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ON INTEGRO-DIFFERENTIAL EQUATIONS 
OF PARABOLIC TYPE WITH FUNCTIONAL ARGUMENTS 

IN UNBOUNDED DOMAINS 

l a paper [5J there was proved, among other theorems, a 
theorem on t h e e x i s t e n c e of a unique s o l u t i o n of the f i r s t 
Four ier problem in a bounded domain f o r a system of s e m i l i -
near parabo l i c i n t e g r o - d i ' f f e r e n t i a l equations with f u n c t i o n a l 
arguments. 

In t h i s paper we extend the above r e s u l t to a domain un-
bounded in the d i r e c t i o n of the t i m e - a x i s . At f i r s t we der ive 
some es t imate of Friedman's type f o r a s o l u t i o n of the f i r s t 
F o u r i e r problem in the considered domain f o r a s i n g l e l i n e a r 
p a r a b o l i c equation. This est imate enable us to apply the Ba-
nach f i x e d point theorem and to prove the e x i s t e n c e mentioned. 
The same r e s u l t s are a l so obtained f o r the h a l f - s p a c e . 

1 . An est imate of the s o l u t i o n of a l i n e a r problem 
Let G be an open domain of the Euclidean space E ^ of the 

v a r i a b l e s ( x , t ) = ( x ^ , . . . , x n , t ) whose boundary c o n s i s t s of a 
c losed domain RQ of the hyperplane t=0 and of a sur face S 
s i t u a t e d in the h a l f - s p a c e t > 0 . We assume t h a t f o r every 
r > 0 the domain 

i s bounded. 
Let h = h ( t ) be a f u n c t i o n defined f o r t > 0 and p o s s e s -

sing continuous, non-negative and non-decreasing d e r i v a t i v e 
h ' ( t ) . We introduce the fo l lowing norms: 
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H.Ugowski 

u|£ = sup I e-h(t)u(P)L p = (x,t), 
m , o p € f i i i 

I Gr I I G k. _ = U k. + sup exp -h( max(t, t') u(P)-u(P')| 
[d(P,P')f 

I Gr I I Gr l | - ̂  Ul h,1+a = Mh,a + L KJ*1.* (0<<X<C1), 
i-1 1 

where 

d(P,P') = (|x-xf + |t-t'|)? , 1x-x'|= ¿ ( xi- x0 
1=1 

The set of all functions u(x,t) for which |u|,̂ /t̂ a<c»(k=0,1) 
will be denoted "by ^ hk-nx

 case h=h(t) = 0 we shall 
omit the superscript 0. Note that Ch is a Banach space. 

In this section we deduce an estimate for the norm 
i i c M w h e r e u(x,t) is a solution of the problem 

n n 

(1.1) Lu = ̂  ai^x't^ux.x. + X + c(x»t)u~ ut = 

= f(x,t), (x,t)e G , 

(1.2) u(x,t) = p(x,t), (x,t)f[=E0uS 1) 

The following assumptions will "be needed (see section 1 
of [2]). 

(1.1) For every r>0 the following' conditions are ful-
filled: 

1° the operator L (with a.. = a..) is uniformly parabo-
lie in the domain G ; 

' By a solution of this problem 
lar solution, i.e. continuous in the 
continuous derivatives appearing in 

we shall_always understand a regu-
domain G and possessing in G 
Lu. 
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On integro-differentlal equations 

2° the c o e f f i c i en t s of the operator L sa t i s f y in G' the 
uniform Holder condition with exponent ae (0,1) independent 
of t ; 

3° the coe f f i c i en t s a.H sa t i s f y the uniform Lipschitz 
condition on the surface 

( x , t ) : ,0 < t < r S r = S n 

( 1 . I I ) The function 9?(x,t) defined on £ possesses an 
extension $ ( x , t ) which belongs to C^+/}(Gr) n C2+cc (G r ) ( 0 < 
</3<1 ) f o r every r > 0. 

( 1 . I I I ) For every r > 0 the function f ( x , t ) s a t i s f i e s in 
V G the uniform Holder condition with exponent a and 

L $ (x ,0 ) = f ( x , 0 ) f o r ( x , 0 ) e d R „ . c 

(1 . IV ) For every r > 0 the surface S r "belongs "both to 
0 2 + c t and to C ^ (see [2], p. 257). 

I t f o l l ows from assumption (1.1) the existence of a pos i -
t i v e non-increalsing function K Q ( r ) ( r > 0 ) and pos i t i ve 
non-decreasing functions K^(r ) and K 2 ( r ) ( r > 0 ) such that 

(1 .3 ) J ] a i d ( x , t ) > K 0 ( r ) | 4 r , ( x , t ) e G r , |<?En, 
(J-1 

<-«•*> £laidl?+ I M Î + Mf^r). 
I,J-1 i-t 

M.5) thiC^M. 

T h e o r e m 1. I f assumptions (1.1) - (1 . IV ) are sa-
t i s f i e d , then problem (1 .1 ) , (1 .2 ) has a unique solution 
u { x , t ) . Moreover, f o r every a e (0 ,1 ) there exists a function 
h=h(t ) depending only on a, ot, /A , K. ( f ) ( i =0 ,1 f 2 ) and on 
the domain G and possessing the fo l lowing propert ies: 
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1° h ( t ) is defined fo r t > 0 and i t has continuous non-

2° the norms 
-decreasing derivative h ' ( t ) > 1 ; 

are f i n i t e ; 
3° there holds true the estimate 

(1'.6) | u | ^ < a ( | f | ® f 0 + | L $ | ® 0 ) 

P r o o f f The f i r s t part of the theorem follows from 
the existence of a unique solution of the problem 

Lu = f ( x , t ) , ( x , t ) e 

u (x , t ) = <?(x,t), ( x , t ) e Y 7 = K ° 8 * 

f o r every r > 0 (see Theorem 7 of [ l ] , p. 65). 
Now we shall prove the second part of the theorem in the 

case y ( x , t ) = 0. At f i r s t we choose an arbitrary function 
h=h(t) satisfying the condition 1° of Theorem 1 and such that 

h ( t ) ^ C , + ln f| f ( x , t )| ¡J13) (CL=const.), 

where Gt = |x : ( x , t ) e G \ S j . Then |f|^ 0 . < ~ ' In the fur -
ther considerations the functions h ( t ) and h ' ( t ) w i l l be 
suitably enlarged ( in the case of necessity) in such a manner 
that their monotonicity and continuity w i l l be preserve. 

Proceeding l ike in [l ] (section 3, chapter V I I ) we shall 
c 

estimate the norm . For this purpose we extend the 
coe f f i c ients of L into a closed cylinder Q = DQ x [o ,2 ] 
containing the domain (? in such st manner that the extended 
functions satisfy the uniform Holder condition (with exponent 
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On integro-differential equations 5 

oc) and such that (1.3), (1.4) hold in fi0 with KQ(2), 1^(2) 
possibly replaced by the other constant depending only on 
Kq(2), K^(2). Let P(x,t;|,r) be the fundamental solution 
in £2 (for the extension of L). We shall need the following 
lemma. 

L e m m a 1. Let SL = E x [o, <f j, where EcD q and ¿"6(0,2] 
is an arbitrary constant. Assume that h(t) is a function sa-
tisfying condition 1 of Theorem 1 • Then for any (0,1) 
there exists a constant M > 0 depending only on a , y3, KQ(2) 
and K^(2) such that for any continuous function g(x,t) in£2 
the function 

t 

v(x,t) =/dr/T(x,t;^,r)g(i,r)d4 
Jo J£ 

fulfils the inequality 

(1.7) M[h'(o)]-r|SjJ)0 , 

where r = (1-/3)/(>/3).. 
The proof of this lemma is quite similar to that of Theo-

rem 1 of k]. 
G 1 

Now we shall estimate the norm |u|/, ̂ +/3 with sufficiently 
small <T . At first we derive the interior estimates. Let 
= E x [0, fj c G2 \ S2, where the boundary 3E of E is of class 

C1+ct. The solution u(x,t) of problem (1.1), (1.2) (with 
<p(x,t) = 0) is given in the domain £ by the .formula 

t 

(1.8) u(x,t) = -y"dryfrx,t;£,r)f(f ,r)df + i 
+ J dr/V(x,t;4,r)k(£,r)d£ s u^x.t) + u2(x,t), 

0 3£ 

where the function k(y,t) (je 3 E, 0 < t"<<^ is defined as 
follows 

~ i 
(1.9) k(y,t) = 2F(y,t) + 2 £ / d r / Mk(y,t; f, r )F(|,r)df 

k.1 0 -g£ 
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6 H.Ugowski 

and 

M„ (y t . f r ) 2 ^ ( y t t ; g , r ) 

I t f o l l o w s f rom the e s t i m a t e 

j r ( x , t ; £ , r ) 
J p ( x , t ) 

1 - §-<^¿<1 

t h a t 

(1 .10) 
' 1=1 i h ,o . 

QO 

Since f o r t h e s e r i e s V M, ( x , t ; | , r ) ho ld s t r u e the same e s -
t i m a t e as f o r j^y (wi th o t h e r cons t an t M^) t h e r e f o r e , by 
( 1 . 9 ) , ( 1 . 1 0 ) , we have 

( 1 . 1 1 ) k " n < M, 
' ^ i h , o 

Wow l e t = B x , where B c B c E. For every 
and re(0,<T) ho lds t r u e the e s t i m a t e ( see i n e q u a l i t y (2 .29) 
of [ l ] , p . 194-) 

(1 .12) r ( x , t ; i f r ) % ' 

where the norm i s taken with respect t o ( x , t ) e ^ and T ( x , t ; | , r ) 
i s de f ined to be zero f o r t < r . Hence we o b t a i n , f o r x , x ' e B 
and t 6 (0 ,<D, the f o l l o w i n g i n e q u a l i t i e s 
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On I n t e g r o - d i f f e r e n t i a l equations 

Mt) , . -h(t)f h(t) r -h(r) . 
( 1 . 1 3 ) e | u 2 ( x , t ) | < e / e dr/\r(x,f,i,r)\e | k ( £ , r ) | d 4 < 

o JdE 

<M5[h'(0)]-1|ki"°0 , 

(1.14) e h(t>\x - x'|"^|u2(x,t) - u 2 ( x ' , t ) | < 

-hlt}je^vhrJ I Hx , t ; ^ r ) - r ( x ; t ; g , r) |Q -m^^v) ^ < 

t 
-hit) 

< e 
"0 J3l 

< m5 h ' ( O ) - ' I M t • 

I f x eB and 0 < t < t ' <<5", then 

( t ' - t ) \r(x,M,r)\< (t'-r)'^ \ rU,t\£,r)\ < const. 

Hence and by (1.12) we have 

(1.15) e ' h ( t \ f - t ) ' m |a2 (x,t ) - a 2 ( x , t ' ) | < 

Je-h(thhLTUrf e W|k(|,r)|af + 
J0 ^ 

i dE (t' —t) 

s0 
< M6|h'(0)|-1|k|h>o . 

Since the estimates (1.13)-(1»15) hold true also for deriva-
d 

t ives -5— therefore, in view of (1.11), 
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- 1 

This inequality together with the estimate (1.7) for the func-
tion u^ixjt) imply (by (1.8)) that 

(1 .16) |u I ̂  < M, I <h,1+/3 

where the constant Mg> 0 depends only on B,E,a,/3,K0(2) and 
1^(2). 

In order to obtain the boundary estimates for the func-
tion u(x,t) in G we use the integral representation of 
the function U'(z,t) which was established in section 3.2, 
chapter VII of [1 ], where U'(z,t) is defined by relations 
(3.5) - (3.11) (of the above-mentioned section 3.2). Proce-
eding similarly to the proof of the interior estimates (1.16) 
one can derive counterparts of inequalities (3.20) and (3.21) 
(of [l]) in the "h-norm". Therefore, as a counterpart of (3*22). 
(of [1]) we get 

where <Te (0,2] is sufficiently small and M^ is a positive 
constant depending only on a, j3, and K^(2) {i=0,1,2). 
Hence, if h' (0) is such that 

Mgfh'iO)]-1, <1/2 2), 

then 

Otherwise we enlarge h'(0) in such a way that this inequality 
is satisfied. 
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On integro-differential equations 9 

Let us denote toy (0<p<q) the domain G n 
p < t < q 
from the 

(x,t): 
and by its parabolic boundai^. It follows 

proof of (1.17) that for any £ e [o,2- <f] and any func-
tion geCct(Gs>'i"ff) such that g(x,p)=0 on S, ' the solution 
v(x,t) of the problem 

(1.18) Lv = g(x,t), (x,t)e 

(1.19) v(x,t) = 0, (x,t)e^p/? + 

fulfils the inequality 

<M[h'(?)]"r|g| 

provided <T is sufficiently small depending only on a ,/3, G 
and K^(2) (i=0,1,2). Hence, by the ¡nonotonicity of h'(t), 
we have 

Further, repeating the argumentation of section 3.3 of [l] 
(p. 200,201) we obtain the estimate 

p 
where H q > 0 is a constant depending only on a,y3, G and 
Ki(2) (i=0,1,2). Hence, if h'(0) is so large that 

H [h'(0)]-r < a / 2 ^ \ 

3) See the footnote 2) 
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10 H.Ugowski 

then 

where a e ( 0 , 1 ) i s an a r b i t r a r y f i x e d number. 
Now we proceed to e s t i m a t e the 'norm lufjj/^ • For t h i s 

purpose i t s u f f i c e s to e s t i m a t e the norms 

Q k,k+1 
l u I h, 1 + p> ( k = 2 , 3 , . . . ) . 

At f i r s t note t h a t from the proof of ( 1 . 2 0 ) i t f o l l o w s t h a t 
f o r any g>0 and any f u n c t i o n g s C c t (G ? '^ ' 2 ) such t h a t 
g ( x , p ) = 0 on S , the s o l u t i o n v ( x , t ) of problem ( 1 . 1 8 ) , 
( 1 . 1 9 ) with <T=2 s a t i s f i e s the i n e q u a l i t y 

i iG*'?"2 r , , >1 - r i ifiC'*"2 

Wkt+fi (9)} r | s | h , 0 • 

g.o*2 

where H$> > 0 i s a constant depending only on a ,/S , G 
and K^ip) ( i = 0 , 1 , 2 ) . This i n e q u a l i t y w i l l be used f o r p = 
= 1 , 2 , . . . in the c a s e when 

H ? [ h ' ( ? ) ] - r < a . 2 ^ V ; 

then 

i S'3 i iSf>t*1 ( 1 . 2 2 ) | v | M + y 6 < a . 2 y | g | h ) 0 

, , G 2 ' 5 

Wow we e s t i m a t e the norm M/ JV^ • t h i s purpose l e t us 
c o n s i d e r the f u n c t i o n v ( x , t ) = f ( t - 1 ) u ( x , t ) , where 

^ See the footnote 2) 
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On integro-differential equations 11 

f ( t ) = 

2 t , 0 < t < 1 / 2 , 

- 2 t 2 + 4 t - 1 , 1 / 2 < t < 1 , 

1 , t > 1 . 

I t i s easy to see t h a t 

Lv = f ( t - 1 ) f ( x , t ) - | J ( t - 1 ) u , ( x , t ) e & 1 , , 3 N E 1 ' 3 , 

v ( x , t ) = 0 , ( x , t ) e £ 1 ' 3 . 

S ince 0 < | ( t ) < 1 and 2, t h e r e f o r e , by (1 .22 ) , 
have 

Hence, i n view of the r e l a t i o n 

we 

v ( x , t ) 5 u ( i f t ) , (x, t ) e G 2 ' 5 

and by ( 1 . 2 1 ) , t h e r e i s s a t i s f i e d the i n e q u a l i t y 

Using the p rev ious method wi th G 1 ' 5 , , £ ( t - 1 ) and 
4 ' ( t - 1 ) r ep l aced by G 2 ' \ £ 2 ' 4 , | ( t - 2 ) and f ' ( t - 2 ) , r e s -
p e c t i v e l y , we ge t the e s t ima te 

U uji 
G 
h ,o 

Proceeding i n the above manner one can easy to check, by 
i n d u c t i o n , t h a t 

(1 .23) • v , , pk+1 
H * ^ < 2 a K , o ( k = 2 , 3 , . ' . . ) . 
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12 H.Ugowski 

I n e q u a l i t i e s ( 1 . 2 1 ) and ( 1 . 2 3 ) imply the est imate 

( 1 . 2 4 ) M , % < a | f | G h, o ' 

Now we are going to the case when ç ? ( x , t ) # 0 . Then the 
f u n c t i o n v ( x , t ) = u ( x , t ) - $ ( x , t ) i s a s o l u t i o n of the problem 

Lv = f ( x , t ) - L ( x , t ) e G , 

v ( x , t ) = 0 , ( x , t ) e £ . 

We impose the fo l lowing condi t ions on the func t ion h ( t ) : 

Gx 
exp h ( t ) > C g j L ^ i x . t ) ! ^ 

exp h ( t ) > Co I 4 ( x , t ) | 

exp h ( t ) > C2 max ( x , t ) | 

exp h ( t ) > CP sup -
P.P'etP 

^ ( x ' . t ' ) - j > ( x , t ) | 

[ d ( P , P ' ) f 

exp h ( t ) > C2 max sup_-
RP'eG1 

[$> ( x ' , t ' ) - $ ( x , t ) | 
I i i ' 

[d(P.P')]/ 3 

being a p o s i t i v e c o n s t a n t . These condit ions y i e l d the r e -
l a t i o n 

M l h . O ' 

Hence, by ( 1 . 2 4 ) , we have 
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On integro-differential equations 13 

which immediately implies ( 1 . 6 ) . Thus Theorem 1 is completely 
proved. 

R e m a r k . I t follows from the above proof that the 
estimate ( 1 . 6 ) remains valid in each of the following two 
cases: 

1° i f we replace the function h ( t ) by a function h ^ ( t ) 
sa t is fying condition 1° of Theorem 1 and such that h ^ ( t ) > h ( t ) 
and h 1 / ( t ) > h ' ( t ) ; 

2° i f we replace the functions f ( x , t ) , 4> ( x , t ) by other 
functions sat isfying assumptions ( 1 . I I ) , ( 1 . I I I ) and condi-
t ion 2° of Theorem 1 . 

2 . On the f i r s t Fourier problem for a system of i n t e g r o - d i f -
f e r e n t i a l equations with functional arguments 

T 
Let G (T =const . < 0 ) be a bounded open domain of the 

— — 5) 
space E ^, enclosed by domains Hm and Rn lying on the 

xo T 
planes t=TQ and t=0 respect ively , and by a surface S 
si tuated in the s t r i p T Q < t < 0 . 

In this sect ion we are dealing with the existence and 
uniqueness of solutions of the problem: 

= ( x , t ) u j x + c k ( x , t ) u k - uk = 
U=-1 i j ¿=1 i 

(2.1) 
= F k ( x , t , r k ( u ( x , t ) ) , f k ( u ( x , t ) j , r k | u ( x , t ) j j , ( x , t ) e G , 

(2 .2) u k ( x , t ) = < ? k ( x , t ) , ( x , t ) e G- °u 3 ( k = 1 , . . . ,N), 

where 

r k { ^ i ( x , t ) ) = ^ u i ( x , t ) , . u ^ _ ( x , t ) ', ^ ^ ( y . t ^ f x . t j d y ) 

^ We shall use the notation of the previous section. 
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14 H.Ugowski 

J u'-iy.rJv^U.tjdy.dr) 

u 

f i / k i , \ k i / u I w, 

where k , i = 1 , . . . , N { j = 1 , . . . , n ; « = 2 , 3 , 

r Tn G f c = x : ( x , t ) e G u K Q u G , t > T ' r 

Functions q, s , transformations w, z and measures / i , v 
(occurring in the d e f i n i t i o n s o f symbols ) w i l l "be de-
f ined in assumptions ( 2 . I V ) , (2.V) and ( 2 . V I ) , r e s p e c t i v e l y . 

The fol lowing assumptions are introduced: 
( 2 . 1 ) The operators L k ( k = 1 , . . . , N ) s a t i s f y assumption 

( 1 . 1 ) , i . e . the i n e q u a l i t i e s ( 1 . 3 ) - ( 1 . 5 ) hold true with a-
k k k b . and c replaced "by a- b. and c , r e s p e c t i v e l y . J. J-J X 

( 2 . I I ) The functions F15" f x , t , . . . , p ^ ° , p 2 , . . . ,P 2 ° iP3» • • • 
Nn\ 

• ••»P3 ) ( k = 1 , . . . , N ; F0=3N+nN) are defined in the se t G x 
and f u l f i l the fol lowing condit ions : 

1° For any r > 0 and any bounded domain H C E , n func-
k . 0 

t i o n s F (x , t . ,p^ ,P2»Pj ) s a t i s f y the uniform Holder condit ion 
with exponent a in ( x , t ) e G ^ , uniformly with respect to 
( P 1 , P 2 . P 3 ) e H. 
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On integro-differential equations 15 

2° There e x i s t a p o s i t i v e c o n s t a n t M̂  and a - p o s i t i v e 

f u n c t i o n M ^ t ) ( t > 0) such, t h a t f o r any ( x , t ) e G and 

p ^ p ^ e E j j (1=1,2 ,3) v;e have 
o 

(2.3) |F k (x ,t ,p 1 f p 2 ,p 3 ) - F k ( x , t , P l , p 2 , p 5 ) | <M 1 ( |p 1 -p / ) | + 

+ | p 2 - P 2 l ) + M 2( t )|P5-F r 3l > 

where 

i pi-?! i = tH 
j-1 

1 N 
_ ( 2 . I l l ) The v e c t o r - f u n c t i o n q = (<? , . . . , <p ) , d e f i n e d on 
T T 

G be longs to °) ( 0 < / J < 1 ) and p o s s e s s e s such 

an e x t e n s i o n 4> = t h a t 4> e C ^ ( G r ) r> C ^ ( G r ) 6 ) 

f o r every r > 0 . Moreover , i f a f u n c t i o n ("belonging to 

s i o n of y , then 

C1+/3^G^n C 2 + / G ^ ( 0 < r < 1 ) f o r every r > 0) i s an e x t e n -

L k $ k = F k ( x , 0 , fk(<f>), ( x , 0 ) ^ E o . 

( 2 . I V ) The f u n c t i o n s q k ^'(t) , s k ^ ( t ) ( k , j = 1 , . . . ,N; i=1, 

. . . , 6 ; 1=-1,2; m = 1 , . . . , n ) map the i n t e r v a l (0,=«) i n t o (T , » ) 

and s a t i s f y the u n i f o r m H o l d e r c o n d i t i o n w i t h exponent otQ/2 

(0 < a Q < 1) i n every i n t e r v a l ( 0 , r ) , 0 < r < ° ° . Moreover 

q k d ( t ) , s | ^ ( t ) < t , k , j = 1 , . . . , N ; 1=^,5,6; m = 1 , . . . , n . 

(2 .V) For every t > 0 the t r a n s f o r m a t i o n s wk^ and z k ^ 

map G+. i n t o G ,„. and G , . , r e s p e c t i v e l y . These 

6) For the definitions of these symbols see section 2 of [2], 
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16 H.Ugowski 

transformations satisfy the uniform H61der condition with ex-
ponent oc in every domain G r (r > 0), i.e. for any P(x,t), 
P'(x',t ') 6 G^ we have 

|wfd(P) - w ^ ( P ' ) | , |zJ£(P) - zg(P')|<M(f) d(P,P') 
06. 

M(r) being a positive constant depending on t . 
(2.VI) Let us denote by ra~t (t>0) the C-field of all Bo-

rel's subsets of Gt and-by 71 the tf-field of all Borel's 
subsets of G. By ^¿^(x,t;D) and v^(x,t;D) (i=1,2,3; j,k= 
=1,...,N) we will denote finite non-negative measures (depen-
ding on x eG^ and (x,t)e G, respectively) defined on mt 

and T1 , respectively. The following conditions are imposed: 
1° There is a positive constant 0 such that for any 

(x,t)e G 

(2.4) ^ ( x , t ; G t ) , v f ^ x . t j G X ^ Wi 

2 For every r > 0 there exists finite non-negative mea-
sure fi (resp. v ) defined on the Borel's subsets of the domain 
(J G t (resp. G r) such that for any P(x,t), P'(x',t')e G r we 

have 

| ^ ( x , t } D ) ' - ^ ( x ' , t ' ; D ) | < ^(D) Td(P,P' 

if G t n Gt< i 0 and D e 1711 n 717 , 

resp. |v^(x,t;D) - yJ^x'.t'jD)^ v(D)[d(P,P') 

if D e 77 and D c Grj , 

where a^ e(0,l) is a constant independent of f . 
3° For every r > 0 there is a constant N 2 ( r ) > 0 such 

that for any (x,t) £ W 
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tf^x.tiDXH^r^tD), D ( f t l 

^resp. ^ ^ ( ^ n ^ C D ) , D e Tl, D C G ^ , 

m^D) (resp. mo(D)) being the n-dimensional (resp.(n+1)-dimen-
7) 

sioixal) Lebesgue measure of D ' ' . 
In order to formulate the existence and uniqueness theo-

rem f o r the considered problem l e t us put 

q ( t ) = sup max q ^ ( r ) , s ( t ) = max s ^ ( t ) , 
r<£ KM Kpn Im 

where k , j = 1 , . . . i = 1 , 2 , 3 ; m=1 , . . . , n . 
T h e o r e m 2. Under assumptions ( 1 . I V ) , ( 2 . I ) - ( 2 . V I ) 

there exists a function h ( t ) depending only on a.,yS, M ,̂ N^, 
K^Ct) ( i=0,1,2 ) and on the domain G and possessing the f o l l o -
wing properties» 

1° h ( t ) i s defined f o r t > f Q and i t has continuous de-* 
r i va t i ve h ' ( t ) > 1; 

2° the norms 

| - ^ ( x f t , 0 f 0 f 0 ) | g f O f | L k $ k | j f 0 , \ * % f / i ( W I ) 

are f i n i t e ; 
3° i f 

(2 .5 ) M 2 ( t ) < exp h ( t ) - h max q ( t ) , s ( t ) 

st N 
then problem (2 .1 ) , (2 .2) has a unique solution u='(u , . . . , u ) 

4T - ' -in the space CA' (ß) where Û = G~°u G. 

^ For this condition remains valid Remark 2 of section 2 of fal. 
8) N 

denotes the Banach space of a l l vector-functions 
u = (u^ , . . . ,u N ) with finite norm 

I- \up fai \*1*fi 
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18 H.Ugowski 

P r o of. Let us consider the problem 

(2.6) Lkuk = f^x.t) = F^x.t,0,0,0) - F^(x,0,0,0,0) + 

+ Lk $k(x,0), (x,t)e G (k=1,...,N), 

(2.7) 

For 

(2.8) 

uk(x,t) = fk(x,t), (x,t)e £ . 

a = 2N(1+M1)(1+2M1) - 1 

there exist (by Theorem 1.) functions h (t) (k=1,...,N) sa-
tisfying condition 1° of Theorem 1 and such that 

\hk,up-(2.10) |uk|G,+A<a(|fk|G „ + |Lk4>k|? J + 1 1 V 
k| G 

hk,ufi ' 

where uk(x,t) (k=1,,...,N) is a solution of problem (2.6), 
(2.7). Let us write 

t 

(2.11) h(t) = max h :C0) +J max K 
hk(t) dt . 

It is easy to see that the function h(t) satisfies condition 
1° of Theorem 1 and the inequalities 

h(t) > hk(t), h'(t)> hk(t)]' (k*=1,... ,N). 

Hence, in view of the relations (2.9), (2.10) and Remark of 
section 1, we have 
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It follows from (2.12) that 

(2.14) |Fk(x,t,0,OfO)|^o< - (k=1,...,N). 

Now we extend, the function. h(t) into the interval 
setting 

(2.15) h(t) = h'(0)t + h(0) for TQ < t < 0 . 

According to the above considerations this extended function 
h(t) fulfils conditions 1° and 2° of Theorem 2. 

Let us denote byAthe set of all functions u(x,t)eĈ  (¿2J 
such that 

uk(x,t) = 9>k(xft), (x,t)eG°uS (k=1,...,N). 

Obviously A is a closed set of the space (¿2) • Now for 
u e consider the problem 

(2.16) Lkvk = i^x.t, fk(u),rk(u), !Tk(u)j = f^x.t),, 

(x,t) e G (k=1,...,N), 

(2.17) vk(x,t) = 9?k(x,t), (Xjt) e G 0 U S . 

Assumptions (2.II), (2.IV)-(2.VI) imply, by Lemma 4 of [2] 
and Lemma 2 of [ 3 ] , that ^ e C ^ (G^) for every t> 0, where 
a.Q =/3a oc. Therefore, in virtue of Theorem 1, problem (2.16) 1 1 N (2.17) has a unique solution 

This enables us 
to define a transformation Z by formula Zu=v. 

Now we shall show that Z maps into itself. It fol-
lows from (2.5),(2.IV),(2.V) and condition 1° of (2.VI) that 

| y i ( u < ^ ) l 2 f o * 0 0 ( i ^ . 2 ) . 
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20 H.Ugowski 

M 2 ( t ) r ^ u(x,t) h,o 
9) 

Hence, taking into considerations relation (2.14) and the ine-
quality 

|Fk(x,t,p1,P2,p5)|<|Fl£(x,t,0,0,0)| + V M + | P2 P + M
3(t)|p 5| 

(which, is a consequence of (2.3)), we have ¡f^l^ 0 < ° ° • This 
implies, by (2.12), (2.12) and Remark of section 1, that 
v^f whence, owing to (2.Ill) and (2.17), v=Zu be-
longs to TV . 

Now we shall prove that Z is a contraction. So let u , u e A 
and v=Zu, v=Zu. Then 

(2.18) L k(v k - v k) = f^x.t) - f^x.t), (x,t) e G, 
(k=1,...,N) 

T 
(2.19) vk(x,t) - vk(x,t) = 0, (x,t) e G , 

where ? W ) = ^(x.t, f k(u), <fk(u), ^(u)) . 

Using assumptions (2.IV), (2.V), condition 1° of (2.VI) and 
inequality (2.5) we find that 

^ ( u ) - ^ ( u ) | £ > 0 <(1 +2 N i)|U - u|; 
-Z+/3 

(1=1,2), 

M 2 ( t ) ^ ( u ) -<^(u)' 

^ We recall that !^(u) is a vector-function with N0 components. 

For the vector-function w = ( i/1,...,wN°j the norm | w|® Q is defined 
by formula \ / ' 

M h , o = i I-1!?.. • 
i=i 
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whence, by ( 2 . 3 ) , we have 

( 2 . 2 0 ) l A x . t ) - ^ ( x . t ) ! <(1+2M1)(1+2N< ,) |u-u|® + / 8<«» . 

According to the Remark of s e c t i o n 1 r e l a t i o n s ( 2 . 1 8 ) - ( 2 . 2 0 ) 
imply, by ( 2 . 1 3 ) (with <f>k = 0 ) , the i n e q u a l i t y 

|vk - < a(1+2M 1 ) (1+2N 1 )|u- iL|^ 3 ( k = 1 , . . . , N ) , 

whence ( i n view of ( 2 . 1 9 ) ) 

| Zu - Z u l ^ < aU(1+2M1) (1+2N,, ) Ju-u | . 

From the l a s t inequal i ty and from ( 2 . 8 ) i t inmediately follows 
that Z i s a cont rac t ion . Therefore , by the Banach f i x e d point 
theorem , Z has a unique f i x e d point u which i s obviously 
a (unique) so lut ion of the problem ( 2 . 1 ) , ( 2 . 2 ) in the space 
0 ? (•&) • This completes the proof . 

3 . On the Cauchy problem 
Now l e t G = E ^ * (0 , and G r = E„ * (0 , r ) ( r>0) .We pre-

k 
serve the meaning of symbols L and L and notat ion concer-
ning norms and funct ional spaces , which were used in the pre-
vious s e c t i o n s . 

In t h i s sec t ion we derive an estimate f o r the norm 
| u | ^ + / 3 , where u ( x , t ) i s a so lut ion of the problem 

( 3 . 1 ) Lu = f ( x , t ) , ( x , t ) e G , 

( 3 . 2 ) u ( x , 0 ) = <?(x), x e E n . 

The above est imate w i l l be applied to prove the ex is tence and 
uniqueness of so lut ions of the problem 

( 3 . 3 ) L k u k = W x , t , r k ( u ) , < ^ ( u ) , < / ^ ( u ) j , ( x , t ) e G , 
-jp-

(3.4) uk(x,t)= <? k (x , t ) , (x , t ) e G °=En x [tq ,0] (To=const.<0, k=1 N), 
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22 H.Ugowskl 

where 

! ^ (u ( x , t ) j =^|u i ( x , t ) | , J 4 ( x f t ) - i Y « i ( y . t ) < « i 1 ( x i t , d y ) 

• t 
f « ^ - ( x . t i d r ) / u ^ y . r ) v ^ C x . t ^ y ) 

Jo % 

I uMw*1 3m-4 (y).q' 
ki 
3m-4 ( t ) U ] f ( x , t } d y ) 

(k , i=1 , . . . ,N ; j =1 , . . . ,n ; m=2,3), 

D ĵ, D2 being arbitrary f ixed closed domains of the space 
For the problem (3.1 ) , (3.2) we introduce the following 

assumptions: 
( 3 « I ) For every r > 0 the operator L is uniformly para-

bol ic in G t and i ts coef f ic ients belong to Cc<(Gr) ) where 
a. e (0,1) is independent of r . Thus the inequalities (1.3) 
and (1.4) remain va l id . 

( 3 . I I ) The function f ( x , t ) i s bounded in every domain 
Gr and sat is fy the uniform Holder condition with exponent a-
in every bounded domain H * [o,r"] (HCEn ) . 

( 3 . I H ) The function cp (x ) together with i t s f i r s t and 
second order derivatives are bounded in En» Moreover, <p and 
9>x are uniformly H&lder continuous with exponent /be (0,1) 
in1 E , while the derivatives (f „ are local ly Holder con-

i i 
tinuous with exponent <x in En. 

T h e o r e m 3. I f assumptions ( 3 . I ) - ( 3 . I l l ) are 
f u l f i l l e d , then problem (3*1), (3*2) has a unique solution 
u (x , t ) in the class of a l l functions bounded in every domain 
G r . Moreover, for every a e ( 0 , l ] there exists a function 
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h=h(t), depending only on a, a , p>, K 0 ( r ) and K ^ r ) , sat is-
fy ing condition of Theorem 1 and such that 

! < „ • M h , o < ~ 

(3.5) l < ^ < a ( | f | g f 0 + + 

P r o o f . The f i r s t part of the theorem follows from the 
existence and uniqueness of solutions of the problem 

Lu = f ( x , t ) , ( x , t ) e En* ( 0 , r ] , 

u(x,0) = ?>(x), x eE a 

f o r every r > 0 (see Theorem 12 of [ l ] , p. 25 and Theorem 10 
of [ l ] , p. 44). 

Now we outline the proof of the second part of the theo-
rem. In the case <?(x) = 0 we choose the same function h=h(t) 
as at the "beginning of the proof of Theorem 1 (obviously with 
Gt = En ) . Proceeding l ike in the proof of Theorem 1 of [4-], 
we can derive the inequality 

M f ^ H o h ' (0 ) f l h , o ' r = O - / » / ^ ) 

where HQ is a posit ive constant depending only on a, /$,¥LQ{2) 

and K^(2). Next, repeating the argumentation used in the 
proof of Theorem 1 following a f ter the inequality (1.20), we 
obtain the estimate 

In the case <?(x) ^ 0 observe that the function v ( x , t ) = 

= u (x , t ) - 9>(x) is a solution of the problem 

Lv = f ( x , t ) - L<p, ( x , t ) e G , 
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v ( x , 0 ) = 0 , x e E q . 

Let us assume t h a t h ( t ) > C^ + l a K ^ ( t ) . Then q < 0 0 , 
whence, by ( 3 . 6 ) , we have 

which impl ies ( 3 . 5 ) . This completes t h e p r o o f . 
R e m a r k . Note t h a t Remark of s e c t i o n 1 holds t r u e 

(with obvious m o d i f i c a t i o n s ) f o r problem ( 3 . 1 ) , ( 3 . 2 ) . 
Now we s h a l l cons ider problem ( 3 . 3 ) , ( 3 . 4 ) . The fo l l owing 

assumptions w i l l be needed. 
(3.IV) Opera tors L^ ( k = 1 , . . . , N ) s a t i s f y assumption 

( 3 . D . _ 
(3.V) Assumption ( 2 . I I ) wi th cond i t i on 1° rep laced by the 

f o l l o w i n g one: 
For any r > 0 and any bounded domains H^ c EQ and Hg c E ^ 

the f u n c t i o n s F k ( x , t , p ^ , p 2 » P j ) ( k = 1 , . . . , N ) s a t i s f y the u n i -
form Holder cond i t i on wi th exponent a i n ( x , t ) e H ^ x [ 0 , r ] , 
uni formly wi th r e s p e c t to (p^»P2»Pj) e H2* 

(3.VI) The f u n c t i o n s ?>k(x, t) ( k = 1 , . . . , N ) belong t o 

while the d e r i v a t i v e s ^ ^ and a r e bounded i n GT° and 
i j v 

s a t i s f y the uniform Holder c o n d i t i o n wi th exponent <x i n every 

bounded domain conta ined i n G-
(3 .VII ) The t r a n s f o r m a t i o n s w ^ and z ^ ( k , j = 1 , . . . , N ; 

i = 1 , . . . , 6 ; 1=1,2; n t = 1 , . . . , n ) map the space E n i n to i t s e l f and 
s a t i s f y the l o c a l Holder cond i t i on wi th exponent a e ( 0 , 1 ) ; 
i . e . f o r any bounded domain H c E a and any x , x ' e H we have 

| w j d ( x ) - w ^ ( x / ) | , | z £ j ( x ) - z £ j ( x ' ) | < M ( H ) | x - x ' | 0 t ° , 

M(H) be ing a p o s i t i v e cons tan t depending on H. 
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(3.VII) D e n o t e by W.vm2 and Tl t h e ¿ - f i e l d of a l l B o -

r e l ' s subsets of the domains D ^ , D 2 a n d of t h e interval 

[0,=»), r e s p e c t i v e l y . By v ^ ( x , t ; D ) and u> ̂  (x, 

t;D) (k, j=1,... ,Nj i=1,2,3) w e denote f i n i t e n o n - n e g a t i v e 

m e a s u r e s (depending o n (x ft) 6 Gr) defined o n JR^TTl^ a n d R , 

r e s p e c t i v e l y . The f o l l o w i n g c o n d i t i o n s are imposed: 

1° T h e r e is a constant 0 s u c h that f o r any ( x , t ) e G 

w e have 

¿ifkx.tjD,,), y ^ ( x , t ; D 2 ) , ^ J J ( x , t ; ( 0 , ~ > ) ) < N < i . 

2 ° F o r any b o u n d e d d o m a i n H C G there exist finite n o n -

- n e g a t i v e measures ¿a , v a n d cJ defined o n 77?̂ , TTL2 and Tl r e s -

p e c t i v e l y , such t h a t f o r any points P(x,t), P ' ( x ' , t ' ) e H h o l d 

the inequalities 

I ^ C x . t j D ) - ^ ( x ' , t ' } D ) | < ^ " ( D ) [dCP.P')]* 1, D e m ^ , 

• cc 
I l ^ ( x , t ; D ) - v f (x'.t ';D)|< F(D) [d(P,P')] 1 , D 6 TTL̂  » 

D c[o,max(t,t')] , 

w h e r e ot^ e ( 0 , 1 ) is independent of H . 

3°' F o r ev^ry b o u n d e d d o m a i n H r = H * [o,f] (HcE! a) t h e r e 

is a c o n s t a n t N 2 = N 2 ( H ) such that for any ( x , t ) f H r w e h a v e 

CJ ̂ ' ( x , t 5 D ) < N 2 m ( D ) , Befl , D C [ o , f ] , 

m(D) b e i n g the L e b e s g u e measure of D . 
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T h e o r e m 4. Under assumptions (2 . IV) , (J. IV) 
- ( 3 .V I I I ) there exists a function h ( t ) depending only on 
a, p , M ,̂ N^, KQ ( t ) and K ^ t ) such that: 

1° there ' is f u l f i l l e d condition 1° of Theorem 1} 
2° the norms 

| F^ (x , t ,0 ,0 ,0 )|^ o , |L k? k|£ j 0 (k=1, . . . ,N) 

are f i n i t e ; 
3 ° i f condition ( 2 . 5 ) is sat is f ied , then problem ( 3 . 3 ) , 

1 N 
(3.4) has a unique solution u=(u , . . . , u ) in the space 

where = \ x (T Q , ° ° ) . 
P r o o f . We proceed similarly as in the proof of Theo-

rem 2. Namely, l e t us consider the problem 

(3.7) Lkuk = F^x . t ,0 ,0 ,0 ) = f ^ x . t ) , ( x , t ) e G , 

(3.8) uk (x,0) = f k ( x , 0 ) , x e B n (k=1, . . . ,N) . 

For 

a = [2N(1+M1)(1+N1+N^)]-1 

there exist (by Theorem 3) functions h k ( t ) (k=1, . . . ,N) sa-
t is fy ing condition 1° of Theorem 1 and such that 

Wio . IlVIW <-» 

<a(| • |Lk̂ k|̂ )+ f 

where u k ( x , t ) (k=1, . . . ,N) i s a solution of (3*7), (3«8) . 
Hence, by Remark to Theorem 3, we have 
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where the function h ( t ) is defined by formula (2.11). The 
further argumentation is the same as in the proof of Theorem 
2 a f ter relation (2.14-). Thus the proof is completed. 
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