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COEFFICIENT INEQUALITIES FOR SHAH'S FUNCTIONS

1. The role of the Grunsky inequalities for +the coef-
ficient problem in the theory of univalent functions is well
known. These inequalities have been sharpened for some sub-
classes of univalent functions, for example for the case of
bounded univalent functions by Nehari [6] and by Schiffer
and Tammi [8] and for the case of Bieberbach-Eilenberg func-
tions by Hummel and Schiffer [2]. The purpose of the present
paper 1s to sharpen the Grunsky inequalities far the univalent
functions introduced by Shah [9]. We will first arrive at the
generalized area theorem for Shah's functions and, as a di-
rect consequence, we will obtain a set of inequalities between
a quadratic and Hermitean form which are typical for Grunsky
estimates. Secondly we give some application for these ine-
qualities to extremal problems in the family of Shah’s func~-
tions.

2. We begin with the following definition

Definition, The class K of all functions £
which are regular and univalent in the unit disk K(0,1), va-
nish at the origin, and have the property that f(zq) ETEES £
# -1 for all pairs of points z,, z, in K(0,1), 1is called
the class of Shah’s functions.

Let feK and

(1) f($)=b1z+b2Z2+..., |ZI<1.
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2 JSladkowska

If feK, and C and C' denote, respectively the curve
? T T g c v

described by the points w = £(rel®) and w= -[?(reie)]-q,
0<r<1, if © wvaries from O to 27, then it 1s easy to see
that Cr is contained 1in +the interior of the finite domain
bounded by C;. Hence, Cr and Cé bound a doubly- connected
domain Dr which does not ccntain the origin.

Now we consider the function

N
A n
g(w) = Z c W +plog w, = real,
n=-N
which is regular analytic in Dr and has there a single va-

lued real part. Dr has a positive area in the metric

N
[} o+ 5 Jaw
n~-N

Thus

2
ldé >0,

J()/ ' zf n cnwn'1 4-{%
Df'

n=-N

where d6 denotes the element of Buclidean area in the w-
-plane. Using the method of complex integration by parts, we
transform this into

1 [reem] asm

1

-, +C,
and moreover into
o ‘ R
@) -1 [ ne fsfreett)f 2 lalaiey) |
+ 2 /URe [g<_ [f(reie)]-'])} d [s(—[.f(reie')}*qﬂ .
: 0 de
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Inequalities for Shah's functions 3

To simplify the calculation of the integrals in (2), we shall
choose the function g(w) in an appropriate wsy. Let

°8 /M'Z-o o
and
(4) -1og<1 + £(¢) f(Z)) = Z Bnmzn tn
nm=q

Since f 1is of the class K, both power series converge in
K(0,1) x K(0,1).

Next, we deflne polynomiais of degree n in the variable ¢
by means of the genereiting function

(5) log ﬁ(‘z—) = Z %@n (5)2" .
n=41

For O0< |z|<1 fixed and ¢ sufficiently near to the origin,
we can write the identity (3) in the form

O (=3 m Lacd
(6) ,;oAnmzn ¢® = log f(zz) +,”Z,(7i -ﬂ; %4’111 (F}?)) ¢n

Since for ¢ = 0, (3) ylelds

(7) log

1=

a comparison of equal powers of ¢ in (6) leads to the iden=-
tities

(8) ¢ (f(z)) —’lﬁ mZA

for m> 0, while no new information is contained in (6) for
m= 0,
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We recognize that

¢ (W) = P (w) + const

where Fm(w) are the Faber polynomials for the function ng—y .
The matrix (A nm) is symmetric and occurs in the inequall-
ties of the Grunsky type.

From (5) and (4) we have the identitles

(9) @(—fz):mZB
n=1
for m >0, and observe that the matrix (Bnm) is Hermitean.
Now we can define the funétion g(w) as follows. Let X9
yn(n = 1,44.4N) be 2N complex numbers and X, a real number.
Let

N —

(10) g(w) = xylog w + Z [xmd) n(=w) + ym(f)m(%)] .
m={

Setting w = £(z) into (10), we find from (8) and (9)

o

g(f(z)) = Xglog z + Zoc z i

with
N
(11) %y = Xohoo - Z 0 Yghon
m =1
N
(12) ) = Xoh g+ Z m(xmB ymAnm) D= 1,25000

m=1

Similarly, setting w -[f(z)]"l into (10), we calculate

N

‘+x(2k+’1)]71+ Zﬂ‘n Z

=1

[0
i
—
H
T~
N’
N
—
\
——
1}
1
I
o
l_l
[e]
o5}
N

NIIN
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with
—— N —
(13) By = - OAOO-memAOm+x0(2k+1)xi,
m=
N
(/Iq') ﬁn OAnO - I”Z‘ m(XmAnm ymBnm) 9 n= 1,'2,0..

We can now evaluate the integrals

(15) I, =- %/Z.”Re [g(f(rei@)) }d {S(f(reie))}
0

de
and
2 , — 11

(16) I, = %-,,/ Re [g(—[f(rei@)J')] d [s(-[f;;ele)] >} .
We write

8<f(Z)) = xylog z + P(z) ,
with
(17) P(z) = i o 2" +i n

n=0 =1 2

and since P(z) is single valued in K(0,1), we find

2n
1 ]r dz
I, =~ :Ta xylog r + Re {P(z) _]]__XO — + 4 P(z)
i:]/’
2 g H .
=-27rxologr-——'0/ dl’-X/Re{P} ae .

21
0

Using the series development (17) for P(z) we obtain

oo
(18) I, = - 27rx3 log r = z nlanlarzn +

nN=1
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N
+ Z n|yn|'2r-2[1 ~ xyRe {oco } s 2r.
n=1

Similarly, we evaluate the integral (16). Applying now the
decomposition

g<_ Bal "‘) = ~xlog 2z + Q(z)

with

(19) Q(z) = Z
=0 v

and since Q(z) 1is single valued in K(0,1), we obtain

I, = %j{r[-xolog T + Re [Q(E)}] l:— X, d_z +d [Q(E)H

Z

2r 2n
= -217:% log T + 21/ (z) [Q(z)} /Re{Q(Z)J
J ]
Using the series development (19) for Q(z), we find
2 o 2.2n
(20) I, = -2 TXy log T ~7 Z nlﬁn| r o+

n=1
o 2 -2
-2n
+ L nlxn| Ry xORe{/éo} 2.
Applying now formulas (18) and (20) to the inegquality
I,l + IZ‘> o,
we finally find the estimate

N
4 xg log © + Z n(lxnl2 + Iynlz

n=f

—-27
) r >2xoRe[ao-/3°}

+2 n( '“ula*',/snlz) .

- 176 ~



Inequalities for Shah's functions ?

Letting r tend to 1 we obtain the best possible estimate

(21) 2 X Re [oco - ﬂo} + Z; n(lo(nl2 + |/3,n|2)-<

< i n(]xnl2 + ]Iynle) .

n=1

Hence by (11) and (13)
N
Ay =Bo = 2 Xphpy + Z: n(an0n - ynAOn) ’
Nn=

we arrive at the generalized area theorem for Shah’s func-
tions.
Theoren 1. Let feK; then

N

(22) 4 x5 Re {AOO} +2x, Re{ n(x Ao, - ynAon)}

>

=1

oo N
2 2 2 2
+ ) n(og)® + [ 8, )<Z n(|x, < + |y |9
n=1 n=1
with
W
o = X540 +”; m(xmBnm-ymAnm), D= 1925000y
-_— N —_— —
P = Xhpo - Z m(xghn = YpBpp)s B =12y,
m=1
where A =~ and B = are given by expansions (3) and (4), are

satisfied for any set of complex numbers x , ym(m=’l,...,N)
and for any xo-real.

3. We obtain a better insight into inequalities (22) by a
change of variables. Let

. 1 ,— 1 ,—
§n=_2‘(xn-yn), ?n=§'(xn+yn), n=1,2’ooo
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We thus find

N
2@, -p) = xh g Zi m(§phnm + $pBam) = Un(or &)
M=

we can transform (22) into
N oo
2 2
(23) 2x; Re Ay + 2% Re Z (n§ Ay) + Z nl(!Un(xo, gm)l +

N
¢ 118 ) adlg l® ¢ 1741%) -

n=1

Substituting now 7, =0 (n = 1,2,e..) into (23) we f£ind the
estimate

oo

N
2
(24) 2%, Re Ay, + 2x Re ”Zi (ng afon? * Z; [n'IxOAnO +

N N
+) m(EpA L+ gmBmi2]< ) nlénl2
me=1 n=1

while for X, and gn vanishing, we obtain the estimate

N
(25) ZE‘ lzm('zm A = g nm)|2] Z nl'ZnIZ *

n={ =1

We may specialize (24) by choosing all £ n bo be zerc and
find the useful estimate

. 2
(26) 2 Re {AOO} + Zi n|Ano| <o,

N=
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4, Now we will study the quadratic forms
N

) onm g (4R +Ep Boy)

hm=9

and
N

me 72n(’2mAnm - im Bnm) .

nm=

By S¢hwarz inequality and in view of (24) with Xg = 0 and in
vigw of (25), we obtain

N _ N N
(27) Z o & phom + & Bon) ' = Z\/—' gn(\/r?}:m (€n Aon +
am=1 ! n=1 N -
NN _ o\ %
i nm) (Z njgy,| ) (; n,Z,m(émAmn +$mBnm){ ) <
=1 m= :
N 5
< ) nlEl
=1
N _ N N
(28) I 21 o 7, (2ghpy = 7o) | = ,Z;WQnQ/EZm@m Apm =
nm= : n= M
N
- 2\%
- T 2oa) <( Lo lal)" (ﬁZ;nlmZmﬁzmnm a2 |*) *
2
< nlfznl .
A=1
By denoting
Ap=nky =010y,
one obtains from (27) and (28)
¥ N
(29) l Z - An?lm : an n m), Z %Mn,‘g .

nm=1 n=1
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N

Since the form 231 Bom 11 m is real and since this inequa~-
m

1ity holds for guy complex numbers Aﬂ""’AN’ we may pass to

the inequality
N _—
DWW R WES sV PILNCIRIY

or, equivalently,

(31) |Re ZAnm nAnl< i“ll % & iBmAnfm.

nm =1 n=1 qm=1

5. We thus found an infinite set of necessary conditions
for a function f +to belong to the class K. Observe, howe-
ver, that estimates (29) taken together are already suffi-
cient to guarantes the convergence of series (3) and (4) in
K(0,1) xK(0,1). Indeed in view of (29) we obtain the inequa-
lities

N N 1 >
(32) | ) A A An <) G
nm=1 n=f
and
N N
(33) l 2: Bnm n m 2: %' ‘
nm=1 n=1

By a proper choice of An in both inequalities (32) and (33)
we may prove that the coefficients Anm and Bnm- (n, m =
= 1,2,+..) are bounded and as an immediate consequence of
this fact and of the fact that the function f is regular in a
neighborhood of z = O we derive the convergence of series
(3) and (4) in K(0,1) x K(0,1). Hence we have proved

Theoren 2. Let

2
f(z) = qu + baz + eee

be regular in a neighborhood of 2z = 0 and let Anm and Bnm
denote the polynomials in bq, b2,... given by the expansions
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Inequalities for Shah‘s functions 1

f -f =
——————————(z; =z (€) Z Ann z2 §m ’ Ann = App o

am=0
-log <’1+f(?).f(z)> = i By 2B &R, Bom = ﬁmn .

In order that bq, b2"" be the coefficients of a Shah's
function it is necessary and sufficient that the inequalities

I Z: Anm‘an/lm‘ —4A ' Z: Bnm n’n

tym=1

be satisfied for any set of complex numbers Aq, 12""’AN'

6. The .inequality (31) 1is analogous to the Nehari
condition for univalent bounded functions. We shall now drop
the assumption Xy = O in inequality (24). The development
of this paper shows clearly that the introduction of the ad-
ditional variable X, is very important in the discussion of
the coefficient problen,

To make a further application of inequality (24), we de-
note

0,

xO for n

n én for n

i

Ty 2yecey

and instead of (24) we can write the inequality

We then consider the expression

P(A) =Re{ Y Ay Ap Ap * ﬁ anﬁn’—‘m}

nm=0 mm={
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apd ask for the maximum value of the real function P(A) under
the additional conditions

N

1 2
(35) ImA, =0, ) ¢ [41%=1.

n=1

We are sure that such a maximum does exist under conditions

(35) since, in view of (26), Re AOO £0.

Using Lagrange multipliers in the complex domairn [1] we
obtain the maximum conditions

N
(36) 2 Re [Z A, An*}= -i6 ,
n={y
N N 1%
(37) Y A Ag+ ) Bydp=r—g, D= 1y...,N,
m=4 m=1

with real multipliers 6 and 7 and with the extremal point
(A3, Afseeey AR). In view of (36) we find

N
(38) Re[ Z Ao AL }: 0.
Y

Using (37) and '(38) we obtain from (34)

N
ORISR TN S D WWWELEE NG EL
n=1 =1  m=0 m=1
oo ¥ " » o
WD IPWPTRS P EAEPS S AICH
N=1 n=0 m=1 m=41

which implies
(39") )< 1.,

On the other hand

N _
(40) P(2) < Re ZA AFAX & ZB A¥ A



Inequalities for Shah's functions 13

under the restrictions (35). Rewriting (40) in the form

P(A)K 71 Re {Z Apo A }+ Re[ZN [A:lé(iAnm A; + iBnm i;)]}
n=f m=0 m=1

and using (38), (37) and (39'), we easily find

N ~x N
(40')  P(A) <Re{z</\; . ré\—‘l>‘=r Y LAk <a

n=1 n=1

Finally, if (A , A4se.y Ay) dis an arbitrary point, A
-real, one easily confirms that

N
(40") P(A) = {nz A dg Ay + ; o la m}<21 |/1 .

m={0

We may next raise the question, for which functions f €K
can equality be achieved in (#0”). The extremum of P(A) can
only be achieved for such functions for which all signs in
(39), (40) and (40') are equality signs. In order that equa-
lities hold in the estimate (39), we have to demand

N _ N .
ZAnmAm+ZBnm,1m=o for n>N
m={ m=1

and

ITI =1,

In view of (37) and (38) equality is true in the estimate
-(40) if and only if
An] =0

N
3 n
Y A Ag + Z BoAp=r-2 for n=1,...,N.

—t—
g
=

and

=
o)
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Finally, in order that equalities hold in (40'), we have to
demand ’

=1,

Hence, for a given vector (A, A ,e..y Ay), the extremun
function fe¢K nust satisfy the conditions

(%)An for O0<ngN,

N N
Z Anm)‘m" Z BimAnm =
m=0 Me 0 for n>N

and

Thus we have proved the folloring theorem,

Theorem 3. Let f£(z)=Db 2z + b2z2 + ee.y De Tre=-
gular in a neighborhood of z = 0O and let Anm and Bnm de-
note the polynomials in b,ybsyese, given by expansions (3)
and (4), In order that b1,b2,... be the coefficients of a
Shah’s function is necessary and sufficient that +the ine-
qualities

N N N
. : 1 g2 by
(81) Re{ Z A Ap Am}<ZE |/1n| - Z Bop AnAn
nm=0 n=1 nm=1

be satisfied for any set of complex numbers A’l' 7t2,..., /'lN
and Ao -real, Equality in (41) is true if and oniy if

v
Re[}:Anoan}=o

n={

and

%) A for 0<ngVN,

m=0 m=1 l 0 for n>N,
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7. We will now give applications of inequalities (22) and
(41). We begin with an application of inequality (26) which
follows from (22).

Since by (26) we clearly have

(42) Re [AOO } <0

and since 4, = log £(0) = log b,, we arrive at theorem
Theorem 4, For amy f € K +there holds

(43) le@)] <1,
or
(44) b, <.

Nexti, we can use the Schwarz inequality to find

O o0
f(z)l _ ' n 2 1
long = Re{ ,; Anoz J < Re {AOO} + ; nIAnOI log ’|-|Z| ’

and hence by (26)

oo

Z nlAn0|2 < ~2 Re [AOO} .
Net

we have theorem
Theorem 5, For any f£ &K there holds

log'f(zz)’ < log]b,lI(’l + 2 log(1 - IZIZ)> ,

or, equivalently,

LAREY

'f(Z)|< > IZIRE
zi%)

(1 -
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8. Let
' VIR NCINL
. i
(45) HE) = rl_:\jl[z—]roflf(re )| de} , A>o0,
The following result also follows from the estimate (26),

Theorem 6. If £eK and £(z) = byz+byz® + ...
and if (al(f) denotes the mean .value (45), then

(46) 4o(f) <1,
or, equivalently,
. 2
Z Ibn' <1
n=1

Inequality (46) is sharp in two respects: if O <M <1 and
2<A<ee, then in general neither the inequality (aa(f) <M
nor the inequality (tc&(f) <1 is true, The equality in (46)
holds only for the function

1oy ’l-lc|2 z le ] <4,

- 1.
1~cz ' ¢ —rea

(47) £(z) =2

It is well known that (a/_t(f) is a non-decreasing func-
tion of A4 and that,therefore, (46) is stronger than the ine-
quality (a,](f) < 1.

Pr oo f. The following theorem was shown by Lebedev
and Milin [4], [5].

Theor em. For any sequence aqy Bpge-s such that

o

2
Z n|anl ey
n=4
the numbers ) Coyene defined by the power series expansion

ch Z2- = exp[Zanz ]
n=0

n=4
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Inequalities for Shah's functions 17

are subject to the inequality

N> L 2 c- 2
(48) ) legl?s x| ) nlayl J,
n=0 n=1
o
where the sign of equality is possible only 1if a8, =g

(n=1,2,...) |c|<1. For the coefficient ¢, itself, these
authors obtain the inequality

(49) ‘cn|< exp[%[i klakl2 - ; %” ,

k=1

CD.

with the equality only for a, = (n=1,2,...) le ] = 1.
To prove ouf theorem, we apply (49) to the case where the
coefficients

aD.:AnO’ D=1, 2, eco ,
and
b
n+1
n——b_’ n=0,'|, see o

Indeed, in view of inequality (26) and identity (7) we are in
a position to apply the above theorem. At first in view of"
(48) we find

(50) i MRS exp[f n|AnO|2} + lo,l®
=1

n=1
and, secondly, in view of
N 2
(51) ; nlaol% < -2 loglv, | ,

we have tThe inequality
o 2

(52) Y v <.
n=1
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The equality in (50) is possible omnly if

(53) A =%, D=1y 2, ees le | <1,
which means that

b,z

£(z) =12—OZ ’ |0|<1 .

Conditions (53) under which there is equality in (50)
imply that the equality in (51) is possible only if

1o4] =V - lel® .

Thus we have proved the following: up to a factor of modulus
1, the only functions to be considered are

]/ 2
(54) fo(z) =2 Va=lcl™

1 - c¢2

It is easy to prove that these functionms are in K. Indeed,
suppose the existence of two points z¥ &*e K(0,1) such that
fo(z*) fo(é*) = =1. We easily arrive at the inequality

which is impossible for |[¢| <1 and for [z <1.

This establishes the statement regarding equality in (46).
We are now in a position to obtain the last conclusion of our
W%mmi.&tmtmcmthW‘%@)<1 if A>2 for
each f € K, Indeed, /ﬁq(f) =‘d42(f), AqfiAa , 1s possible

only if f 1i8 constant on lz] = 4 except for a set of mea~
sure zero. Since fo do not have this property and since
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Inequalities for Shah's functions 19

/ta(fo) = 1, we must have (“A(fo)-71 for A >2, This comp-
letes the proof of our theorem.
In view of (52) one obtains

(55) Ibnl <1, n="1, 2, eoe ,

for f €K. This estimate cannot possibly be sharp for n>1 if
f 1is restricted to K. The following theorem provides bounds
for these coefficients which, while not sharp, are of the cor-
rect order.

Theorem 7. Let f£K and

f(Z) = b,lz + b2Z2 + eese o

Denote
Bn = }neakx Ibnl .
Then
| K 31
(56) L g8 <=2 n=2,3,...,

Ve St yer

where Y= 0,577... is Buler’s constant.
Pr oo f. Inequality (49) for a, =4, (n=1,2,e44)

bn’l
and ¢, =——bL (n = 0,1,...) assumes the form
| Py 1Y 2 _ v A4
'_'IBI‘L <e@{_2'[zk’Akol "Z—k] Py n=1’2’00-,
P k=1 C k=
k

with the equality only for A, = S (k = 1,...,n), |c| = 1.
k0 ¥ K

Applying (51) we find
1 1 .
Ibn|<exp{—-§, ?J, N =2, 3,000

In view of
-1

—L%+ log(n - 1) <=7,
k:

=

-~
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20 J.$ladkowska

where ) is Buler’s constant, we prove the right-hand inequa-
lity in (56).

In order to obtain the left-hand inequality we observe
that for the function (54) with ¢ = (1 - 2)} , we have

-1
2 1 1\P 1
bn_3<'1-3) >1 .

This completes the proof of (56).
Nehari in [’7] gave exactly the same inequalities for the
coefficients of Bieberbach-Eilenberg functions.

9. Now we will give some applications of inequality (41).

We begin with an application of inequality (33). By setting
in (33) An =2z% (n=1,2,...) in view of (4) one obtains

Theorem 8. Let feK. Then for |z]|<4

[z |

[£(2)| <« —2—1 .
2\7
This result is the well known distortion theorem for the
class K. By-setting in (41) /ln =z% (n = 0, 1,e..) and

using limiting value where appropriate, we obtain
Theorem 9. Let feK. Then for |z] <1

log £'(z) + log;('l + ]f(z)|2>l_< - log(1 - [zlz) ,

hence
-1
2 @< [ - 120+ @]

Similarly, if in equality (31) we take /'Ln=Zn (n=1,2,.04)
we obtain
Theorem 10. Let feK. Then for |z] <1

£/(2)b,2°
log -—i;(z—;z— + log(’l + If(z)|2) ’4- log(1 - |2]%) ,
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Inequalities for Shah's functions 21

hence

2 , . 2 2 2
o) <o okl 2

This result follows also from the 1inequality obtained by
Jenkins [3], p. 201,

10. We will now give .some application of (31) to the
problem of maximizing of |a5 - ag | in the expansion

Py

2
f(Z)=b1Z+b2Z + seny an=b—1,

f €K, when b,] is given. We see that A,|,| = a3 - ag . Put-
ting now in (31) N =1 and A1 =1 we get
Theorem 1. If -£fegK, then

Ia3 - ag] <1 - |b,‘l2 .

This inequality is sharp, the equality holding for the func-
tion
£(z) b,z
‘(1 + f(z))2 T (1 s2)?

The above inequality is exactly the same as for the class
S, of univalent bounded functions, | £(z)] <1, which is the
subclass of K.
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