a spec ia l normal 

- s t r u c t u r e man i fo ld , i s p ro t ec t i ve ly r e c u r r e n t , 
working on the l i n e s s imi la r to tha t of Theorem 
t e g r a b i l i t y condi t ions of 

(DyW)(Z,S,T) = - b ( T )W ( Z , S , T > 

yie ld 

W(Z,S,T) a 0 , 

which provides the proof of the fol lowing theorem. 
T h e o r e m 3 .5 . I f a spec ia l normal ( f , g , u , v , * ) -

- s t r u c t u r e manifold i s p ro t ec t i ve ly r e c u r r e n t , then i t s Weyl 
(p ro j ec t ive ) curvature tensox» i s zero . 

( f , g t u , v , A ) -
In t h i s case, 
2 . 8 , the i n -
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Conformai c u r v a t u r e t e n s o r i t i a s p e c i a l normal ( f | g » 
u t v , a ) - s t r u c t u r e m a n i f o l d 

I n t h i s s e c t i o n we w i l l s tudy con fo rma i c u r v a t u r e t e n s o r , 
which i s a t e n s o r of t y p e ( 1 , 3 ) and i s g i v e n by 

C ( X , Y , Z ) = K ( X , Y , Z ) - [ r ( Y , Z ) X - R ( X , Z ) Y - g ( X , Z ) r ( Y ) -

- g ( Y , Z ) r ( X ) ] + ( ^ ( P . a ) [ g ( Y , Z ) X - S ( X , Z ) y ] . 

P u t t i n g 'C(X,Y,Z,S) = g ( C ( X , Y , Z ) , S ) , we g e t 

'C(X,Y,Z,S) = 'K(X,Y,Z,S) - - ¿ g [R (Y f Z)g(X ,S ) - R(X,Z)g(Y,S) -

- g(X,Z)R(Y,S) + g(Y,Z)R(X,S}] + 

+ ( n - 1 ) ( n - 2 ) [ s ( ï . Z ) s ( X , S ) - g ( X , Z ) g ( Y , S ) ] . 

T h e o r e m 4 . 1 . I n a s p e c i a l normal ( f , g , u , v , > ) -
- s t r u c t u r e m a n i f o l d , we have 

(n -2 ) 'C (X ,Y ,Z ,V) = « (v (Y)g (X ,Z) - v (X)g(Z,Y)) -

- v(X)R(Y,Z) + v(Y)R(X,Z) , 

( n - 2 ) 'C(V,Y,Z,V) (<* +n-1 )v (Y)v(Z) - <x ( l - * 2 ) g ( Y , Z ) -

- (1 -> 2 )R(Y,Z) , 

( n - 2 ) ' C ( V , Y , Z , S ) =o< (v (Z)g(Y,S) - v (S)g (Y,Z) ) -

- V ( S ) R ( Y T Z ) + v ( Z ) R ( Y , S ) , 

( n - 2 ) C ( X , Y , V ) = « ( v ( X ) Y - v ( Y ) x ) + v ( X ) r ( Y ) - v ( Y ) r ( X ) , 

(n-2)C(V,Y,Z) = « ( v ( Z ) Y - g ( Y , Z ) v ) - R(Y,Z)V + v ( Z ) r ( Y ) , 

- 2 0 8 -
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(n-2)C(V,Y, V) = (1-oc-n)v(Y)V + ( 1 - > 2 ) [ « Y + r ( Y ) ] , 

where 

Ot = (A _ R \ 
u n -1 ; ' 

P r o o f . The proof follows t r i v i a l l y from the defini-
t ion of the conformai curvature tensor. 

T h e o r e m 4 . 2 . I f a special normal ( f , g , u , v , a ) -
- s t r u c t u r e manifold i s conformally f l a t , then the following 
relat ions hold 

( 4 . 1 ) R(Y,Z) = £v(Y)v(Z) - « g ( T t Z ) , 

( 4 . 2 ) r (Y) = y3v(Y)V - « y . 

Consequently, 

( 4 . 3 ) ( N - 2 ) K ( X F Y , z ; = / 3 v ( Z ) [ v ( Y ) X - v ( X ) Y ] -

- ( « + 1 ) [ g ( Y , Z ) X - S(X,Z)Y] + y 3 [ g ( Y , Z ) v ( X ) - g ( X , Z ) v ( Y ) ] V , 

where 

a _ " +n-1 
P = p • 

P r o o f o f ( 4 . 1 ) . Let us assume that a special 
normal ( f , g , u , v , ^ - s t r u c t u r e manifold i s conformally f l a t , 
that i s , 

'C(X,Y,Z,S) = 0 , 

and as a part icular oase 

C(VtY,Z,V) = 0 , 

- 209 -
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i . e . , 

(1 -> 2 )R(Y,Z) = (oi+n-1 )v(Y)v(Z) - o< (1 -X 2 )g(Y,Z) . 

Patt ing /3= — w e get 
1-JT 

R(Y,Z) =/3v(Y)v(Z) - « g ( Y , Z ) . 

P r o o f o f ( 4 , 2 ) . v The equation ( 4 . 1 ) may also be 
written as 

g ( r ( Y ) , z ) = /3v.(Y)v(Z) - « g ( Y , Z ) . 

Contracting "by Z,'we get 

r (Y) = J3v(Y)V -<xY . 

Proof of ( 4 . 3 ) i s t r i v i a l . 
Similarly we can prove the following two theorems 
T h e o r e m 4 . 3 . A special normal (f , g , u , v , ? . ) -struc-

ture manifold s a t i s f i e s the following r e l a t i o n s : 

(n-2) 'C(X,Y,Z,U) = oc(u(Y)g(X,Z) - u(X)g(Z,Y)) -

- u(X)R(Y,Z) + R(X,Z)U(Y) , 

(n-2)'C(U,Y,Z,U) = («+n-'l )u(Y)u(Z) - (1-A2)[<xg(Z,Y)+R(Y,Z)] , 

(n-2) 'C(U,Y,Z,S) = (u(Z)g(Y,S) - u(S)g(Y,Z)) -

- u(S)R(Y,Z) - u(Z)R(Y,S) , 

(n~2)C(X,Y,U) = <x(u(X)Y - u (Y)x ) + u(X)r(Y) - u(Y)r(X) , 

(n-2)C(U,Y,Z) = « (u(Z)Y - g(Y,.Z)u) - R(Y,Z)U + u(Z)r (Y) , 

(n-2) C(U,Y,U) = (1-<x-n)u(Y)U + ( 1 - > 2 ) ( « Y + r ( I ) ) . 
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T h e o r e m 4.4. I f a special normal ( f . g ^ v ^ -
'-structure manifold is conformally f l a t , then wc have 

R(Y,Z) = Ji u(Y)u(Z) -<xg(Y,Z) » 

r (Y ) = /3u(Y)U - « Y 

and consequently, 

( n - 2 ) K ( X , Y , Z ) = / 3 U ( Z ) [ u ( Y ) X - U ( X ) Y ] -

-(a+iO [ g ( Y , Z ) X - g (X,Z)Y] +/3 [g (Y ,Z )u (X) - g (X,Z)u(Y) ] U . 

I t is well known that conformally symmetric and recurrent 
manifolds respectively satisfy the following conditions 

( r ^ O i z . s . T ) = 0 , 

and 

( D Y C ) ( Z , S , T ) = b ( Y ) C ( Z , S , T ) . 

T h e o r e m 4.5» I f a special normal ( f , g , u , v t > ) -
-structure manifold is ccnformally symmetric or recurrent then 
its conformai curvature tensor vanishes. 

Eroof is similar to that of Theorems 3.4 and 3.5« 
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