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ON CURVATURE TENSORS
IN A SPECIAL NORMAL (f, g, u, v, \)-STRUCTURE MANIFOLD

Many mathematicians including Blair, Iudden, Yano, Okumu-
ra, and Goldberg have studied submanifolds of codimension 2 of
almost complex manifolds and hypersurfaces of almost contact
manifolds. These manifolds admit under certain conditions,
what we call an (f,g,u,v,?)-structure. In 1970 Yano and Oku-
mura defined amd studied normal (f,g,u,v,2)-structure, which
is a particular case of an (f,g,u,v,2)=structure.

In the present paper we define a special normal (f,g,u,
v, A)=structure and study different type of curvature tensors,
viz curvature tensor, Weyl (projective) curvature tensor and
conformal curvature tensor in a special normal (f,g,u,v,7)=-
-structure manifold,

I am grateful to Dr. (Mrs) K.D. Singh for her kind help
and guidance in the preparation of this paper.

1. Introduction

Let us consider an n (=2m) dimensional differentiable ma-
nifold M of class C~ which admits an (£,U,V,u,v,2A)~structure
(see [6]), that is, there exist on M a tensor field f of type
(1.1), vector fields U and V, 1-forms u and v, and a functipn
2 satisfying the following conditions:

(1.1) w(U) = 1 = A%, w(v) =0,

(1.2) v(U) = 0, v(V) = 1 =22,
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2 A.,Vigam

(1.3) X+ X =u@XU+ vX)V,

(1.4) U= =27, V=20,
and

(1.5a) u-f =2av, vef = =2u,

where X = fX and 1-forms u.f and v.f are respectively defi-
ned by

u{fx)

B

(u-£)(X)

i

and

(ve£)(X) = v(£X)

It
B

for any vector field X, hence +the last condition (1.5a) may
be written as

(1.5Db) X = Av(X) , v = -au(X).

Next, we assume that in M with an (£,U,V,u,v,3)=structu=-
re, there exists a positive definite Riemannian metric g such
that

(1.6a) g(U,X) = u(X),

(1.6b) g(V,X) = v(X),

and

(1.7) g(X,Y) = g(X,Y) - u(X)u(¥) - v(X)v(¥) ,

for any vector fields X and Y of M, Such structure is called
an (f,g,u,v,?)-structure and an (f,g,u,v,)=structure is said
to be normal if the Nijenhuls tensor N of £ satisfies (see

(6] ):
S(X,Y) = N(X,Y) + du(X,Y)U + av(X,Y)V = 0 ,

where du and dv are exterior derivatives of “-forms u and v
respectively.
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On curvature tensors 3

Let F be a tensor field of type (0,2) of M defined by
(1.8) F(X,Y) = g(X,Y) ,
for any vector fields X and Y of M, then we have
(1.9)" F(X,Y) = - F(Y,X) ,

that is, F is a 2-form [6).

Definition, A normel (f,g,u,v,A)-structure is
sagd to be a speclal normal (f,g,u,v,7)- structure, if the
furetion A(4 - 2 ) is almost everywhere non-zero and the
following two conditions are satisfied:

(1.10) 2R (X,Y) = (va)(Y) - (DYV)(X) s
and
(1.11) (Dgu)(T) - (Dyu)(X) =

DX being the Riemannian connection on the manifold M,
As a consequence of the equation (1.10) we can obtain

(1.12)  (DgF)(Y,2) + (DyF)(2,X) + (D,F)(X,Y) = 0,

Let M be a special normal (f,g,u,v,A)-structure mani~
fold, then we can verify the following identities [6]

(1.13) Dy2 = u(X),

(1.14) (Dyu) (¥) = - 2g(X,Y),
i.e., div U = - 2n ,
(1.15) (Dgv) () + (Dyv)(X) = 0,

i.e., V 1s a Killing vector field,
(1.16) (D,F)(X,¥) = g(2,¥)v(X) - g(z,X)v(¥) ,
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and
(1.17) F(X,Y) = (DXV)(Y) = - (DYV)(X)'

2, Curvature tensors in a special normal (f,g,u,v,2)-
~structure manifold

The curvature tensor K of a special normal (f;g,u,v,ﬁ)-
-manifold is a tensor field of type (1,3) defined by (see
(71)

(2.1) K(X,Y,2) = DyDyZ% - DyDy7 - DEx’i]Z ,

where [X,Y] = DxY - DYX. The following Riccl identities are
also well known (see [7])

(2.2)  (DgDyw)(2) - (DyDygw)(Z) = (D[xz y1W)(2) = - W(K(X,Y,2)),
for a 1-form w and
(2.3) (DgDyS)(Z,T) - (DyDygS)(Z,T) = (D(y y18)(2,T) =

= K(X,Y,s(z,T)) - s(x(x,¥,z),T) - 8(z,K(X,Y,T)) ,

for a tensor field 8 of type (1,2).
The tensor field 'K of type (0,4) defined by

(2.4) 'K(X,Y,2,T) = g(K(X,Y,2),T)

is called the covariant curvature tensor. Now we will prove
the following theorems

Theorem 2.1. Ina s8special normal (f,g,u,v,A)-
-structure manifold, we have

(2.5a) (DZF)(X’Y) = 'K(X,Y,2z,V) = g(2,Y)v(X) - &(Z2,X)v(Y),

and consequently

(2.5b) (DVF)(X,Y)"= 0.
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On curvature tensors 5

Proof. From the equation (1.17), we have
(DyF) (¥,2) = (DgDyv)(Z) + (Dyv)(DyZ) .
Consequently

(DgF) (1,2) - (DyF)(X,2) =

Solving the above equation with the help of the equations
(1.6b), (1.12), (1.16), (2.2) and (2.4), we get

(D,F)(X,Y) = v(K(X,Y,2)) = g(K(X,Y,2),V) = K(X,Y,2,V) =
= g(Z,Y)v(X) - g(2,X)v(Y),

which completes the proof of (2,.,5a) apd (2.5b).
Theorem 2,2. Ina special normal (f,g,u,v,A)~
—-structure manifold, we have

(2.6) 'K(X%,Y,Z,U) = g(Z,¥)u(X) - g(z,X)u(Y).
Proof. From the equations (1.13) and (1.14), we have

(DgDyu) (Z2) + (Dyu) (DyZ) = - u(X)s(¥,2) .

Interchanging X and Y and subtracting, we get
u(K(X’Y,Z)) = u(X)g(Y,Z) - u(Y)g(XIZ) .

Using (1.6a) and (2.4), we obtain (2.6).
Theorem 2.3. Ina special normal (f,g,u,v,?)-~
-structure manifold, the following relations hold

(2.7) v(Dge) (¥) = v(X)v(¥) - (1 - 22)g(x,¥),
(2.8) u(Dyf)(¥) = w(X)v(Y),
(2.9) (D,F) (%,1) = g((D;£)(X),Y) .
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Proof of (2.7)., PFrom the second part: of the equa-
tion (1.5b), we get

v(¥) = - 2u(y), i.es, v(£fY) = - Au(Y).

Taking covariant derivative of the above equation in. the di-
rection of X and using (1.7), (1.8), (1.13) and (1.14), we
obtain

v(DyY) (Dyv) (X) = (DgMu(¥) ~ A(Dgu)(¥) - Au(Dy¥)

= - F(X,Y) -~ u(X)u(¥) - A(Dyu)(¥) - 2u(DyY)

g(X,¥) ~ u(X)u(¥) + Azg(X,Y) - Au(DyY)

= - (1 =2%)g(X,Y) + v(X)v(T) - Au(DyY),

while on the other hand,

v(DgT) = v [(Dg2) (¥) + Dy¥ | = v(Dgf) (¥) = Au(DyY) ,

which completes the proof of (2.7).
Proof of (2.8). Since,

u(¥) = av(Y), ice., u(fY) = av(Y),

therefore as a consequence of (1.5b), (1.8), (1.13), (1.14)
and (1.47), we obtain

u(Dy¥) = = (Dyu) (¥) + u(X)v(Y) + AF(X,¥) + 2 v(DgY)
=2 g(X,Y) + u(X)v(Y) - 2g(X,Y) + Av(DyY)

= u(X)v(Y) + KV(DXY)a
while,

u(DXY) u[(DXf)(Y) + ﬁ;?] =

u(DXf)(Y) + Av(DXY)
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On curvature tensors 7

and (2,8) is proved. The relation (2.9) follows directly
from (1.8).

In terms of the n local orthonormal vector fields X'I’Xa’
«+.yX ~we can define a global tensor field R of type (042)

n
R(Y,2) = ) 'K(X;,Y,2,X;)
=1
and a global scalar field

n
’

R = L R(Xi,Xi).
The tensor field R and the scalar R’ are called the Ricci ten-
sor and the scalar curvature respectively.

We will now establish the following

Theorem 2,4, In a special normal (f,g,u,v,A) -
~structure manifold, we have

(2.10) ‘K(V,Y,Z,V) = (1 = Zz)g(Z,Y) - v(Y)v(z),
(2.11) 'K(V,Z,Y,X) = v(X)g(3,Y) - v(Y)e(2,X) ,
(2.12) X(V,2,Y) = g(2,Y)V - v(Y)Z,

(2.13) K(X,Y,V) = v(¥)X - v(X)Y,

(2,14) R(Y,V) = (o=1)v(Y),

(2.15) (V) = (n-1)V,

where

g(r(¥),2) = R(Y,Z) .

Proof, Proof of (2,10) is trivial. Using symmetric
and skew-symmetric properties of the curvature tensor in the
equation (2,5a), (2.11) can be obtained. Equation (2.11) may
be written as

8(K(vasY9)9x) = v(X)S(ZoY) - v(Y)g(Z,X) .
Contraction of the last equation by X gives (2.12).
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From the equation (2.5a), we have

/K(X,Y,V,Z) = V(Y)E(Z’X) - V(X)g(ZvY)
or
g(K(X,¥,V),2) = v(Y)S(ZQX) - v(X)s(Z,Y) .
Contracting the above equation by Z, we obtain (2.13).
Equations (2,14) and (2,15) are direct consequence of the
equations (2.13) and (2.14) respectively.
Similarly we can prove

PTheorem 2,5 In a special normal (f,g,u,v,2)-
-structure manifold

'R(U,Y,2,0) = (1 - 2%)g(2,T) - u(¥)u(z),
X(v,z2,Y) = g(Z,Y)U - u(Y)z,

XK(X,Y,U) u(¥)X - u(X)Y,

R(Y,U) = (n~1)u(Y),

and

r(U) (n=1)U .

Theorem 2.,6. A special normal (f,g,u,v,A)-struc-
ture manifold can not be flat.

Proof. Let us assume that a special normal (f,g,u,
vy A)=structure manifold M is flat, that is,

'K(X,Y,2,8) = 0,
which implies
‘K(v,Y,2,V) = 'K(v,Y,2,U) = 0,

l.e.,

(1 - 22)g(2,Y) = w(z)u(¥) = v(Z)v(¥),

which is not possible.
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On curvature tensors 9

Theorem 2.,7. If a special normal (f,g,u,v,2)-
-structure manifold is symmetric, then it is an Einstein
manifold of constant scalar curvature.

Pr oo f. Let manifold be symmetric, that is,

(DYK)(Z,S,T) =0,
Consequently,

(DyDyK)(2,8,T) - (DyDyK)(Z,S,T) - (Dg, 1K) (%,8,1) = 0.

Using the Ricci identity, we get
k(x,Y,x(z,s,T7)) - K(k(%,Y,2),S,T) -

- x(2,kK(X,¥,8),T) - k(%,8,K(X,Y,T)) =0 .

Now putting V for both X and Z in the last equation and ap~
plying Theorem 2.4, we have

K(V,Y’K(V)S’T)) - K(K(VQY’V)SS’T) -

- ®(V,K(V,¥,S),T) - K(V,5,K(V,¥,T)) = 0

or
g (X, K(V,S,T))V - v(K(V,S,T))Y - v(I)K(Y,S,T) +
+ (1 - 22)K(Y,8,T) - g(K(V,Y,S),T)V +
+ v(T)K(V,Y,8) - g(S,K(V,Y,T))¥ + v(K(V,Y,T))S = 0
or’

&(Y,8(S,T)VIV - g(¥,v(T)S)V = (1 - 2°)g(S,T)Y + v(S)v(T)Y -
- v(1)&(S,T)V+ v(¥)v(T)S + (1 = A2)K(Y,S,T) - g(g(¥,S)V,T V +
+ g(v(s)y,ci')v + v(T)g(¥,S)V -~ v(T)v(S)Y - g(S,gs(Y,T)VV +

+ g8, v(T)NV + (1 = 22)g(¥,T)S ~ v(¥)v(T)S = 0
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or

(1 - 22) [k(x,8,T) + g(Y,T)S - 5(s,D)Y] = 0.

Since A(1 - 32) is almost everywhere non-zero,
K(Y,s,T) = g(s,T)Y - g(¥,T)s .
Contracting the above equation by ¥, we get
R(S,T) = (n-1)g(s,T) .
Transvecting with respect to S and T, we obtain
R’ = n(n-1).

Hence the theorem is proved.
Theoren 2.8, FTor a vrecurrent special normal
(f,g,u,v, 2)=structure manifold

(Dyd)T = (DEd)V ,

where b is the parameter of recurrence.
Proof. For a recurrent manifold,

(DyK) (Z,5,T) = b(Y)K(Z,S,T),
that is,
(DyDyK)(2,8,T) = (DyDyK)(2,8,T) - (Dpy y1K)(2,8,T) =
= ((Dgb)Y)K(2,8,1) - ((Dyb)X)K(2,8,T).

Again using the Ricci identity 1in the last equation and put-
ting V for both X and Z, we get

(1 -22) [k(1,8,1) - g(5,T)Y + g(¥,T)8] =

= {(Dvb)Y - (DYb)V] {g(s,m)v - v(T)S} .
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On curvature tensors 11

Taking the skew-symmetric part of this equation, we have
(2.16)  2(1 - 2%) [&(1,8,1) - &(S,M)Y + g(¥,T)s] =
- {(nvb)x - (ogo)V} {e(s,2)7 - v(m)s} -

-.{(Dvb)S - (Dsb)v} {g(S,T)V - v(T)Y] .

Contraction of this equation yields
2(1 - %) [R(s,T) - (a-1)g(s,m)] =

= (e2)v(m) { oIS - (ogpIV} .
Taking skew=-symmetric part of the above equation, we get

4(1 - 22) [r(8,1) ~ (n-1)g(s,m)] =

= (0=2)v(D) l (D)8 = (Dsb)V] + (p=2)v(8) {(Dvb)T-(DTb)V} )
Putting V for S and applying Theorem 2.4, we get
(p=2)(1 - aa) {(Dvb)m - (DTb)V,.= 0.

Since n>2 and A (1 - az) is almost everywhere non-zero,

(Dvb)T = (DTb)V.

Hence proved.
Theoren 2,9. A recurrent special normal (f,g,u,
Vv, A)=structure manifold is a manifold of constant Riemannian
curvature.
Proof. Using Theorem 2.8 in the equation (2,16), we
get
K(Y,S,T) = S(SyT)Y - S(Y,T)S .

Contraction of thls equation by Y yields
R(S,T) = (n=-1)g(s,T),
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i.e.,

R’ = n(n-1) ,

which completes the proof of the theorem.

3, Weyl (projective) curvature tensor in a special normal
(f,g,u,v,7)-structure manifold

We will now consider Weyl (projective) curvature tensor,
which is a tensor of type (1+3) given by '

W(X,Y,2) = K(X,Y,2) - — [R(Y,2)X - R(X,Z)Y]_ .
We put 'W(X,Y,Z,8)= g(wW(X,Y,Z),S). Then we have
W(X,Y,2,8) = ‘K(X,1,2,8) - =5 |R(Y,2)8(X,8) - R(X,2)8(Y,8)].

Theoren 3,1. A special normal (f,g,u,v,?)=struc-
ture manifold satisfies the following relations

W(V,Y,2) = [g(Y,Z) - L R(Y,Z)]V ,
W(X,Y,V) = 0,
W(X,Y,2,V) = v(X) [g(Y,Z) - R(Y,ZJ -

- v [e®,2) - 54 RE,D)] ,
‘W(V,Y,2,8) = v(8) [g(Y,Z) -5 R(Y,Z)] ,
‘W(V,Y,2,V) = (1 - 22) [g(Y,Z) -5 R(Y,Z)] ,

"W(X,Y,V,8) = 0.

The proof follows trivially from the definition of the
Weyl curvature tensor,
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Similarly we can obtain
Theorem 3.2, Ina special normal (f,g,u,v,n)-
-structure manifold, the following relations hold

W(U,Y,2) = [&(Y,2) - oq R(L,2)] U,
W(X,¥,U) = 0,
‘W(X,Y,2,U) = u(X) [g(Y,Z) -1 R(Y,‘Z)il -
- ) [6(5,2) - 25 RE,D) ],
W(U,Y,Z,S) = u(S) [g(Y,Z) -1 R(Y,z)] .

‘w(u,Y,2,U0) = (1 - 3\2) [g(Y,Z) "_n%'T R(Y,Z)] ’

IW(X,Y,U,S) =0.

Theorem 3.,3. A projectively flat special normsl
‘f,gyu,vA)-structure manifold is an FEinstein manifold and is
of constant Riemannian curvature.

Proof, Suppose that a special normal (f,g,u,v,x)-
—-structure manifold is projectively flat, that is,

‘W(X,Y,Z,8) = Oy

l.€4,y
‘'w(vu,Y,z,U) = ‘W(V,Y,Z,V) = 0,

i.e.,

(1 =32 [sr.2) - 25 R(1,2)] = 0.

Since A(1 - 22) is almost everywhere non-zero,

R(Y,2) = (n~1)g(Y,2)
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and

RI = D.(D.-") .

Hence the theorem 1s proved.

Theorem 3.4, If a special normal (f,g,u,v,A)=
-structure manifold is projectively symmetric then it is pro-
jectively flat.

Proof, Let us assume that the manifold with a spe-
cial normal (f,g,u,v,A)-structure is projectively symmetric,
that is,

(pyW)(2,8,T) = 0,
which yields
(DyDy¥) (Z,8,T) - (DyDeW)(Z,8,T) - (D[, 7)) (2,8,7) = 0.
Using the Ricci identity, we get
k(X,Y,%(z,s,T)) - W(K(X,Y,2),S,T) =

- w(z,k(X,Y,8),T) - W(Z,S,K(X,Y,T)) =0 .

Putting V for both X and Z and using Theorems 2.4 and 3.1,
we obtain

K(v,Y,w(v,s,T)) - W(K(V,Y,V),S,T) -

- w(v,k(v,Y,8),T) - W(V,s,K(V,Y,T)) =0,
or

&(T, (8(8,1) - o5 R(S,1) V)V~ (1 - 2%)(g(s,) - %x R(S,T))¥-
- v(1)(8(8,T) - 534 R(S,D)V + (1 = 22)W(¥,5,1) +

+ v(8)(8(X,T) = 13 R(Y,1)V+v(1) (g(s,Y) - —1: R(S,Y))V=0,
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or

(3.1) (1 =22)W(x,s8,1) - (1 -2%) (&(5,7) - =% R(5,1))Y +
+ v(s)(g(¥,T) - nj—,l R(Y,T))V+ v(T)(g(S,Y) -5 R(8,Y))V = 0.

Contracting (3.1) by Y, we get .

n(1 =122 [g(s,m) - 21 R(s,1)] = 0.

Since n # 0, and A (1 - xa) is almost everywhere non-zero,
(3.2) R(S,T) = (n-1)g(s,T) .

By virtue of (3.2), the equation (3.1) reduces to

(1 - 2%)w(x,s,T) = 0,

il.e.y
w(Y,s,T) = 0.
Hence, proof of the theorem is completed.
Next let us assume that a special normal (f,g,u,v,A)-
-structure manifold is projectively recurrent. In this case,

working on the lines similar to that of Theorem 2,8, the in-
tegrability conditions of

(DYW) (ZoS,T) = b(Y)W(Z,S,T)’

vield
w(z,s,T) = 0,
which provides the proof of the following theoren.
Theorem 3.5 If a special normal (f,g,u,v,A)=-

~structure manifold is projectively recurrent, then its Weyl
(projective) curvature tensor is zero.
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4, Conformal curvature tensor in a special normal (f,g,
u,v,A)-structure manifold

In this section we will study conformal curvature tensor,
which is a tensor of type (1,3) and is given by

1

C(X,Y,2) = K(X,1,2) - gip | R(L,Z)X - R(Z,2)Y - 6(X,2)5(1) -

- 6(,2)0(0)] + raoiirasy 62X - sx,2)Y]
Putting ‘C(X,Y,2,S8) = g(c(X,Y,z),S), we get
‘0(X,Y,2,8) = 'K(X,Y,2,8) - o5 [R(Y,2)8(X,5) - R(X,Z)§(Y,5) -

- 8(X,2)R(Y,8) + g(Y,2)R(X,8)] +

* mﬁ;lﬁz) L 8(1,2)8(%,8) - s(x.z)g(Y.S)] .

Theorem 4,14, In a special normal (f,g,u,v,A)-
-structure manifold, we have

(0-2)'C(X,Y,2,7V) =w (v(¥)8(X,2) - v(X)g(%,Y)) -

- v(X)R(Y,2) + v(¥)R(X,Z) ,
(0-2) ‘C(V,Y,Z,V) = E+n=1)v(¥)V(Z) - « (1-3°)g(¥,2) -
- (1=-2®)R(1,2) ,
(0~2) 'C(V,Y,Z,8) =o (v(2)g(Y,8) - v(8)g(Y,2)) -

- v(S)R(Y,Z) + v(Z)R(Y,8) ,

(0-2)C(X,Y,V) =o (V(X)Y - (X)X ) + v(X)r(¥Y) - v(¥)r(X),

(0-2)C(V,Y,2) =« (v(2)Y - g(¥,2)V) = R(T,2)V + v(2)r (1),

- 208 -



On curvature tensors 17

(0-2)C(V,Y,V) = (1=x=n)v(D)V + (1-32) [o¥ + 2(¥)] ,

where

SURE-F

Pr oo f. The proof follows trivially from the defini-
tion of the conformal curvature tensor.

Theorem 4,2, If a special normal (f,g,u,v,A)=
-structure manifold is conformally flat, then the following
relations hold

(4,1) R(Y,Z) = Av(Y)v(Z) -NE(YQZ) 1
(4.2) r(Y) =av(Y)V =Y ,
Consequently,

(4.3) (n=2)K(X,Y,3) = Av(z)[v(D)X - v(x)¥] -

-+ [8(Y,2)X - &(X,2)Y] +/3[8(Y,Z)V(X) - g(X.Z)V(Y)] V,

where

-1
B= o« 0 .
1 =22

Proof of (4.1). Let us assume that a special
normal (f,g,u,Vv,?)-structure manifold is conformally flat,
that is,

‘0(X,Y,2,8) = 0,

and as a particular case

‘6(V,Y,2,V) =0,
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i,e.,

(1=22)R(Y,Z) = (x+0=1)v(Y)V(Z) = «(1=32)g(Y,Z) .

Putting B= 03_!12;'\_, we get
1=2

R(Y,2) =8v(Y)v(Z) - ag(Y,Z) .

Proof of (4,2).. The equation (4.1) may also be
written as

g(r(Y),Z) =Bv(Y)v(Z) -xg(Y,Z).
Contracting by 2, we get
r(Y) = Bv(Y)V —xY,

Proof of (4.3) is trivial,

Similarly we can prove the following two theorems

Theorem 4,35, A special normal (f,g,u,v,A)=-struc-
ture manifold satisfies the following relations:

(n-2) '6(X,Y,2,0) = o (w(¥)&(X,2) - u(X)g(z,1)) ~

u(X)R(Y,Z) + R(X,Z)U(Y) ,

(n-2)"C(U,Y,2,0) = (atn=Du(¥)u(z) ~ (1-22)[xg(z,1)+R(Y,2)],

il

(n-2) 'C(U,Y,2,8) = (u(2)g(¥,8) - u(s)g(¥,2)) -
- u(S)R(¥,2) - u(z)R(Y,S) ,
(n=2)C(X,Y,U) = «(w(X)Y - u(D)X) + w@)=(¥) = u(D)=(X) ,
(n=2)C(U,Y,2) =« (u(z)Y - g(Y,2)U) - R(Y,2)U + u(z)r(¥),
(8-2)0(U,Y,U) = (1-a=n)u(X)U + (1-3°) (o + =(1)) .
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Theorem 4,4, If a special normal (f,g,u,v,A)-
-structure manifold is conformally flat, then we have

R(Y,z2) =pu(Y)u(z) -xgl(¥,z) ,
r(Y) =Au(Y)U -y

and consequently,
(0=2) K(X,Y,2) =Au(z) [ w(¥)X - u(x)Y] -

~r) [ e(¥,2)% - 8(X,2)1] +8 [ &(¥,2)u(X) - g(x,2)ux)] U.

It is well known that conformally symmetric and recurrent
manifolds respectively satisfy the following conditions

(DYC)(Z’S’T) = O ]
and
(Dy0)(2,8,T) = b(¥)C(z,8,T) .

Theorem 4,5 If a special normal (f,g,u,v,?)=-
-structure manifeld is ccnformally symmetric or recurrent then
its conformal curvature tensor vanishes.

Proof is similar to that of Theorems 3.4 and 3%,5.
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