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ON INTEGRO-DIFFERENTIAL EQUATIONS
OF PARABOLIC TYPE WITH FUNCTIONAL ARGUMENTS
IN UNBOUNDED DOMAINS

In paper {BJ there was proved, among other theorems, a
theorem on the existence of a unique solution of +the first
Fourier problem in a bounded domain for a system of semili-
near parabolic integro-differential equations with functional
argunments.

In this paper we extend the above result to a domain un-
bounded in the direction of the time-axis., At first we derive
some estimate of Friedman’s type for a solution of the first
Fourier problem in the considered domain for a single linear
parabolic equation. This estimate enable us to apply the Ba-~
nach fixed point theorem and to prove the existence mentioned.
The same results are also obtained for the half-space.

1. An estimate of the solution of a linear problem

Let G be an open domain of the Euclidean space En+1 of the
variables (x,t) = (xq,...,xn,t) whose boundary consists of a
closed domain R0 of the hyperplane +t=0 and of a surface S
situated in the half-space +t>0. We assume that for every

'T> 0 the domain
"= Gn[(x,t): 0<t< r}

is bounded.

Let h=h(t) be a function defined for +>0 and posses—
sing continuous, non-negative and non-decreasing derivative
h'(t). We introduce the following norms:
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2 H.Ugowski

,ulg o = :ug l e-h(t)u(P)l, P = (x,%),
! Pe

5

G _|.|G _ | Ju@-uEn]
' ulh,q = lulh,o +espl%%{exp{ h(max(t,t )>] Ifd(P,:’)]a },

G G 7 G
,u'/,,m = |ulh,a + 21 l"xilh,a (0<a <1),
=
where
L 1
a(B,B') = (Jx=xP + [e=t'D? , |x=x'|= [ Z(xi_xi')z] z
(=1

The set of all functions u(x,t) for which [u]$, ., <ee(k=0,1)
will be denoted by Ch,k«‘a (G). In the case h=h(t)= 0 we shall
omit the superscript O. Note that C,,I Imx(G) is a Banach space.

In this section we deduce an estimate for the norm
Iu]gp/j , where u(x,t) is a solution of the problem

n

n
(1.1) LuE; aij(x’t)uxixj + ; bi(:pc,1:)!.zxi+c(x,t)u-—ut =

€

= f(x,t), (x,t)eG,

(1.2) a(x,8) = p(x,8), (x,8)e Y= Rus’.

The following assumptions will be needed (see section 1
of [2]).

(1.I) For every r >0 the following conditions are ful-
filled:

1° the operator I (with aj 5 = aji) is uniformly parabo-
lic in the domain (?';
1)

By a solution of this problem we shall_always understand a regu-
lar solution, i.e, continuous in the domain G and possessing in G
continuous derivatives appearing in Lu,
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On integro-différential equations 3

2° the coefficients of the operator L satisfy in G the
uniform Hélder condition with exponent a£(0,1) independent
of 73

3° the coefficients a,. satisfy the uniform ILipschitz

1]
condition on the surface

st = Sn{(x,t): o<t <r}..

(1.II) The function ¢(%X,t) defined on ) possesses an
extension ¢ (x,t) which belongs to C,H_/,,(GT)A 02+m(Gr) (0<
<B<1) for every v >0,

(1.III) For every ©>0 the function f(x,t) satisfies in
G* the uniform Hdlder condition with exponent a and

L &(x,0) = £(x,0) for (x,0)ed Rye

_ (1.IV) For every 7>0 the surface S¢ belongs both to
Cp,q and to  Cp_g (see [2], p. 257).

It follows from assumption (1.I) the existence of a posi-~
tive non-increasing function Ko(r) (z>0) and positive
non-decreasing functions K,](z*) and K,(7) (2>0) such that

' n —
(1.3) ) ey (x,0) &5 65> K (0615, (x,0)e6", &gy,
n Q/’=,

LJ I 2 T T
(1.4) ‘Zflai:”% + ; [o3]G + lelg <Eq(),
n sr
(1.5) j;)‘?"M'L_o<K2(Z') .

Theorem 1. If assumptions (1.I) - (1.IV) are sa-
tisfied, then problem (1.1), (1.2) has a unique solution
u{x,t). Moreover, for every a &(0,1) there exists a function
h=h(t) depending omly on a,a,pj, Ki(t') (1=0,1,2) and on
the domain G and possessing the following properties:
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4 H.Ugowski

,]o h(t) is defined for t>0 and it has continuous non-
-decreasing derivative h'(t)>1;
2° the norms

lflg’o ’ |L(Dlﬁ,o’ l.cblcip,hﬂ

are finite;
3% there holds true the estimate

(1.6) |ulc/,})4+,s <a(,f'g,0 * IL(P’IC;,O) +"Plg4+,s'

Proof, The first part of the theorem follows from
the existence of a unique solution of the problem

Iu = f£(x,t), (x,t)e F\Zr.

I}

u(x,t)

i

¢(X,t), (X,t)E Zt= R_O v Sr

for every >0 (see Theorem 7 of [1], p. 65).

Now we shall prove the second part of the theorem in the
case ¢(x,t) = 0. At first we choose an arbitrary function
h=h(%) satisfying the condition 10 of Theorem 1 and suclk: that

G
h(t)>C, + ln<lf(x,t)|ot> (C,=const. ),
where G, = {X 3 (x,t) ¢ E\_S} . Then |flg o <°=. In the fur-

ther considerations the functions h(t) aﬁd h’'(t) will be

suitably enlarged (in the case of necessity) in such a manner

that their monotonicity and continuity will be preserve.
Proceeding like in 2[1] (section 3, chapter VII) we shall

estimate the norm Ing“ﬁ . For this purpose we extend the
coefficients of L im:o_2 a closed cylinder Q_ =D, x[0,2]
containing the domain G in such & manner that the extended
functions satisfy the uniform Hdlder condition (with exponent
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a) and such that (1.3), (1.4) hold in Ezo with K0(2), K, (2)
possibly replaced by the other constant depending only on
K. (2), K,(2). TLet ["(x,t3 £ ,7) be the fundamental solution
in £, (for the extension of L). We shall need the following
lemma.

Lemma 1., Let & =Ex[0,d”], where ECD andd"e(o,2]
is an arbitrary constant. Assume that h(t) is a function sa-
tisfying condition 1° of Theorem 1. Then for any A¢(0,1)
there exists a constant M>O0 depending only on a, 8, K,(2)
and K,‘(2) such that for any continuous function g(x,t) 1inf
the function

t
V(X,t) =/dT/RX,t3§, T)g(ésf)dé
0 £

fulfils the inequality
G , —-r L2
(1.7) IV | haep < M[h(o)] lglh,o

where T = (1-8)/(3+8)..

The proof of this lemma is quite similar to that of Theo-
rem 1 of [4] .

Now we shall estimate the norm |u|%1+,s with sufficiently
small 4, At first we derive +the interior estimates. Let
L= F x [O,éjc G2 \ 82, where the boundarydE of E is of class
C,1 . The solution u(x,t) of problem (1.1), (1.2) (with

+o
@(x,t)=0) 1is given in the domain £ by the formula

t
(1.8) u(x,6) = - [ar [lix, 536, D)£(8, 7)a8 +
¢ 0
/

where the function k(y,t) (yec¢dE, 0O <+t°g8) is defined as
follows

dré//"(x,t;é,z*)k(é,z‘)dé = u,(x,6) + uy(x,t),
£

oo T
(1.9) k(y,8) = 2F(y,8) + 2 ) fac [ (y,t3€ 0 )F(E,1)ak
k=1 3

[
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6 H.Ugowski

and

23 (y,5:&,7)

Mq(y,t§§7?0 __ﬁ55f§:—7l_—

¢
My (7,538,7) =/d6 M, (y,b52,0M (2,638, 7)dz  (k=1,2,...),

F(y,t) = /dr/—y—z—ﬁ'—”'“g 8i6st) £(¢,7)a - "a‘;g,:))

It follows from the estimate

~N-1+2 4+
ey bi802) | g, (50 |- 6] 7S 4 - S

I (x,%)

that

s Q 7
(1.10) |F|h°o<Ma[|flh o 0 fuy | }, 8, =d Ex(0,5].
’ ' =1 i h,o

Since for the series Z M (x,t3;€,7) holds true the same es-
timate as for % (w:Lth other constant M,]) therefore, by
(1.9), (1.10), we have

(1.11) lkii°o< 5[ Z, }

Now let 52,] =3B x E),é”] , where B C B ¢ E. For every £eJE
and r€ (0,8) holds true the estimate (see inequality (2.29)
of [’l], p. 104)

(1.12) lf(xt &,

h4/5\ Wy

where the norm is taken with respect to (X,t)eR, and [(x,t;&r)
is defined to be zero for +t <7, Hence we obtain, for x,x’¢B
and t€(0,8), the following inequalities
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[ \
-h -h(t ( -h(r)
I L O O (R TR NI

0

< [h (0)] 1!k|h0’

(1.14) e —hmlx - x',—p|u2(x,t) - u2(x’,t)| <

¢
< e‘/?(fyeh(‘[’)dt,/ |F(X;t;€,7)'r(1{;t§é’7) Ie-ﬁ{r)'k(é,f)|d§<

0 /3 XX
< u [ @) sl -
If xeB and 0O<t<t' <J, then
(t'-t) ‘ﬂ/zlf(x,t/;g,f)l < (8 =-1) B2 , F(x,tl;é,r)[ < const.
Hence and by (1.12) we have

~h(t] -2
(1.15) e "= )™ fuyx,t) = uy(x,t)) | <

¢
-h(t)+h(z) |r(x, 538, 2)="(x, 8" 36,00 nr) |
<o/e dra{ (&6 ) 7 e8] 28+

{l
v [ ettt ar [ [rex, 6 '§ﬂ')l (s, )l ag <
, e (6 =t)"

SO
< ugfn' @) Mkl o -

Since the estimates (1.,13)-(1.15) hold true also for deriva-

tives 35 therefore, in view of (1.11),
i
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ol 2, <l O] o ) e 1.8 Al

This inequality together with the estimate (1.7) for the func-
tion u,(x,t) imply (by (1.8)) that

(1.16) |u|,,f31/3< Mg[h' (0) ] J(ff oo * ) l"xilhgo) J
i=1 '

where the constant Mg> O depends only on B,E,a,ﬁ,Ko(E) and
Kq(2).

In order to obtain the boundary estimates for +the func-
tion u(x,%) in G % we use the integral. representation of
the function U’(z,t) which was established in section 3.2,
chapter VII of [1], where U’(z,t) is defined by relations
(3.5) = (3.11) (of the above=mentioned section 3.2). Proce~
eding similarly to the proof of the interior estimates (1.16)
one can derive counterparts of inequalities (3.20) and (3.21)
(of [1]) in the "h-norm". Therefore,as a counterpart of (3.,22)
(of [1]) we get

n 8
Iul”’*ﬁ <My [ )] ( Z 1,i o) ’
(=1 1

where 5@(0,2] is sufficiently small and M, is a positive
constant depending only on a, 8, G2 and Ki(2) {i=0,1,2).
Hence, if h'(0) 1is such that

U2/ (0)] T <172 2,
then
J -T G
(1.17) lalf . <uln @] Flely, M=2M, .
2) Otherwise we enlarge h’(0) in such a way that this inequality
is satisfied.
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On integro~differential equations 9

Let us denote by GP?'? (0<p<q) the domain Grﬂ{(x,t):
p<t<g} and by Z:p,q its parabolic Dboundary. It follows
from thé proof of (1.17) that for any 96[@,2-6ﬂ and any func-
tion geCu(G95'%) such that glx,p)=0 on §, the solution
v{x,t) of the problem

(1.18) v = g(x,8), (x,8)e 9% ) 997
0,9+¢
(1.19) v(x,t) = 0, (x,t)er

fulfils the inequality

6998 _ o, 6999
IVM¢<M@%W]rEEm

provided & is sufficiently small depending only on a,p, G2
and Ki(2) (i=0,1,2). Hence, by the monotonicity of h’(%t),
we have

G99*5

- , _ 919’5
e < H© Tl

|v]

Further, repeating the argumentation of section 3,3 of [1]
(p. 200,201) we obtain the estimate

2 2
(1.20) lulfre < H [0 @] T2l

2

where HO:> 0 1is a constant depending only on «,4, G- and

Ki(2) (i=0,1,2). Hence, if h’(0) is sc large that

B [0'(0)]F <ay2 2

3) See the footnote 2)
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then

2 2
(1.21) Iulcl}* <%Iflg’o )

where a €(0,1) 1is an arbitrary fixed number,
Now we proceed to estimate the ’'norm |u&,73. For +this
purpose it suffices to estimate the norms

Gk,k+1
lulhyep  (k=2,3,..0).

At first note that from the proof of (1.,20) it follows that
for any ¢=>0 and any function g ¢ Ca(G94+§ such that
g(x,9)=0 on §, the solution v(x,t) of problem (1.18),
(1.19) with & =2 satisfies the inequality

vl < [ ) sl

+2
where Hg¢ > 0 1is a constant depending only on a,/p, G99
and Ki(y) (i=0,1,2). This inequality will be used for p=
= 1,2,+.+.. 1in the case when

- -p-3 4
Bo[n'(9)] 7 <a2®7 M
then
G?}PZ 6{7['2
(1.22) |v VI, 108 <27 2 | h,
2 3
Now we estimate the norm [u[h1+ . For this purpose let us

consider the function v(x,t) = £(t-1)u(x,t), where

%) See the footnote 2)
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On integro-differential equations 11

2t%, o0<t<1/2,
£(b) ={ —2t%44t=1, 1/2< <1
1, t>1.

It is easy to see that
Ly = £ (5-1)2(x,8) - E(t=1u, (x,6)e 6N Y 7,
v(x,t) = 0, (x,t)e) "7,

Since O0<£(t)<1 and |§’(t)|< 2, therefore, by (1.22), we
have

3 )3 1
iy < 2 a(lelg)y 2 hif) -

Hence, in view of the relation

vix,t) = ulx,t), (x,t)e¢ G213

and by (1.21), there is satisfied the inequality

3
-2 G
Iu‘h1fp aiflh,o °
Using the previous method with G ’5 Z: 1 3, £(t-1) and
£'(t-1) replaced by G 2y 4 2::2 4, §(t52) and §'(t-2), res-
pectively, we get the estimate

34l
G =3 G
]ulh,'ﬁrﬂ <27altly o -
Proceeding in the above manner one can easy to check, by
induction, that

k41
(1.23) 1‘1,%“,5 <2 a,f,h’: (k=2,3,¢..).



12 } H.Ugowski

Inequalities (1.21) and (1.23) imply the estimate

G G
(1.24) ]u|h11+/5<a|f|h,o .

Now we are going to the case when ¢ (x,t)#0. Then the
function v(x,t)=u(x,t)- §(x,t) is a solution of the problem

Iv = f(x,5) - L¢, (x,t)eG,

v(x,t) = 0, (x,t)e Z

We impose the following conditions on the function h(t)s
Gy
exp h(t) > Gp|L §(x,8)| )7,
Gg
exp h(t) > Cp| & (x,8)],°

Gy
exp h(t) > G, max l@x.(X,t)lo ,
i i

|(x",t) - P (x,8)|
Y I XD

l¢~Xi(X’,t’) - Qxi(x,t)l

b

h(t C, max
exp h(t) > C, 3 o : [d(P,P')]ﬂ
~

C2. being a positive constant. These conditions yield the re-

lation
G G
IL (pl h’o ] lé'h,1+/5 < o0 ,

Hence, by (1.24), we have

15,5 <adlzlf v [uol8 )
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On integro-differential equations 13

which immediately implies (1.6). Thus Theorem 1 is completely
proved,

Remarzrk. It follows from the above proof that the
estimate (1.6) remains valid in each of +the following two
cases:

1° if we replace the function h(t) by a function hq(t)
satisfying condition 1° of Theorem 1 and such that hq(t)>h(t)
and h,{(t))h’(t);

2% if we replace the functions f£(x,t), ¢ (x,t) Dby other
functions satisfying assumptions (41.II), (1.III) and condi-
tion 2° of Theorem 1.

2. On the first Fourier problem for a system of integro-dif-

ferential equations with functional arguments

T
Let G ° (Tozconst.<<0) be a bounded open domain of the

space E_,,, enclosed by domains R, and g2 lying on the
n+1 TO o
planes t=TO and t=0 respectively, and by a surface S

situated in the strip T0<1t<<0.
In this section we are dealing with +the existence and
unigqueness of solutions of the problem:

o]

n n
k k — k k k k k k k
L u —-3;;aij(x,t)uxixj + g; bi(x,t)u,_Xi + ¢ (x,5)u” - U, =
(2.1)

= ¥ x,t, 9’1,7 u(x,t)) , gf%(u(x,t)) ,Qflg (u(x,t))) ,(x,5)e G,

T
(2.2) uk(x,t) =(7k(x,t), (x,5) eG %03 {k=1,...,N),
where
va(u(x,t)) - ({ui(x,t)}, [ujicﬁ(x,t)}, uui(y,t')/zfi(x,t;dy)} ,

5)

We shall use the notation of the previous section.
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{fui(y,f)vfi(x,t;dy,dr) }) ,
&
Wg(u(x,t)) =<{ ui(wgi_s(x,t),q§;_5(’c)>} ’

[Uaicj(mfj(x £),85 (’c))} ,

{/ul< 5m_4(y,t),q3m 4(t)) Fm e, b5 dy)}
&

{[ul( W 3(y.r),q§m 5(?))Vﬁi(x,t;dy,d7)}>

t

where K,i=1,...985 J=1y0.-40;5 m=2,3%,

i
G, ={x s (x,5)e G °uRouG}, E>T_ .

Functions g, s, transformations w, 2z and measures Ay
(occurrlng in the definitions of symbols ka (Vk) will be de-
fined in assumptions (2.IV), (2.V) and (2. VI), respectively.
The following aséumptions are introduced:
(2.1I) The operators Lk (k=14¢..,0N) satisfy assumption

(1.1), i.e. the inequalities (1.3)-(1.5) hold true with a

ij?
bi and ¢ replaced by aljij’ blic and ¢, respectively.
N N
(2.1II) The functions Fk(x,t,p:]],...,pqo,pg,...,pzo,pg,...

N

...,p3°> {(k=1,...,0; NO=5N+nl\I') are defined in the set G x EBN

o
and fulfil the following conditions:

1° For ay ©>0 and any bounded domain H C E51 func-
)

tions F (x, t,p,l,p2,p5) satlsfy the uniform Holder condition
with exponent a in (x, t)eG , uniformly with respect ¢to
(p4sDp9sPz) € H.
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On integro-differential equations 15

2°% There exist a positive constant M,] and a ‘positive
function M,(t) (t> 0) such that for any (x,t) ¢ G and

pi’ﬁiEENo (i=1,2,3) we have

(2.3) | F5(x,5,0q,00005) = F(x,5,5,,55,53)| < M (|p-Byl +

+ ,Pz'ﬁgl) + M2(t)lp5-f)-3| ’

where

N

|pi-Ps | = Ei

=

o -5l |

_. (2,IIT) The vector-function ¢ = (cpt\,..., ¢N), defined on

3

T T

G °U's, belongs to C§+/5(G °) (0<<1) and possesses such
N N T N =y 6)
) ﬂmt¢eQHMG)nCaam}

for every ©>0. Moreover, if a function ¢ (belonging to

N v N 4 .

Cq+/3(G yn C2+T(G ) (0<y<1) for every 7>0) 1is an exten-

sion of ¢, then

an extension ¢ = (4’1,...,(13

I ¢F = Fk<x,o, Vi@, ¥ 3@, yg‘@)), (x,006 A R, .

(2.IV) The functions aio(t), spa(t) (k,3=1,...,N; i=1,
eees6; 1=4,2; m=1,...,n) mp the interval (0,e=) into (To,w)
and satisfy the uniform Holder condition with exponent a0/2
(0 < o < 1) in every interval (0,?), 0<7 <o Horeover

a(e), s33(6)<t, k31,400, i=4,5,6;  mel,...,n.

(2.V) For every t>0 the transformations Wl:ffa and =z

map Gt into

kj
1lm

G, and G . , respectively. These
I (%) ¥ (%)
6) For the definitions of these symbols see section 2 of [2].
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transformations satisfy the uniform Hdlder condition with ex-
ponent «  in every domain Y (£>0), i.e. for any P(x,t),
P’ (x’,t')e G" we have

|wEi(p) - W |2X3(p) - 2 °(P’)|<M(r)[d(P,P’)] Yo,

M(z) being a positive constant depending on 7 .

(2.VI) Let us denote by M, (t>0) the 6-field of all Bo-
rel’s subsets of Grt and by M the 6—f1eld of all Borel’s
subsets of G. By (“1 I(x,t3 3D) and vi (x t3D) (i=1,2,3%; j,k=
=1,4.¢,N) we will denote finite non-negative measures (depen-
ding on x e@t and (x,t)e G, respectively) defined on m,
and M, respectively. The following conditions are imposed:

1° There is a positive constant N,‘> O such that for any
(x,t)e G

(2.4) (ft]i‘_a(x,t;(}—t), ﬁEJ(x,t;§)<N,‘ .

2° For every T >0 there exists finite non-negative mea-
sure 7 (resp. 7)__defined on the Borel’s subsets of the domain

U Gy (resp. Gr) such that for any P(x,t), P/ (x' ,t’)e a% we
pster

have
| E3 6300 - 57 sm)< @ [ace 2]

if th Gt’ # 0 and De m, n'mt,
ki ki oL’]
<resp. ,viJ(x,t;D) - viJ(x’,t’;D)|< )—J(D)[d(P,P’)]
if Dem and DcGT’),
where oAy E (0,1) is a constant independent of 7.

30 For every >0 there 1is a constant N2(T)>O such
that for any (x,t) 6 G%
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On integro-differential equations 17

¢ F(x, 5 D)< Ny(TImy (D), Dem,,

resp. v 59(x,t3D) € N, (r)m,(D), Dem, D c &),
i 2 ]

m,l(D) (resp. my(D)) being the n-dimensional (resp.(n+1)-dimen-
sional) Lebesgue measure of D

In order to formulate the existence and uniqueness theo-
rem for the considered problem let us put

- kj -
a(t) = sup Eljilx q;9(r),  s(%) = fox S,]m(t),

where k,j=1,s.¢,N3 1=1,2,3; m=1,...,0 .

Theorem 2. Under assumptions (1.IV),(2.I)-(2.VI)
there exists a function h(t) depending only on o, Sy Mgy Noy
K, (%) (i=0,1,2) and on the domain G and possessing the follo-
wing propertiess )

1° h(t) is defined for & » T  and it has contimious de-
rivative h'(t) > 13

2° the norms

| #(x,%,0,0 o)lh o @k,h . @k,g”p (k=1,...,N)

are finite;
30 if
r’
(2.5)  My(t) < exp {h(t) - h[max<q(t).s(t)>” ’
)

then problem (2.1),(2. 2) has a unique __;_lution u-(u goeayll
in the space Il;1,5 (Q) B), where & = G “U G,

7 For this condition remains valid Remark 2 of section 2 of [3]

) C/)1+ (2) denotes the Banach space of all vector-functions
u = (u ,....u ) with finite norm

RulR3e
In "l’*ﬂ -; lu

/),14#'
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Proof. Let us consider the problem
(2.6) 1EE = #F(x,t) = F(x,t,0,0,0) - F*(x,0,0,0,0) +

» 1505(x,0), (x,8)eC (k=1,...,N),

(2.7) w(x,t) = 95(x,8), (x,8)e) .
For
(2.8) a = [2N(1+M1}(‘1+2N,| )]"J1

there exist (by Theorem 1) functions hk(t) (k=1,4.4,N) sa-
tisfying condition 1° of Theorem 1 and such that

(2.9) |fk]b 0 Ichbklf; 0 @kh R '

(2.10) |u 108 < <|fk, + ILk¢k,i,0)+ |¢’klg,f+ﬂ

where uk(x,t) (k=1y644,N) is a solution of problem (2.6),
(2.7). Let us write

t
_ K o U
(2.11) h(t) —gﬁ:ﬂh (0) +‘g/m2.x[h (t)} at .

It is easy to see that the function h(t) satisfies condition
© of Theorem 1 and the inequalities

h.(t)}hk(t), h'(t);[hk(t)]’ (k=1,404,N).

Hence, in view of the relations (2.9), (2.10) and Remark of
sectlon 1, we have

(2.12) Ifk|h o lLkd’k|ho .l(f’k|,,,v,,_s (K=1,000,N),
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On integro-differential equations 19

(2°/13) ,ukl/)f}{+ﬂ <a<}fk|g_,o + |Lk¢k|ﬁ,o) +|¢k|/%4+ﬁ *
It follows from (2.12) that
(2.14) |Fk(x,t,o,o,o)[g,o< oo (=1, 000 ,N).

Now we extend the function h(t) into the interval [TO’OO)
setting

(2.15) h(t) = h/(0)t + h(0) for T,< & <0.

According to the above considerations this extended function
h(t) fulfils conditions 1° and 2° of Theorem 2.

Let us denote by/\the set of all functions u(x,t:)eCI;TLH/6 (L)
such that

T
W (x,8) = 0¥(x,8), (X,8)6G 2U S  (k=1ye.e,N).

Obviously /\ is a closed set of the space CI;“/_’. (). Now for
u €,/\ consider the problem

(2.16) L5F = Fk<x,t, V), Vi), aﬂ;(u)> = (x,t),

(x,5) € G (k=1,...,N),

T
(2.17) vE(x,t) = o%(x,t), (x,5) e G U S .

Assumptions (2.II), (2.IV)-(2.VI) imply, by Lemma & of [2]
and Temma 2 of [5}, that £5¢ Coca(Gr) for every v> 0, where
X, = /a'OCOOC,I. Therefore, in virtue of Theorem 1,problem (2.16),
(2.17) has a unique solution "v=(v1,...,vN). This enables us
to define a transformation Z by formula Zu=v.

Now we shall show that 2 maps /\ into itself. It fol-
lows from (2.5),(2.IV),(2.V) and condition 1° of (2.VI) that

ny]il‘(u(x,t))lg’o <o (i=1,2) ,
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20 H.Ugowski

Ma(t) W?(u(x,t))’ g,o< oo 9) .

Hence, taking into considerations relation (2.14) and the ine-
quality

le(x,t,pq,pz,p3)'<]Fk(x,t,O,O,O)l +M1(|P1| +|P2') +M3(t)lp3|

(which is a consequence of (2.3)), we have Ifklg o <°° . This
implies, by (2.12), (2.13) and Remark of section 4, that
vEe C,,,,*/3 (G), whence, owing to (2.III) and (2.17), v=Zu be-
longs to/\ ,

Now we shall prove that Z is a contraction. So let u,ue/\
and v=Zu, v=24. Then

(2.18) (v - vE) = £5(x, 1) - £5(x,8), (x,b)€ G,
(k=1,,ooo,N)‘
— T
(2.19) vE(x,t) - vE(x,t) = 0, (x,t)e G °US ,
where E(x,5) = (x5, v 5@, v5@, v5@).

Using assumptions (2.IV), (2.V), condition 1° of (2.VI) and
inequality (2.5) we find that

Vi -vE@ | ) <@eanpfu -85, @=1,2),

IMa(t)[Qf‘J‘;(u) -Q[lg(ﬁ)} l ﬁ,o < (1420 |u - ﬁl;?w/s J

9) We recall that W];(u) is a vector-function with N, components.

N
For the vector-function w = (wq,...,w o) the norm lei o 1s defined
by formula !

G & i
W€, =) E

=1
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On integro-differential equations 21

whence, by (2.3), we have
(2.20) lfk(x,t) - f—k(x,t)' < (1+2u,) (1+2N,) Iu—ﬁll‘?h/s e

According to the Remark of section 1 relations (2.18) -(2.20)
imply, by (2.13) (with ¢¥=0), the inequality

|vE - vklﬁ;’,,/b <a(au) (2N [u=B] s (k=1,000,0)
whence (in view of (2.19))
e e
'Zu - Zu¢n44ﬁ S;aN(1+2M1)(1+2N1)lu-u'q4+ﬁ .

From the last inequality and from (2.8) it imediately follows
that Z is a contraction. Therefore, by the Banach fixed point
theorem , 2 has a unique fixed point wu which is obviously
a (unique) solution of the problem (2.1), (2.2) in the space
C%,hﬁ (£2). This completes the proof.

3, On the Cauchy problem
Now let G = Ej x (0, >) and % = E (0,7)({r>0).We pre-~
serve the meaning of symbols L and Lk and notation concer-

ning norms and functional spaces, which were used in the pre-
vious sections.

In this section we derive an estimate for +the norm
|u|%1+ﬁ , where u(x,t) is a solution of the problem

(3.1) Iu = f(x,t), (x,t)eG,

(3.2) u(x,0) = ¢(x), Xx€E, .

The above estimate will be applied to prove the existence and
uniqueness of solutions of the problem

(3.3) T = P (x,v, wﬁ‘(u),wg(w,w;‘(u)), (i, 8)ea
(3.4) uS(x,t)= ¢%(x,8),(x,t) e & O=E_x [To,o] (T_=const.<0, k=1,0e, N),
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22 H.Ugowski

where

U/f(u(x,t))=<l[ui(x,t)} ’ [u;j(x’t)]’[[ui(y,t) ﬂ%i(x,t;dy)} s

1

[4
wE(x,55a0) [ul(y,r) » E(x, b0 )})
[ [o¥tmmen [0 nay
i) ([t 8o o

{/ui<wl3{;_4(y),qgi_4(t))(d ﬁi‘(x,t;dy)} :

oy

¢
{/wii(x,t;dr)4u1< - 3(y),q3m 5(t)) ygl(x’t;dy) }>

(k,i=1,0.o,N; j=1,o-a,n; m:2,5),

D’l’ D‘2 being arbitrary fixed closed domains of the space En‘

For the problem (3.1), (3.2) we introduce the following
assumptions:

(3.1) For every v > 0 tke operator L is uniformly para-
bolic in G¥ and its coefficients belong to C«’(GV), where
e (0,1) 1is independent of T . Thus the inequalities (1.3)
and (1.4) remain valid.

(3.II) The function f(x,t) is bounded in every domain
G° and satisfy the uniform Hblder condition with exponent o
in every bounded domain H x [O,t’] (HCEn).

(3.III) The function ¢ (x) together with its first and
second order derivatives are bounded in E, . Moreover, ¢ and
¢y, are uniformly Holder continuous with exponent Je (0,1)
in* E,, while the derivatives ¢, y are locally Holder con-
tinuous with exponent «a in En' td

Theorem 3., If assumptions (3.I) - (3.III) are
fulfilled, then problem (3.1), (%3.2) has a unique solution
u(x,t) in the class of all functions bounded in every domain
G, Moreover, for every ac¢ (0,1] there exists a function
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On integro-differéntial equations . 23

h=h(%t), depending only on a,a,p, K, (r) and K, (t’), satis—
fying condition 1° of Theorem 41 and such that

215 o0 [mols o <>

+ "ol 1

(3.5) Iulh;,,,g a(lflh o |L¢|g 0 1B

Proof. The first part of the theorem follows from the
existence and uniqueness of solutions of the problem

Iu = £(x,t), (x,t)e E, * (O,r] .
u(x,0) = ¢(x), xeE,

for every >0 (see Theorem 12 of [’l], p. 25 and Theorem 10
of [1], p. 44).

Now we outline the proof of the second part of the theo-
rem. In the case @(x)= 0 we choose the same function h=h(%t)
as at the beginning of the proof of Theorem 1 (obviously with
Gt = En). Proceeding like in the proof of Theorem 1 of [4],
we can derive the inequality

2 ,
IuIM%\ [h (o)] rIflh o1 T = (1=p)/GA),

where H, 1s a positive constant depending only on a,[),Ko(2)
and K,‘(E). Next, repeating the argumentation used in the
proof of Theorem 1 following after the inequality (1.20), we
obtain the estimate

) G G
(3.6) luly e < alzl) o -
In the case @(x)#Z O observe that the function v(x,t) =
= u(x,t) - ¢(x) is a solution of the problem
Iv = f(x,t) = Ly, (x,5)eG,
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24 H.Ug'owski

v(x,0) = 0, x¢E, .

Let us assume that h(t)> C; + 1n K,(t). Then ngdﬁ 5< °%
whence, by (3.6), we have ’

G G G
vy 1.p <allfly o+ [Toly o)

which implies (3.5), This completes the proof.

Remar k. Note that Remark of section 1 holds true
(with obvious modifications) for problem (3.1), (3.2).

Now we shall consider problem (3.3), (3.4). The following
assumptions will be needed.

(3.IV) Operators 1k
(3.1).

(5..V) Assumption (2.II) with condition 1° replaced by the
following one:

For any >0 and any bounded domains H,l C En and H2CE5N

(k=1ye..4,N) satisfy assumption

o
the functions Fk(x,t,p,l,p2,p3) (k=1y...,N) satisfy the uni-

form Hoélder condition with exponent a in (x,t)e Hy x [O,z‘],
uniformly with respect to (p,l,p2,p5) e Hye

(3.VI) The functions gok(x,t) (k=1,...,N) belong to C4,§(G7’;)

while the derivatives §0;1§,x, and golé are bounded in GTO and
1y

satisfy the uniform Holder condition with exponent a in every

bounded domain contained in G ©. . .

(3.VII) The transformations wl].fa and -zﬁl (kyj=1,ece,N;
i=1,...,63 1=1,2; m=1,...,n) map the space En into itself and
satisfy the local Holder condition with exponent o(,o e (0,1);
i.e. for any bounded domain Hc B, and any x,x € H we have

kj kJ kj ki, , .%o
Wi (x) - W), |23 - 253 )] <um) jex| ©
M(H) being a positive constant depending on H,
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(3.VII) Denote by 7721,772.2 and 70 the 6-field of all Bo-
rel’s subsets of the domains D,], D2 and of the interval
[0, o), respectively. By ,a];J(x,t;D), vl,fa(x,t;D) and w]i{j(x,
t;D) (ky j=1,e.0,N; i=1,2,3) we denote finite non-negative
measures (depending on (x,t) ¢ §> defined on 7,, 7, and 7,
respectively. The following conditions are imposed:

1° There is a constant N,|>O such that for amy (x,t)eG
we have

@5 0x,650,), vid(x,630,), @5 (x,8500,%)) < W, .

2° For any bounded domain HCG there exist finite non-
-negative measures 4, YV and @ defined on m,, M, and I res-
pectively, such that for any points P(x,t), P'(x’,t’)€e H hold
the lnequalitiles

. : o,
¢ 3 (x,8:0) ~afx,5750)| < @) [ace,2)] T, pem, ,

. < e 2
| v§I(x,8:0) - v (x’,8")< 500) [ace,p")] 1, Dem, ,

. . o
|0 (x,650) - @', )| <@(0) [a(r,2))] T, Den,

D [o,max(t,t")] ,

where a, €(0,1) 1is independent of H,
2% For every bounded domain HY = H x [O,t] (H<E,) there
is a constant Ny=N,(H) such that for aw (x,t)¢ HY we have

w9 (x,t;D) < N, m(D), Den , Ddc [o,¢],

m(D) being the Lebesgue measure of D,
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26 H.Ugowski

Theorem 4., Under assumptioms (2.IV), (3.IV) -
- (3.VIII) there exists a function h(t) depending only on
O py My, Ny, Ko(t) and K,](t) such that:

1° there‘is fulfilled condition 1° of Theorem 1;

2° the norms

IFk(x,t,0,0,0)lg’o, ‘Lk?’klg,o (E=1y004,N)

are finite;

3% if condition (2.5) is satisfied, then problem (3.3),
(3.4) has a unique solution u=(u ,...,uN) in the space
Cl\},'“/_z,(.Q), where & = E, x (To,°°).

Proof. We procéed similarly as in the proof of Theo-
rem 2. Namely, let us consider the problem

(3.7) Lkuk = Fk(x,t,0,0,0) = fk(x’t), (x,6)eG ,

(3.8) uk(x,O) =§vk(x,0), x€eB, (k=1,c00,N) .
For

a = [2N('1+M,|)(’I+N,|+N2)] =1

there exist (by Theorem 3) functions hk(t) (k=14 e0e,N) sa-
tisfying condition 1° of Theorem 1 and such that

|28 5 ) 12 |G <=

16518, 1 <a(l #1800 + 55658 ,) v o ko],

where uwS(x,t) (k=1,...,N) is a solution of (3.7), (3.8).
Hence, by Remark to Theorem 3, we have

,fkl(k}l,o ’ lLk¢k ﬁ,o <y

-h(
Iuk (/;’{,44/3 <a<|fk|ﬁ,o + Iqu’k lC;,o) + 07 |q)k(x’o)':ﬂ; ,
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where the function h(t) is defined by formula (2.11). The
further argumentation is the same as in the proof of Theorem
2 after relation (2.14). Thus the proof is completed.
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