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COEFFICIENT INEQUALITIES FOR SHAH'S FUNCTIONS 

The ro le of the Grunsky inequalit ies f o r the coe f -
f i c i en t problem in the theory of univalent functions is well 
known. These inequalities have been sharpened f o r some sub-
classes of univalent functions, f o r example f o r the case of 
bounded univalent functions by Nehari [6 ] and by Schi f fer 
and Tammi [8 ] and f o r the case of Bieberbach-Eilenberg func-
tions by Hummel and Schi f fer [ 2 ] . The purpose of the present 
paper is to sharpen the Grunsky inequalities far the univalent 
functions introduced by Shah [ 9 ] . We w i l l f i r s t arrive at the 
generalized area theorem f o r Shah's functions and, as a d i -
rect consequence, we w i l l obtain a set of inequalities between 
a quadratic and Hermitean form which are typical f o r Grunsky 
estimates. Secondly we give some application f o r these ine-
qualit ies to extremal problems in the family of Shah's func-
tions. 

2. We begin with the following def ini t ion 
D e f i n i t i o n . The class K of a l l functions f 

which are regular and univalent in the unit disk K(0,1), va-
nish at the origin, and have the property that fCz^) f ( z 2 ) ^ 
4 -1 fo r a l l pairs of points z^, z2 in K(0,1), i s called 
the class of Shah's functions. 

Let f e K and 

2 (1) f ( s ) = b1z + b?z + . . . , |z I < 1 . 
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2 J.Sladkowska 

I f f e K, and C r and C^ denote , r e s p e c t i v e l y , t h e curve 

desc r ibed by the p o i n t s w = f ( r e i e ) and w = - [f ( r e i 0 ) ] 
0 < r < ( i f 0 v a r i e s from 0 to 2 Ji , t hen i t i s easy to see 
t h a t Cp i s conta ined i n the i n t e r i o r of the f i n i t e domain 
bounded by C^. Hence, C r and C^ bound a doubly- connected 
domain D r which does not c o n t a i n the o r i g i n . 

Now we cons ide r the f u n c t i o n 
N 

g(iw') a °a w Q +/31og w, - r e a l , 
n=-N 

which i s r e g u l a r a n a l y t i c i n D r and has t h e r e a s i n g l e v a -
lued r e a l p a r t . D r has a p o s i t i v e a r e a i n t h e met r i c 

N 

E 
n~N 

E n ° n w ' 
n-1 . fi 

w dw 

Thus 

/ / l i - v " 1 - ! 
n=-N 

d6 > 0 , 

where d 6 denotes t h e element of Eucl idean a rea i n t h e w-
- p l a n e . Using t h e method of complex i n t e g r a t i o n by p a r t s , we 
t r ans fo rm t h i s i n t o 

\ J Hefg(w) 
- C r < 

and moreover in to 

dg(w) 

(2) 

2Sf 

- H 
Re S ( i ( r e 1 0 ) ] i s ( f ( r e i e ) u 

d© 

f ( r e i 0 ) - 1 g V- f ( r e i 0 ) i 
d9 
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Inequalit ies for Shah%s functions 

To s i m p l i f y t h e c a l c u l a t i o n of t h e i n t e g r a l s i n (2 ) , we s h a l l 
choose the f u n c t i o n g(w) i n an a p p r o p r i a t e wsy. Let 

o ) 
ntm-0 

and 

(4) - l o g ( 1 + f K ) f ( z ) ) = £ B m Z
Q . 

S ince f i s of t h e c l a s s K, bo th power s e r i e s converge i n 
K(0 ,1 )x K(0 ,1 ) . 

Next, we d e f i n e polynomials of degree n i n the v a r i a b l e t 
by means of t h e gene ra t i ng f u n c t i o n 

QO 

(5) i ° s = E " h A ( t ) z Q • 
n=i 

For 0 < | z | < 1 f i x e d and i, s u f f i c i e n t l y near to the o r i g i n , 
we can w r i t e t h e i d e n t i t y (3) i n t he form 

<6, £ < « . i o e m • £ - t i * m ( f - f e ) < • • 
a,m-0 /»- ' Z m-1 \ ' J 

Since f o r { = 0, (3) y i e l d s 

(7) log ^ = £ A q Q z* , 
n=0 

a comparison of equal powers of t, i n (6) l eads to the i d e n -
t i t i e s 

* m ( f f e ) = V m E V z Q 
\ / Z n=Q 

f o r m > 0 , whi le no new in fo rma t ion i s contained i n (6) f o r 
m = 0. 
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4 J.Sladlkowska 

We recognize that 

(J) m(w) a Fm(w) + const , 

where ^ ( w ) are the Faber polynomials for the function f ^ y • 
The matrix ( A ^ ) i s symmetric and occurs in the inequali-
t ies of the Grunsky type. 

From (5) and (4) we have the identi t ies 

(9) QJC*™) = m E BnmiQ • 
n~1 

f o r m > 0, and observe that the matrix (Bam) i s Hermitean. 
Row we can define the function g(w) as fol lows. Let xQ , 

y (n = 1 , . . . ,1T) be 2N complex numbers and xQ a real number. 
Let 

(10) g(w) = xQlog w + £ 
m=l 

xm^m ( -w ) + ^m^mO 

Setting w = f ( z ) into (10), we find from (8) and (9) 
oo y 

g ( f ( z ) ) = x0 log z + + Y^ ~~ii~» 

with 

( 1 1 ) *o = V O O " H m ymAOm » 
m - 1 

IV 

(12) aQ = x0Aa0 + £ mixJxm ~ y m V ' n = 
m-1 

Similarly, setting w = - f ( z ) 
- 1 into (10), we calculate 

8 - f ( z ) 
- 1 -xQlog z + x0(2k + 1)jri + V p>nzn + 
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Inequalities f o r ShahNs functions 5 

with 

(13) A 0 = - X0A00 ~ H 1U ^ O m T n xmAn™ + + 1) tf i , 

(14) /3n = - x0An0 - £ m(xmAnm - y ^ ) , a = 1,2, . . , 
m=1 

We can now evaluate the integrals 
23T 

(15) 

and 

Re f ( r e i 9 ) ! 1 d : ( f ( r e i i© 

de 

2jr 

(16) I 2 = \J Re 8 - f ( r e 1 0 ) - 1 

' ( r 
d . 5 - f ( r e i 0 ) . J 

d0 

We write 

with 

(17) 

f ( z ) = xn log z + P (z ) , 

n=0 n=1 z 

and since P (z ) is single valued in K(0,1), we f ind 

2r 

•V? 
xQlog r + Re |P(z)fl| xn + d P (z ) 

r a. 
0 z 

2n 

= - 2 Tx~log r - X f F d P - x_ / Se{p) d9 . 

Jo J0 

Using the series development (1?) for P (z ) we obtain 

.2 , _ 12_2n (18) = - 2^-XQ log r -J7- ^ n|aQ| r n + 
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6 J ladkowska 

+ 7T 
/y 

£ n l y a n=1 
2r~2a - x0Re <xr 2 jr . 

Similar ly , we evaluate the integral (16) . Applying now the 
decomposition 

g -[f(z)J ~1J = -x0log z + Q(z) 

with 

(19) Q(z) = £ /3Qzn + £ ^ , 
n=0 n-1 

and since Q(z) i s s ingle valued in K(0 ,1 ) , we obtain 
2ir 

" 1 / h 

= -2 JTXq log r + 

log r + Re 

2v 
f 

•Q 

Q(z) 

Q(z) 

dz 
- xQ — + d 

z 
Q(z) 

+ x, 
2 * r 

Q(z) Q( z ) 

Using the ser ies development (19) f o r Q(z), we find 
oo 

(20) I 2 = -2 wXq log r - J r a 2 r 2 a + 

d0. 

+ JT I » K J 

n=1 

2 r~ 2 t l + x0Re 2 jr 

Applying now formulas (18) and (20) to the inequality 

+ i 2 > 0 , 

we f i n a l l y find the estimate 
ti , 

- 4 x 2 log r + £ n ( | x j 2 + |yQ| ) r ~ 2 a > 2 xQ Re a Q - ^ 
n=1 ^ 

+ £ n(|a d | 2 + |^ a | 2 ) . 
n = 1 
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Inequalities for ¡jhah^s functions 7 

Let t ing r tend to 1 we obtain the best possible estimate 

(21) 2 Xq Re oio _ / 3 o . + £ n(|« n | 2 + | ^ J 2 ) < 
n=1 

< t n ( i * j 2 - b j 2 ) . 
n=.l 

Hence "by (11) and (13) 
N 

a o - f l o = 2 X0A00 + E u ( xnAOn " y n W ' 
n=1 

we arr ive at the generalized area theorem for Shah's func-
t i o n s . 

T h e o r e m 1. Let f e K; then 

(22) 4 Re l f N 

A 00 + 2 x 0 R e E a ( xnAOn ~ J q W 
n=l 

N 

+ E a(|«J2 + Mn|
2)<I ̂ K/ + 

n=l n=1 

with 
n 

a = x„A ~ + ; m(x B - ymA„_), n = 1,2,..., n O n O i — m n m ^ m n m ' * * ' 
m-1 

N 

^n = "xOAnO ~ E m ( xi/nm " Q = 1» 2 

where A ^ and B ^ are given "by expansions (3) and (4), are 
s a t i s f i e d f o r any set of complex numbers x m , ym(m = 1 , . . . ,N) 
and for any XQ-real. 

3 . We obtain a b e t t e r insight into i n e q u a l i t i e s (22) by a 
change of v a r i a b l e s . Let 

^n = i ( xn " = i ( xn + yn^' n = 1»2»*' 
1 / -

_ <ion _ 



8 J.áladkowska 

We thus f i a d 

1 
N 

r ( a n = V n O + E m ( £ m V + ^ n m * = V x O ' » 
m-1 

N 

2 <*ri + Ai> = E " f r A ^ = • 
m=1 

Using the decomposit ion 

a + b 2 a - b 
2 2 = 4 ( | a | 2 + | b | 2 ) , 

we can t r ans fo rm (22) i n t o 
N °° 

(23) 2Xq Re Aqq + 2Xq Re £ ( n ^ ) + £ a ( ! V x O ' £ m} I + 

n-f n*1 n . l 

+ I W l 2 ) < E J 2 + k a l 2 ) • 

S u b s t i t u t i n g now ¡1Q = 0 (n = 1 , 2 , . . . ) i n to (23) we f i n d t h e 
e s t ima te 

N » 

( 2 4 ) 2 x 2 R e AQQ + 2 X q R e £ ( n ^ N A Q Q ) + £ n ^ A ^ + 

/?=/ n=1  L  

/v /v 
+ E m^mAnm + f mBnm ¡2 < E ^ J 2 ' 

m~1 n=1 

whi l e f o r xQ and £ n van i sh ing , we o b t a i n the es t imate 

(2 5 ) f l I E ^ v v - U ^ I ^ E Q i ^ i 2 • 

We may s p e c i a l i z e (24) by choosing a l l t o be zero" and 
f i n d the u s e f u l e s t ima te 

(26) 2 Re A 
'00 E Q l A n o l ¿ < 0 ' 

n - 1 
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Inequalities for Shah*s functions 9 

4 . Now we w i l l study the quadratic forms 

E 11131 m Bnnr 

and 
N 

By Schwarz inequal i ty and in view of (24) with xQ = 0 and in 
vi^w of (25)t we obtain 

(27)| f ^ Q ( £ m A n D l + i m Bn m) = I f y s r . ^ Anm + 

n,m=1 n=1 m-,1 

+ i mB ?> m W f / \/?-7 m=1 / 

< I ' 

•(28) | £ nm - | = | f V -
n,m-1 ' ' ~ ' 

- Bnm)| < ( Z > W 2 ) M E n l E m ( ? m V - ?m B n m > n * < 

N N 

m-1 

2\ Vz 

< 
n=1 

By denoting 

A n = n ^ n = a In » 

one obtains from (27) and (28) 

N N 

(29) I T (A A A + B A A )| < V ' K I I—, v nm n m - nm n m'I n1 n1 
nm~i n-1 
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10 J.éladkowska 

N 

Since the form 7] B__ A n is real and since this inequa-um n w 
l i t y holds fo r any complex numbers A^, . . . ,/^, we may pass to 
the inequality 

(50) | t k ^ A n A ^ t l K \ 2 t ¿ W A . 

n,m = 1 n-1 n,m=1 

or, equivalently, H N N 
(3D I Re y a Am y i | A j 2 + y BnmAn i . I i—j nm n m' z_t n n — Z_i nm n m 

n,m-1 n~-1 n,m=l 

5. We thus found an in f in i t e set of necessary conditions 
for a function f to belong to the class K. Observe, howe-
ver, that estimates (29) taken together are already s u f f i -
cient to guarantes the convergence of series (3) and (4) in 
K(0,1) *K(0,1) . Indeed in view of (29) we obtain the inequa-
l i t i e s 

<32) I É v ^ ^ K É Ï W 2 • 

and 

I 

By a proper choice of An in both inequalities (32) and (33) 
we may prove that the coe f f i c ients AQm and ®nm m = 

= 1 , 2 , . . . ) are bounded and as an immédiate consequence of 
this fact and of the fact that the function f is regular in a 
neighborhood of z = 0 we derive the convergence of series 
(3) and (4) in K(0,1) * K(0,1). Hence we have proved 

T h e o r e m 2. Let 

2 
f ( z ) = b^z + b2z + . . . 

be regular in a neighborhood of z = 0 and let A ^ and B ^ 
denote the polynomials in b^, b 2 , . . . given by the expansions 
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Inequalities for Shah*s functions 11 

log f(z) - f ( Q _ 
z = E V z ^ ' Anm = Amn ' 

n,m=0 

- i o S h + f ( ^ f ( Z ) = £ B ^ B = B • nm. ma 

la order that b^, b 2 >... be the coefficients of a Shah's 
function it is necessary and sufficient that the inequalities 

N N N 

\ y A A ^ < r - u i 2 + r B A A I L^ nm a ml ^ Z_, n| n - L-, am n m 
n,m=1 1=1 ntm=-1 

be satisfied for an(y set of complex numbers A ^ . . . , ^ . 

6. The .inequality (31) is analogous to the Nehari 
condition for univalent bouaded fuactions. We shall now drop 
the assumption XQ = 0 in inequality (24). The development 
of this paper shows clearly that the introduction of the ad-
ditional variable XQ is very important in the discussion of 
the coefficient problem. 

To make a further application of inequality (24), we de-
note 

cQ for n = 0, 

n for n = 1, 2,..., 

and instead of (24) we can write the inequality 

( 3 « 2 R e f f B ( | t 
n-0 n-1 m=0 

« Eiuj 
We then consider the expression 

P(A) = Re E A n m ^ m + t 
B„_ A- A _ nm n m 

n,m*0 n,m=l 
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12 J.Sladkowska 

and ask f o r the maximum value of tho r e a l function P(A) under 
the addit ional conditions 

(35) I m A o = 0 ' L i K / ^ • n-1 

We are sure that such a maximum does ex i s t under conditions 
(35) s ince , in view of (26) , Re Aq0 < 0 . 

Using Lagrange mult ip l iers in the complex domain [l ] we 
obtain the maximum conditions 

(36) 

(37) £ 
m^D 

2 Re E n=0 
An0 V = - 1 6 , 

A * + nm m r B X * = r - = 5 nm m n n = 1 , . . . , N f 

|7?=/ 

with r e a l mult ipl iers tf and r and with the extremal point 
I*, o' (A*, A * . . . . , A * ) . i a view of (36) we find 

(38) Re i ^ A 
l n=0 

* 
nO "n = 0 

Using (37) and (38) we obtain from (34) 

(39) l « f 1 * 3 * . £ . ) £ > „ . * : • t < 
" ' n=l m=0 m=i 

__ m i n n ' < E n l E A n m ; i m + E B 

which implies 

( 3 9 ' ) 

On the other hand 

rl < 1 . 

(40) P(A) < Re | + 
n,m=0 

n j i - * 
r B a * A * / . nm n m 

n,m~l 

- 1 8 2 -



Inequalities for Shah %s functions 13 

under the res t r ic t ions (35)• Rewriting (40) in the form 

P(A)<A* Re 
it 

I 
n*o 

+ Re 
N N 

A_* + V B n n Ä* nm m. 

and using (38), (37) and (39 ' ) j we easi ly find 

(40' ) P(A) < Re E K . r ü n 

Final ly , i f (A0, A^ , . . . , A^) i s an arbitrary point, 
- r e a l , one eas i ly confirms that 

(40") P(A) = Re ( f A ^ AQ Am + £ B ^ AQ ¿ J ^ U J 2 . 

We may next r a i s e the question, for which functions f e K 
can equality be achieved in (^40"). The extremum of P(A) can 
only be achieved for such functions for which a l l signs in 
(39), (40) and (40') are equality s igns. In order that equa-
l i t i e s hold in the estimate (39)» we have to demand 

N 

I 
M 

and 

m̂ + Y B m Am = 0 nm m / , nm m 
w=l 

r| = 1 . 

for n > N 

In view of (37) and (38) equality i s true in the estimate 
-(40) i f and only if 

Re Y A, Ls no t 
,7 = 4 

= 0 

and 

V A„m Am + y B A _ = r nm m r 
m~0 

nm m for n = 1 , . . . . 
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14 J.Sladkowska 

Finally, in order that equalities hold in (4-0'), we have to 
demand 

r = 1 . 

Hence, f o r a given vector (Aq, A^ , . . . , A^), the extremum 
function f eK must sat is fy the conditions 

m-0 

N 

L V Am + L Bnm*m = 
m-1 

( n ) A n f o r 

for n> N 

and 

Re A A \ = 0 . no n 

Thus we have proved the following theorem. 
T h e o r e m 3. Let f ( z ) = h^z + bgZ + . . . , be re -

gular in a neighborhood of z = 0 and l e t A ^ and B ^ de-
note the polynomials in b / ] , b 2 , . . . , given by expansions (3) 
and (4 ) . In order that b 1 t b 2 » . . . be the coef f ic ients of a 
Shah's function is necessaiy and suf f ic ient that the ine-
qualit ies 

M R e f t VAnAmj<Î^ I V 2 - t 
1 n,m=0 n=1 n,m = l 

m 

be sat is f ied f o r any set of complex numbers A^, A . A 
and AQ - r ea l . Equality in (41) i s true i f and only i f 

N 

Re EA„„ A_ no n 
n=0 

= 0 

and 

E AnmAm + E BrmAm = 
m-0 m-1 

f o r 

f o r 

0 < n < N, 

n > N . 
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Inequalities for Shah*s functions 15 

7. We w i l l now give applications of inequalities (22) and 
(41). We begin with an application of inequality (26) which 
follows from (22). 

Since by (26) we clearly have 

(42) Re A, "00 < 0 

and since Aqq = log f ' ( 0 ) = log b^, we arrive at theorem 
T h e o r e m 4. For any f e K there holds 

(43) 

or 

(44) 

f ' ( 0 ) < 1 , 

b J < 1 . 

Next;» we can use the Schwarz inequality to f ind 

log f ( z ) = Re 
n=0 

and hence by (26) 

I nO < Re Ioo 
+ I . QlAnO|2 ' l o s ; ¡ f r p 

n=1 

Z * K o \ 2 < - 2 R e 
n-1 

A00' » 

we have theorem 
T h e o r e m 5« For any f 6 K there hoids 

l f ( z ) 
z , 

l o g | ^ Z | < log | f1 + 2 log(1 - |z|a) , 

or, equivalently, 

(1 - U j 2 ) 

- -i85 -



16 J.¿ladkowska 

8. Let 
23! 

(45) /¿(f) = lim 
I r - - 1 

¿ / | f ( r e i 0 ) | d6 X A > o . > 

The fol lowing result also fol lows from the estimate (26). 
T h e o r e m 6. I f f e K and f ( z ) = t^z + t^z 2 + . . . 

and i f Xi ( f ) denotes the mean.value (45), then 

(46) A 2 ( f ) < 1 , 

or, equivale nt ly, 

Inequality (46) is sharp in two respects: i f 0 < M < 1 and 
2<A<°~, then in general neither the inequality ^ ( f ) < M 
nor the inequality < 1 i s true. Tke equality in (46) 
holds only f o r the function 

(47) f (a ) z , |c | < 1, <p - r e a l . 1 — cz 

I t is wel l known that a ( f ) i s a non-decreasing func-/i 
t ion of A and that,therefore, (46) is stronger than the ine-
quality ^ ( f ) < 1 . 

P r o o f . The fol lowing theorem was shown "by Lebedev 
and Mil in [4] , [ 5 ] . 

T h e o r e m . For any sequence a^, a 2 , . . „ such that 

I - K J 
n=1 

the numbers c^, g^,... defined by the power series expansion' 

n-0 

- 1 Rfi _ 



Inequalities for Shah*s functions 17 

are subject to the inequality 

(48) E «H EqKI 
n-0  1 n=1 

where the sign of equality is possible only i f aQ = — , 
(rt="1f2,... ) |c|<1. For the coe f f ic ient cQ i t s e l f , these 
authors obtain the inequality 

(49) cQ < exp ti 
1 k=1 k-1 

with the equality onl^ fo r aQ = — (n=1 t 2, . . . ) |c | = 1. 
To prove out theorem, we apply (49) to the case where the 

coe f f ic ients 

an = An0 ' 

and 

n = 1, 2, . . . , 

cn " b„ ' n = 0, 1, . . . . 

Indeed, in view of inequality (26) and identity (7) we are in 
a position to apply the above theorem. At f i r s t in view of ' 
(48) we f ind 

p a o o 

E ^fE^Ko (50) 

n-1 L 

and, secondly, in view of 

(51) V n|AQ0 !2 < - 2 l o g l ^ | , 
n=i 

we have the inequality 
OQ 

(52) £ | b j 2 < 1 . 
n=1 
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18 J.¿ladkowska 

The equal i ty in (50) i s possible only i f 

(53) A q 0 = £ n = 1, 2, |o I <1 

which means that 

f ( z ) = 1-CZ ' | o | < 1 . 

Conditions (53) under which there i s equal i ty in (50) 
imply that the equal i ty in (51) i s possible only i f 

Thus we have proved the fol lowing! up to a fac tor of modulus 
1, the only functions to be considered are 

I t i s easy to prove that these functions are in K. Indeed, 
suppose the existence of two points z*, ¿ ,*eK(0,1) such that 
f Q ( z * ) f (è*) = -1 . We eas i ly a r r i ve at the inequal i ty 

which i s impossible for |c| < 1 and for |z*| <1 . 
This es tabl i shes the statement regarding equal i ty in (46). 

We are now in a posit ion to obtain the l a s t conclusion of our 
theorem, i . e. tha t we cannot have ¿¿¿ ( f ) < 1 i f A > 2 for 
each f £ K. Indeed, fa ( f ) = ( f ) , /L<A;> , i s possible 

1 2 
only i f f i^ constant on |z| = 1 except for a set of mea-
sure zero. Since f do not have th i s property and since 

|b,| =Vl - Ici2' 

(54) 

- 1 8 8 -



Inequalities for Shah*s functions 19 

^2(fQ) = 1, we must have >1 for A >2. This comp-
letes the proof of our theorem. 

In view of (52) one obtains 

(55) K J <1. n = 1, 2, ... , 

for f 6K. This estimate cannot possibly be sharp for n>1 if 
f is restricted to K. The following theorem provides bounds 
for these coefficients which, while not sharp, aie of the cor-
rect order. 

T h e o r e m 7. Let f e K and 

Denote 

Then 

f(z) = by| z + b2zd + 

B„ = max b 

I • • • 

n 
fe* 

n 

(56) 
2 
< B„< 

AT 
Vn ^ n VnPT ' 

n = 2,3,..., 

where y= 0,577... is Euler's constant. 
P r o o f . Inequality (49) for & = A ~ •u - n nu (n = 1,2,...) 

and c = -5±1 n b^ 

bn+1 
b1 < exp 

(n = 0,1,...) assumes the form 

" -i -Li] k-1 n = 1,2, 

with the equality only for A^Q = -g- (k = 1,...,n), |c | = 1. 
Applying (51) we find 

l 1 V 1 0 • 2 L> X i ' n = 3,... J 
[ bn I < exp 

In view of 

- £ i + i o ® ( n - 1 ) 

- 189 -



20 J.£ladkowska 

where f i s E u l e r ' s constant , we prove the right-hand, inequa-
l i t y in ( 5 6 ) . 

In order to obtain the l e f t -hand inequal i ty we observe A £ 
that f o r the function (54) with c = (1 - —)* , we have 

h 2 1 > 1 
b n = n - n J > ¿E ' 

This completes the proof of ( 5 6 ) . 
Nehari in [7] gave exac t ly the same i n e q u a l i t i e s f o r the 

c o e f f i c i e n t s of Bieberbach-Eilenberg funct ions . 

9_. Now we w i l l give some appl ica t ions of inequal i ty ( 4 1 ) . 
We begin with an a p p l i c a t i o n of i n e q u a l i t y ( 5 5 ) . By s e t t i n g 
in (55) An = z n (n = 1 , 2 , . . . ) in view of (4) one obtains 

T h e o r e m 8 . Let f 6 K. Then f o r |z|<1 

| f ( z ) | < l^i 
1 - z 12\T 

This r e s u l t i s the well known d i s t o r t i o n theorem f o r the 
c l a s s K. B y ' s e t t i n g in (41) An = z n (n = 0, 1 , . . . ) and 
using l imi t ing value where appropriate , we obtain 

T h e o r e m 9 . Let f e K. Then f o r |z | < 1 

log f ' ( z ) + l o g h + | f (z) | < - log(1 - f a r ) , 

hence 

| f ' ( z ) | < [ ( 1 - |z|2)(1 +• |f (z )| 2 ) 
- 1 

S i m i l a r l y , i f in equal i ty (51) we take /ln=z11 ( n = 1 , 2 , . . . ) 
we obtain 

T h e o r e m 1 0 . Let f e K. Then f o r Izl < 1 

log 
f ' ( z ) b l Z £ 

f 2 ( z ) 
+ l o g h + | f (z) • < - i o g ( i - \zn , 
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hence 

This result follows also from the inequality obtained by 
Jenkins [ 3 ] , p. 201. 

10. We will now give .some application of (31) to the 
~ 2 | problem of maximizing of | a^ - ag | in the expansion 

2 bn f(z) = b^z + b2z + ..., a n = -̂ j- , 

2 
f when b^ is given. We see that A ^ = a^ - a.̂  • Put-
ting now in (31) N = 1 and /L, = 1 we get 

T h e o r e m 11. If -f e K, then 

This inequality is sharp, the equality holding for the func-
tion 

f(z) _ T^z 

'(l + f(z)jH ~ (1 + z)2 ' 

The above inequality is exactly the same as for the class 
of univalent bounded functions, |f(z)|<1, which is the 

subclass of K. 
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