

Henryk Ugowski

ON INTEGRO-DIFFERENTIAL EQUATIONS
OF PARABOLIC TYPE WITH FUNCTIONAL ARGUMENTS
IN UNBOUNDED DOMAINS

In paper [3] there was proved, among other theorems, a theorem on the existence of a unique solution of the first Fourier problem in a bounded domain for a system of semilinear parabolic integro-differential equations with functional arguments.

In this paper we extend the above result to a domain unbounded in the direction of the time-axis. At first we derive some estimate of Friedman's type for a solution of the first Fourier problem in the considered domain for a single linear parabolic equation. This estimate enable us to apply the Banach fixed point theorem and to prove the existence mentioned. The same results are also obtained for the half-space.

1. An estimate of the solution of a linear problem

Let G be an open domain of the Euclidean space E_{n+1} of the variables $(x, t) = (x_1, \dots, x_n, t)$ whose boundary consists of a closed domain \bar{R}_0 of the hyperplane $t=0$ and of a surface S situated in the half-space $t>0$. We assume that for every $\tau>0$ the domain

$$G^\tau = G \cap \left\{ (x, t) : 0 < t < \tau \right\}$$

is bounded.

Let $h=h(t)$ be a function defined for $t>0$ and possessing continuous, non-negative and non-decreasing derivative $h'(t)$. We introduce the following norms:

$$|u|_{h,0}^G = \sup_{P \in G} |e^{-h(t)} u(P)|, \quad P = (x,t),$$

$$|u|_{h,\alpha}^G = |u|_{h,0}^G + \sup_{P,P' \in G} \left\{ \exp \left[-h(\max(t,t')) \right] \frac{|u(P) - u(P')|}{[d(P,P')]^\alpha} \right\},$$

$$|u|_{h,1+\alpha}^G = |u|_{h,\alpha}^G + \sum_{i=1}^n |u_{x_i}|_{h,\alpha}^G \quad (0 < \alpha < 1),$$

where

$$d(P,P') = (|x-x'|^2 + |t-t'|)^{\frac{1}{2}}, \quad |x-x'| = \left[\sum_{i=1}^n (x_i - x'_i)^2 \right]^{\frac{1}{2}}.$$

The set of all functions $u(x,t)$ for which $|u|_{h,k+\alpha}^G < \infty$ ($k=0,1$) will be denoted by $C_{h,k+\alpha}(G)$. In the case $h=h(t) \equiv 0$ we shall omit the superscript 0. Note that $C_{h,k+\alpha}(G)$ is a Banach space.

In this section we deduce an estimate for the norm $|u|_{h,1+\beta}^G$, where $u(x,t)$ is a solution of the problem

$$(1.1) \quad \begin{aligned} Lu &\equiv \sum_{i,j=1}^n a_{ij}(x,t) u_{x_i x_j} + \sum_{i=1}^n b_i(x,t) u_{x_i} + c(x,t) u - u_t = \\ &= f(x,t), \quad (x,t) \in G, \end{aligned}$$

$$(1.2) \quad u(x,t) = \varphi(x,t), \quad (x,t) \in \bar{R}_0 \cup S^1.$$

The following assumptions will be needed (see section 1 of [2]).

(1.1) For every $\tau > 0$ the following conditions are fulfilled:

1° the operator L (with $a_{ij} \equiv a_{ji}$) is uniformly parabolic in the domain \bar{G}^τ ;

1) By a solution of this problem we shall always understand a regular solution, i.e. continuous in the domain \bar{G} and possessing in G continuous derivatives appearing in Lu .

2° the coefficients of the operator L satisfy in G^τ the uniform Hölder condition with exponent $\alpha \in (0,1)$ independent of τ ;

3° the coefficients a_{ij} satisfy the uniform Lipschitz condition on the surface

$$S^\tau = S \cap \{(x,t) : 0 < t < \tau\}.$$

(1.II) The function $\varphi(x,t)$ defined on \sum possesses an extension $\Phi(x,t)$ which belongs to $C_{1+\beta}(G^\tau) \cap C_{2+\alpha}(G^\tau)$ ($0 < \beta < 1$) for every $\tau > 0$.

(1.III) For every $\tau > 0$ the function $f(x,t)$ satisfies in G^τ the uniform Hölder condition with exponent α and

$$L\Phi(x,0) = f(x,0) \quad \text{for } (x,0) \in \partial R_C.$$

(1.IV) For every $\tau > 0$ the surface S^τ belongs both to $\bar{C}_{2+\alpha}$ and to C_{2-0} (see [2], p. 257).

It follows from assumption (1.I) the existence of a positive non-increasing function $K_0(\tau)$ ($\tau > 0$) and positive non-decreasing functions $K_1(\tau)$ and $K_2(\tau)$ ($\tau > 0$) such that

$$(1.3) \quad \sum_{i,j=1}^n a_{ij}(x,t) \xi_i \xi_j \geq K_0(\tau) |\xi|^2, \quad (x,t) \in G^\tau, \quad \xi \in E_n,$$

$$(1.4) \quad \sum_{i,j=1}^n |a_{ij}|_0^{G^\tau} + \sum_{i=1}^n |b_i|_0^{G^\tau} + |c|_0^{G^\tau} \leq K_1(\tau),$$

$$(1.5) \quad \sum_{i,j=1}^n |a_{ij}|_{-0}^{S^\tau} \leq K_2(\tau).$$

Theorem 1. If assumptions (1.I) - (1.IV) are satisfied, then problem (1.1), (1.2) has a unique solution $u(x,t)$. Moreover, for every $\alpha \in (0,1)$ there exists a function $h=h(t)$ depending only on $a, \alpha, \beta, K_i(\tau)$ ($i=0,1,2$) and on the domain G and possessing the following properties:

1° $h(t)$ is defined for $t \geq 0$ and it has continuous non-decreasing derivative $h'(t) \geq 1$;

2° the norms

$$|f|_{h,0}^G, |L\Phi|_{h,0}^G, |\Phi|_{h,1+\beta}^G$$

are finite;

3° there holds true the estimate

$$(1.6) \quad |u|_{h,1+\beta}^G \leq a(|f|_{h,0}^G + |L\Phi|_{h,0}^G) + |\Phi|_{h,1+\beta}^G.$$

P r o o f. The first part of the theorem follows from the existence of a unique solution of the problem

$$Lu = f(x,t), (x,t) \in \bar{G}^T \setminus \sum^T,$$

$$u(x,t) = \varphi(x,t), (x,t) \in \sum^T = \bar{R}_0 \cup S^T$$

for every $T > 0$ (see Theorem 7 of [1], p. 65).

Now we shall prove the second part of the theorem in the case $\varphi(x,t) \equiv 0$. At first we choose an arbitrary function $h=h(t)$ satisfying the condition 1° of Theorem 1 and such that

$$h(t) \geq c_1 + \ln(|f(x,t)|_0^{G_t}) \quad (c_1 = \text{const.}),$$

where $G_t = \{x : (x,t) \in \bar{G} \setminus \bar{S}\}$. Then $|f|_{h,0}^G < \infty$. In the further considerations the functions $h(t)$ and $h'(t)$ will be suitably enlarged (in the case of necessity) in such a manner that their monotonicity and continuity will be preserve.

Proceeding like in [1] (section 3, chapter VII) we shall estimate the norm $|u|_{h,1+\beta}^G$. For this purpose we extend the coefficients of L into a closed cylinder $\Omega_0 = \bar{D}_0 \times [0,2]$ containing the domain G^2 in such a manner that the extended functions satisfy the uniform Hölder condition (with exponent

α) and such that (1.3), (1.4) hold in Ω_0 with $K_0(2)$, $K_1(2)$ possibly replaced by the other constant depending only on $K_0(2)$, $K_1(2)$. Let $\Gamma(x, t; \xi, \tau)$ be the fundamental solution in Ω_0 (for the extension of L). We shall need the following lemma.

Lemma 1. Let $\Omega = \bar{E} \times [0, \delta]$, where $\bar{E} \subset \bar{D}_0$ and $\delta \in (0, 2]$ is an arbitrary constant. Assume that $h(t)$ is a function satisfying condition 1^0 of Theorem 1. Then for any $\beta \in (0, 1)$ there exists a constant $M > 0$ depending only on $\alpha, \beta, K_0(2)$ and $K_1(2)$ such that for any continuous function $g(x, t)$ in Ω the function

$$v(x, t) = \int_0^t d\tau \int_E \Gamma(x, t; \xi, \tau) g(\xi, \tau) d\xi$$

fulfills the inequality

$$(1.7) \quad |v|_{h, 1+\beta}^G \leq M [h(0)]^{-r} |g|_{h, 0}^{\Omega},$$

where $r = (1-\beta)/(3+\beta)$.

The proof of this lemma is quite similar to that of Theorem 1 of [4].

Now we shall estimate the norm $|u|_{h, 1+\beta}^G$ with sufficiently small δ . At first we derive the interior estimates. Let $\Omega = \bar{E} \times [0, \delta] \subset G^2 \setminus S^2$, where the boundary ∂E of E is of class $C_{1+\alpha}$. The solution $u(x, t)$ of problem (1.1), (1.2) (with $\varphi(x, t) \equiv 0$) is given in the domain Ω by the formula

$$(1.8) \quad u(x, t) = - \int_0^t d\tau \int_E \Gamma(x, t; \xi, \tau) f(\xi, \tau) d\xi + \\ + \int_0^t d\tau \int_{\partial E} \Gamma(x, t; \xi, \tau) k(\xi, \tau) d\xi \equiv u_1(x, t) + u_2(x, t),$$

where the function $k(y, t)$ ($y \in \partial E$, $0 < t \leq \delta$) is defined as follows

$$(1.9) \quad k(y, t) = 2F(y, t) + 2 \sum_{k=1}^{\infty} \int_0^t d\tau \int_{\partial E} M_k(y, t; \xi, \tau) F(\xi, \tau) d\xi$$

and

$$M_1(y, t; \xi, \tau) = \frac{2\partial f(y, t; \xi, \tau)}{\partial \nu(y, t)},$$

$$M_{k+1}(y, t; \xi, \tau) = \int_{\tau}^t d\delta \int_E M_1(y, t; z, \delta) M_k(z, \delta; \xi, \tau) dz \quad (k=1, 2, \dots),$$

$$F(y, t) = - \int_{\tau}^t d\tau \int_E \frac{\partial f(y, t; \xi, \tau)}{\partial \nu(y, t)} f(\xi, \tau) d\xi - \frac{\partial u(y, t)}{\partial \nu(y, t)}.$$

It follows from the estimate

$$\left| \frac{\partial f(x, t; \xi, \tau)}{\partial \nu(x, t)} \right| \leq M_1(t - \tau)^{-\mu} |x - \xi|^{-n-1+2\mu+\alpha}, \quad 1 - \frac{\alpha}{2} < \mu < 1$$

that

$$(1.10) \quad |F|_{h, 0}^{S_0} \leq M_2 \left[|f|_{h, 0}^{\Omega} + \sum_{i=1}^n |u_{x_i}|_{h, 0}^{\Omega} \right], \quad S_0 = \partial E \times (0, \delta].$$

Since for the series $\sum_{k=1}^{\infty} M_k(x, t; \xi, \tau)$ holds true the same estimate as for $\frac{\partial f}{\partial \nu}$ (with other constant M_1) therefore, by (1.9), (1.10), we have

$$(1.11) \quad |k|_{h, 0}^{S_0} \leq M_3 \left[|f|_{h, 0}^{\Omega} + \sum_{i=1}^n |u_{x_i}|_{h, 0}^{\Omega} \right].$$

Now let $\Omega_1 = \bar{B} \times [0, \delta]$, where $B \subset \bar{B} \subset E$. For every $\xi \in \partial E$ and $\tau \in (0, \delta)$ holds true the estimate (see inequality (2.29) of [1], p. 194)

$$(1.12) \quad |f(x, t; \xi, \tau)|_{h, 1+\beta}^{\Omega_1} \leq M_4,$$

where the norm is taken with respect to $(x, t) \in \Omega_1$ and $f(x, t; \xi, \tau)$ is defined to be zero for $t < \tau$. Hence we obtain, for $x, x' \in B$ and $t \in (0, \delta)$, the following inequalities

$$(1.13) \quad e^{-h(t)} |u_2(x, t)| \leq e^{-h(t)} \int_0^t e^{-h(\tau)} d\tau \int_{\partial E} |\Gamma(x, t; \xi, \tau)| e^{-h(\tau)} |k(\xi, \tau)| d\xi \leq \\ \leq M_5 [h'(0)]^{-1} |k|_{h, 0}^{S_0},$$

$$(1.14) \quad e^{-h(t)} |x - x'|^{-\beta} |u_2(x, t) - u_2(x', t)| \leq \\ \leq e^{-h(t)} \int_0^t e^{-h(\tau)} d\tau \int_{\partial E} \frac{|\Gamma(x, t; \xi, \tau) - \Gamma(x', t; \xi, \tau)|}{|x - x'|^\beta} e^{-h(\tau)} |k(\xi, \tau)| d\xi \leq \\ \leq M_5 [h'(0)]^{-1} |k|_{h, 0}^{S_0}.$$

If $x \in B$ and $0 < t < t' < \delta$, then

$$(t' - t)^{-\beta/2} |\Gamma(x, t'; \xi, \tau)| \leq (t' - \tau)^{-\beta/2} |\Gamma(x, t'; \xi, \tau)| \leq \text{const.}$$

Hence and by (1.12) we have

$$(1.15) \quad e^{-h(t')} (t' - t)^{-\beta/2} |u_2(x, t) - u_2(x, t')| \leq \\ \leq \int_0^t e^{-h(t) + h(\tau)} d\tau \int_{\partial E} \frac{|\Gamma(x, t; \xi, \tau) - \Gamma(x, t'; \xi, \tau)|}{(t' - t)^{\beta/2}} e^{-h(\tau)} |k(\xi, \tau)| d\xi + \\ + \int_t^{t'} e^{-h(t') + h(\tau)} d\tau \int_{\partial E} \frac{|\Gamma(x, t'; \xi, \tau)|}{(t' - t)^{\beta/2}} e^{-h(\tau)} |k(\xi, \tau)| d\xi \leq \\ \leq M_6 |h'(0)|^{-1} |k|_{h, 0}^{S_0}.$$

Since the estimates (1.13)-(1.15) hold true also for derivatives $\frac{\partial u_2}{\partial x_i}$ therefore, in view of (1.11),

$$|u_2|_{h,1+\beta}^{\Omega_1} \leq M_7 [h'(0)]^{-1} \left[|f|_{h,0}^{\Omega} + \sum_{i=1}^n |u_{x_i}|_{h,0}^{\Omega} \right].$$

This inequality together with the estimate (1.7) for the function $u_1(x,t)$ imply (by (1.8)) that

$$(1.16) \quad |u|_{h,1+\beta}^{\Omega_1} \leq M_8 [h'(0)]^{-r} \left(|f|_{h,0}^{\Omega} + \sum_{i=1}^n |u_{x_i}|_{h,0}^{\Omega} \right),$$

where the constant $M_8 > 0$ depends only on $B, E, \alpha, \beta, K_0(2)$ and $K_1(2)$.

In order to obtain the boundary estimates for the function $u(x,t)$ in G^δ we use the integral representation of the function $U'(z,t)$ which was established in section 3.2, chapter VII of [1], where $U'(z,t)$ is defined by relations (3.5) - (3.11) (of the above-mentioned section 3.2). Proceeding similarly to the proof of the interior estimates (1.16) one can derive counterparts of inequalities (3.20) and (3.21) (of [1]) in the "h-norm". Therefore, as a counterpart of (3.22) (of [1]) we get

$$|u|_{h,1+\beta}^{G^\delta} \leq M_9 [h'(0)]^{-r} \left(|f|_{h,0}^{G^\delta} + \sum_{i=1}^n |u_{x_i}|_{h,0}^{G^\delta} \right),$$

where $\delta \in (0,2]$ is sufficiently small and M_9 is a positive constant depending only on α, β, G^2 and $K_i(2)$ ($i=0,1,2$). Hence, if $h'(0)$ is such that

$$M_9 [h'(0)]^{-r} \leq 1/2^2,$$

then

$$(1.17) \quad |u|_{h,1+\beta}^{G^\delta} \leq M [h'(0)]^{-r} |f|_{h,0}^{G^\delta}, \quad M=2M_9.$$

²⁾ Otherwise we enlarge $h'(0)$ in such a way that this inequality is satisfied.

Let us denote by $G^{p,q}$ ($0 \leq p < q$) the domain $G \cap \{(x,t) : p < t < q\}$ and by $\sum^{p,q}$ its parabolic boundary. It follows from the proof of (1.17) that for any $\rho \in [0, 2-\delta]$ and any function $g \in C_\alpha(G^{\rho, \rho+\delta})$ such that $g(x, \rho) = 0$ on \bar{S} , the solution $v(x, t)$ of the problem

$$(1.18) \quad Lv = g(x, t), \quad (x, t) \in \overline{G^{\rho, \rho+\delta}} \setminus \sum^{\rho, \rho+\delta},$$

$$(1.19) \quad v(x, t) = 0, \quad (x, t) \in \sum^{\rho, \rho+\delta}$$

fulfills the inequality

$$|v|_{h, 1+\beta}^{G^{\rho, \rho+\delta}} \leq \bar{M}[h'(\rho)]^{-r} |g|_{h, 0}^{G^{\rho, \rho+\delta}}$$

provided δ is sufficiently small depending only on α, β, G^2 and $K_i(2)$ ($i=0, 1, 2$). Hence, by the monotonicity of $h'(t)$, we have

$$|v|_{h, 1+\beta}^{G^{\rho, \rho+\delta}} \leq \bar{M}[h'(0)]^{-r} |g|_{h, 0}^{G^{\rho, \rho+\delta}}.$$

Further, repeating the argumentation of section 3.3 of [1] (p. 200, 201) we obtain the estimate

$$(1.20) \quad |u|_{h, 1+\beta}^{G^2} \leq H_0[h'(0)]^{-r} |f|_{h, 0}^{G^2},$$

where $H_0 > 0$ is a constant depending only on α, β, G^2 and $K_i(2)$ ($i=0, 1, 2$). Hence, if $h'(0)$ is so large that

$$H_0[h'(0)]^{-r} \leq a/2^3,$$

3) See the footnote 2)

then

$$(1.21) \quad |u|_{h,1+\beta}^{G^2} \leq \frac{a}{2} |f|_{h,0}^{G^2},$$

where $a \in (0,1)$ is an arbitrary fixed number.

Now we proceed to estimate the norm $|u|_{h,1+\beta}^G$. For this purpose it suffices to estimate the norms

$$|u|_{h,1+\beta}^{G^{k,k+1}} \quad (k=2,3,\dots).$$

At first note that from the proof of (1.20) it follows that for any $\varrho \geq 0$ and any function $g \in C_\alpha(G^{\varrho,\varrho+2})$ such that $g(x,\varrho)=0$ on \bar{S} , the solution $v(x,t)$ of problem (1.18), (1.19) with $\delta=2$ satisfies the inequality

$$|v|_{h,1+\beta}^{G^{\varrho,\varrho+2}} \leq H_\varrho [h'(\varrho)]^{-r} |g|_{h,0}^{G^{\varrho,\varrho+2}},$$

where $H_\varrho > 0$ is a constant depending only on $\alpha, \beta, G^{\varrho,\varrho+2}$ and $K_i(\varrho)$ ($i=0,1,2$). This inequality will be used for $\varrho = 1, 2, \dots$ in the case when

$$H_\varrho [h'(\varrho)]^{-r} \leq a \cdot 2^{-\varrho-3} \quad ; \quad 4)$$

then

$$(1.22) \quad |v|_{h,1+\beta}^{G^{\varrho,\varrho+2}} \leq a \cdot 2^{-\varrho-3} |g|_{h,0}^{G^{\varrho,\varrho+2}}$$

Now we estimate the norm $|u|_{h,1+\beta}^{G^2,3}$. For this purpose let us consider the function $v(x,t) = \xi(t-1)u(x,t)$, where

4) See the footnote 2)

$$\xi(t) = \begin{cases} 2t^2, & 0 \leq t < 1/2, \\ -2t^2 + 4t - 1, & 1/2 \leq t \leq 1, \\ 1, & t > 1. \end{cases}$$

It is easy to see that

$$Lv = \xi(t-1)f(x, t) - \xi'(t-1)u, \quad (x, t) \in \overline{G^{1,3}} \setminus \sum^{1,3},$$

$$v(x, t) = 0, \quad (x, t) \in \sum^{1,3}.$$

Since $0 \leq \xi(t) \leq 1$ and $|\xi'(t)| \leq 2$, therefore, by (1.22), we have

$$|v|_{h,1+\beta}^{G^{1,3}} \leq 2^{-4}a \left(|f|_{h,0}^{G^{1,3}} + 2|u|_{h,0}^{G^{1,3}} \right).$$

Hence, in view of the relation

$$v(x, t) \equiv u(x, t), \quad (x, t) \in \overline{G^{2,3}}$$

and by (1.21), there is satisfied the inequality

$$|u|_{h,1+\beta}^{G^{2,3}} \leq 2^{-2}a|f|_{h,0}^{G^3}.$$

Using the previous method with $G^{1,3}$, $\sum^{1,3}$, $\xi(t-1)$ and $\xi'(t-1)$ replaced by $G^{2,4}$, $\sum^{2,4}$, $\xi(t-2)$ and $\xi'(t-2)$, respectively, we get the estimate

$$|u|_{h,1+\beta}^{G^{3,4}} \leq 2^{-3}a|f|_{h,0}^{G^4}.$$

Proceeding in the above manner one can easy to check, by induction, that

$$(1.23) \quad |u|_{h,1+\beta}^{G^{k,k+1}} \leq 2^{-k}a|f|_{h,0}^{G^{k+1}} \quad (k=2,3,\dots).$$

Inequalities (1.21) and (1.23) imply the estimate

$$(1.24) \quad |u|_{h,1+\beta}^G \leq a |f|_{h,0}^G .$$

Now we are going to the case when $\varphi(x,t) \not\equiv 0$. Then the function $v(x,t) = u(x,t) - \Phi(x,t)$ is a solution of the problem

$$Lv = f(x,t) - L\Phi, \quad (x,t) \in G,$$

$$v(x,t) = 0, \quad (x,t) \in \sum.$$

We impose the following conditions on the function $h(t)$:

$$\exp h(t) \geq c_2 |L\Phi(x,t)|_0^{G_t},$$

$$\exp h(t) \geq c_2 |\Phi(x,t)|_0^{G_t},$$

$$\exp h(t) \geq c_2 \max_i |\Phi_{x_i}(x,t)|_0^{G_t},$$

$$\exp h(t) \geq c_2 \sup_{P,P' \in G^t} \frac{|\Phi(x',t') - \Phi(x,t)|}{[d(P,P')]^\beta},$$

$$\exp h(t) \geq c_2 \max_i \left\{ \sup_{P,P' \in G^t} \frac{|\Phi_{x_i}(x',t') - \Phi_{x_i}(x,t)|}{[d(P,P')]^\beta} \right\},$$

c_2 being a positive constant. These conditions yield the relation

$$|L\Phi|_{h,0}^G, \quad |\Phi|_{h,1+\beta}^G < \infty.$$

Hence, by (1.24), we have

$$|v|_{h,1+\beta}^G \leq a(|f|_{h,0}^G + |L\Phi|_{h,0}^G)$$

which immediately implies (1.6). Thus Theorem 1 is completely proved.

R e m a r k. It follows from the above proof that the estimate (1.6) remains valid in each of the following two cases:

1° if we replace the function $h(t)$ by a function $h_1(t)$ satisfying condition 1° of Theorem 1 and such that $h_1(t) \geq h(t)$ and $h'_1(t) \geq h'(t)$;

2° if we replace the functions $f(x,t)$, $\phi(x,t)$ by other functions satisfying assumptions (1.II), (1.III) and condition 2° of Theorem 1.

2. On the first Fourier problem for a system of integro-differential equations with functional arguments

Let G^0 ($T_0 = \text{const.} < 0$) be a bounded open domain of the space E_{n+1} , enclosed by domains $\overline{R_{T_0}}$ and $\overline{R_0}$ ⁵⁾ lying on the planes $t = T_0$ and $t = 0$ respectively, and by a surface S^0 situated in the strip $T_0 < t < 0$.

In this section we are dealing with the existence and uniqueness of solutions of the problem:

$$(2.1) \quad L^k u^k \equiv \sum_{i,j=1}^n a_{ij}^k(x,t) u_{x_i x_j}^k + \sum_{i=1}^n b_i^k(x,t) u_{x_i}^k + c^k(x,t) u^k - u_t^k = F^k \left(x, t, \psi_1^k(u(x,t)), \psi_2^k(u(x,t)), \psi_3^k(u(x,t)) \right), (x,t) \in G^0,$$

$$(2.2) \quad u^k(x,t) = \varphi^k(x,t), \quad (x,t) \in \overline{G^0} \cup S^0 \quad (k=1, \dots, N),$$

where

$$\psi_1^k(u(x,t)) = \left(\left\{ u^1(x,t) \right\}, \left\{ u_{x_j}^1(x,t) \right\}, \left[\int_{\xi_t}^t u^1(y,t) u_1^{ki}(x,t;dy) \right] \right),$$

5) We shall use the notation of the previous section.

$$\left\{ \int_{t_1} u^i(y, \tau) v_1^{ki}(x, t; dy, d\tau) \right\} \right),$$

$$\psi_m^k(u(x, t)) = \left(\left\{ u^i \left(w_{3m-5}^{ki}(x, t), q_{3m-5}^{ki}(t) \right) \right\} \right) ,$$

$$\left\{ u_{x_j}^i \left(z_{m-1,j}^{ki}(x, t), s_{m-1,j}^{ki}(t) \right) \right\} ,$$

$$\left\{ \int_{t_1} u^i \left(w_{3m-4}^{ki}(y, t), q_{3m-4}^{ki}(t) \right) \mu_m^{ki}(x, t; dy) \right\} ,$$

$$\left\{ \int_{t_1} u^i \left(w_{3m-3}^{ki}(y, \tau), q_{3m-3}^{ki}(\tau) \right) v_m^{ki}(x, t; dy, d\tau) \right\}$$

where $k, i=1, \dots, N; j=1, \dots, n; m=2, 3,$

$$G_t = \left\{ x : (x, t) \in G^{T_0} \cup R_0 \cup G \right\}, \quad t > T_0 .$$

Functions q, s , transformations w, z and measures μ, ν (occurring in the definitions of symbols ψ_1^k, ψ_m^k) will be defined in assumptions (2.IV), (2.V) and (2.VI), respectively.

The following assumptions are introduced:

(2.I) The operators L^k ($k=1, \dots, N$) satisfy assumption (1.I), i.e. the inequalities (1.3)-(1.5) hold true with a_{ij} , b_i and c replaced by a_{ij}^k , b_i^k and c^k , respectively.

(2.II) The functions $F^k(x, t, p_1^1, \dots, p_1^{N_0}, p_2^1, \dots, p_2^{N_0}, p_3^1, \dots, p_3^{N_0})$ ($k=1, \dots, N; N_0 = 3N + nN$) are defined in the set $\bar{G} \times E_{3N_0}$ and fulfil the following conditions:

1° For any $\tau > 0$ and any bounded domain $H \subset E_{3N_0}$ functions $F^k(x, t, p_1, p_2, p_3)$ satisfy the uniform Hölder condition with exponent α in $(x, t) \in \bar{G}^\tau$, uniformly with respect to $(p_1, p_2, p_3) \in H$.

2° There exist a positive constant M_1 and a positive function $M_2(t)$ ($t \geq 0$) such that for any $(x, t) \in \bar{G}$ and $p_i, \bar{p}_i \in E_{N_0}$ ($i=1, 2, 3$) we have

$$(2.3) \quad |F^k(x, t, p_1, p_2, p_3) - F^k(x, t, \bar{p}_1, \bar{p}_2, \bar{p}_3)| \leq M_1(|p_1 - \bar{p}_1| + |p_2 - \bar{p}_2|) + M_2(t)|p_3 - \bar{p}_3|,$$

where

$$|p_i - \bar{p}_i| = \sum_{j=1}^{N_0} |p_i^j - \bar{p}_i^j|.$$

2.III) The vector-function $\varphi = (\varphi^1, \dots, \varphi^N)$, defined on $\bar{T}^0 \cup S$, belongs to $C_{1+\beta}^N(G^0)$ ($0 < \beta < 1$) and possesses such an extension $\Phi = (\Phi^1, \dots, \Phi^N)$ that $\Phi \in C_{1+\beta}^N(G^\tau) \cap C_{2+\alpha}^N(G^\tau)$ ⁶⁾ for every $\tau > 0$. Moreover, if a function $\bar{\Phi}$ (belonging to $C_{1+\beta}^N(G^\tau) \cap C_{2+\gamma}^N(G^\tau)$ ($0 < \gamma < 1$) for every $\tau > 0$) is an extension of φ , then

$$L^k \bar{\Phi}^k = F^k(x, 0, \Psi_1^k(\bar{\Phi}), \Psi_2^k(\bar{\Phi}), \Psi_3^k(\bar{\Phi})), \quad (x, 0) \in \partial R_0.$$

2.IV) The functions $q_i^{kj}(t)$, $s_{1m}^{kj}(t)$ ($k, j=1, \dots, N$; $i=1, \dots, 6$; $l=1, 2$; $m=1, \dots, n$) map the interval $(0, \infty)$ into (T_0, ∞) and satisfy the uniform Hölder condition with exponent $\alpha_0/2$ ($0 < \alpha_0 \leq 1$) in every interval $(0, \tau)$, $0 < \tau < \infty$. Moreover

$$q_i^{kj}(t), s_{2m}^{kj}(t) \leq t, \quad k, j=1, \dots, N; \quad i=4, 5, 6; \quad m=1, \dots, n.$$

2.V) For every $t > 0$ the transformations w_i^{kj} and z_{1m}^{kj} map G_t into $G_{q_i^{kj}(t)}$ and $G_{s_{1m}^{kj}(t)}$, respectively. These

6) For the definitions of these symbols see section 2 of [2].

transformations satisfy the uniform Hölder condition with exponent α_0 in every domain G^τ ($\tau > 0$), i.e. for any $P(x,t)$, $P'(x',t') \in G^\tau$ we have

$$|w_i^{kj}(P) - w_i^{kj}(P')|, |z_{lm}^{kj}(P) - z_{lm}^{kj}(P')| \leq M(\tau) [d(P, P')]^{\alpha_0},$$

$M(\tau)$ being a positive constant depending on τ .

(2.VI) Let us denote by m_t ($t \geq 0$) the σ -field of all Borel's subsets of \bar{G}_t and by η the σ -field of all Borel's subsets of \bar{G} . By $\mu_i^{kj}(x,t;D)$ and $\nu_i^{kj}(x,t;D)$ ($i=1,2,3$; $j,k=1,\dots,N$) we will denote finite non-negative measures (depending on $x \in \bar{G}_t$ and $(x,t) \in \bar{G}$, respectively) defined on m_t and η , respectively. The following conditions are imposed:

1° There is a positive constant $N_1 > 0$ such that for any $(x,t) \in \bar{G}$

$$(2.4) \quad \mu_i^{kj}(x,t;\bar{G}_t), \nu_i^{kj}(x,t;\bar{G}) \leq N_1.$$

2° For every $\tau > 0$ there exists finite non-negative measure $\bar{\mu}$ (resp. $\bar{\nu}$) defined on the Borel's subsets of the domain $\bigcup_{0 \leq t \leq \tau} \bar{G}_t$ (resp. \bar{G}^τ) such that for any $P(x,t)$, $P'(x',t') \in \bar{G}^\tau$ we have

$$|\mu_i^{kj}(x,t;D) - \mu_i^{kj}(x',t';D)| \leq \bar{\mu}(D) [d(P, P')]^{\alpha_1}$$

if $\bar{G}_t \cap \bar{G}_{t'} \neq \emptyset$ and $D \in m_t \cap m_{t'}$

$$\left(\text{resp. } |\nu_i^{kj}(x,t;D) - \nu_i^{kj}(x',t';D)| \leq \bar{\nu}(D) [d(P, P')]^{\alpha_1} \right)$$

if $D \in \eta$ and $D \subset \bar{G}^\tau$,

where $\alpha_1 \in (0,1)$ is a constant independent of τ .

3° For every $\tau > 0$ there is a constant $N_2(\tau) > 0$ such that for any $(x,t) \in \bar{G}^\tau$

$$u_i^{kj}(x, t; D) \leq N_2(\tau) m_1(D), \quad D \in \mathcal{M}_t,$$

$$\left(\text{resp. } v_i^{kj}(x, t; D) \leq N_2(\tau) m_2(D), \quad D \in \mathcal{N}, \quad D \subset \overline{G^\tau} \right),$$

$m_1(D)$ (resp. $m_2(D)$) being the n -dimensional (resp. $(n+1)$ -dimensional) Lebesgue measure of D ⁷⁾.

In order to formulate the existence and uniqueness theorem for the considered problem let us put

$$q(t) = \sup_{\tau \leq t} \max_{k,j,l} q_i^{kj}(\tau), \quad s(t) = \max_{k,j,m} s_{1m}^{kj}(t),$$

where $k, j=1, \dots, N$; $i=1, 2, 3$; $m=1, \dots, n$.

Theorem 2. Under assumptions (1.IV), (2.I)-(2.VI) there exists a function $h(t)$ depending only on $\alpha, \beta, M_1, N_1, K_i(t)$ ($i=0, 1, 2$) and on the domain G and possessing the following properties:

1° $h(t)$ is defined for $t \geq T_0$ and it has continuous derivative $h'(t) \geq 1$;

2° the norms

$$|F^k(x, t, 0, 0, 0)|_{h, 0}^G, |L^k \phi^k|_{h, 0}^G, |\phi^k|_{h, 1+\beta}^G \quad (k=1, \dots, N)$$

are finite;

3° if

$$(2.5) \quad M_2(t) \leq \exp \left\{ h(t) - h \left[\max \left(q(t), s(t) \right) \right] \right\},$$

then problem (2.1), (2.2) has a unique solution $u = (u^1, \dots, u^N)$ in the space $C_{h, 1+\beta}^N(\Omega)$ ⁸⁾, where $\Omega = G^T \cup \overline{G}$.

7) For this condition remains valid Remark 2 of section 2 of [3].

8) $C_{h, 1+\beta}^N(\Omega)$ denotes the Banach space of all vector-functions $u = (u^1, \dots, u^N)$ with finite norm

$$|u|_{h, 1+\beta}^\Omega = \sum_{k=1}^N |u^k|_{h, 1+\beta}^\Omega.$$

Proof. Let us consider the problem

$$(2.6) \quad L^k u^k = f^k(x, t) = F^k(x, t, 0, 0, 0) - F^k(x, 0, 0, 0, 0) + \\ + L^k \phi^k(x, 0), \quad (x, t) \in G \quad (k=1, \dots, N),$$

$$(2.7) \quad u^k(x, t) = \varphi^k(x, t), \quad (x, t) \in \sum.$$

For

$$(2.8) \quad a = \left[2N(1+M_1)(1+2N_1) \right]^{-1}$$

there exist (by Theorem 1) functions $h^k(t)$ ($k=1, \dots, N$) satisfying condition 1° of Theorem 1 and such that

$$(2.9) \quad |f^k|_{h_k, 0}^G, \quad |L^k \phi^k|_{h_k, 0}^G, \quad |\phi^k|_{h_k, 1+\beta}^G < \infty,$$

$$(2.10) \quad |u^k|_{h_k, 1+\beta}^G \leq a \left(|f^k|_{h_k, 0}^G + |L^k \phi^k|_{h_k, 0}^G \right) + |\phi^k|_{h_k, 1+\beta}^G,$$

where $u^k(x, t)$ ($k=1, \dots, N$) is a solution of problem (2.6), (2.7). Let us write

$$(2.11) \quad h(t) = \max_{1 \leq k \leq N} h^k(0) + \int_0^t \max_k [h^k(t)]' dt.$$

It is easy to see that the function $h(t)$ satisfies condition 1° of Theorem 1 and the inequalities

$$h(t) \geq h^k(t), \quad h'(t) \geq [h^k(t)]' \quad (k=1, \dots, N).$$

Hence, in view of the relations (2.9), (2.10) and Remark of section 1, we have

$$(2.12) \quad |f^k|_{h, 0}^G, \quad |L^k \phi^k|_{h, 0}^G, \quad |\phi^k|_{h, 1+\beta}^G < \infty \quad (k=1, \dots, N),$$

$$(2.13) \quad |u^k|_{h,1+\beta}^G \leq a \left(|f^k|_{h,0}^G + |L^k \phi^k|_{h,0}^G \right) + |\phi^k|_{h,1+\beta}^G .$$

It follows from (2.12) that

$$(2.14) \quad |F^k(x,t,0,0,0)|_{h,0}^G < \infty \quad (k=1, \dots, N).$$

Now we extend the function $h(t)$ into the interval $[T_0, \infty)$ setting

$$(2.15) \quad h(t) = h'(0)t + h(0) \quad \text{for} \quad T_0 \leq t < 0 .$$

According to the above considerations this extended function $h(t)$ fulfills conditions 1° and 2° of Theorem 2.

Let us denote by Λ the set of all functions $u(x,t) \in C_{h,1+\beta}^N(\Omega)$ such that

$$u^k(x,t) = \varphi^k(x,t), \quad (x,t) \in \overline{T_0}^G \cup S \quad (k=1, \dots, N).$$

Obviously Λ is a closed set of the space $C_{h,1+\beta}^N(\Omega)$. Now for $u \in \Lambda$ consider the problem

$$(2.16) \quad L^k v^k = F^k \left(x, t, \psi_1^k(u), \psi_2^k(u), \psi_3^k(u) \right) \equiv f^k(x,t), \\ (x,t) \in G \quad (k=1, \dots, N),$$

$$(2.17) \quad v^k(x,t) = \varphi^k(x,t), \quad (x,t) \in \overline{T_0}^G \cup S .$$

Assumptions (2.II), (2.IV)-(2.VI) imply, by Lemma 4 of [2] and Lemma 2 of [3], that $f^k \in C_{\alpha_2}^{\alpha_2}(G^\tau)$ for every $\tau > 0$, where $\alpha_2 = \beta \alpha_0 \alpha_1$. Therefore, in virtue of Theorem 1, problem (2.16), (2.17) has a unique solution $v = (v^1, \dots, v^N)$. This enables us to define a transformation Z by formula $Zu = v$.

Now we shall show that Z maps Λ into itself. It follows from (2.5), (2.IV), (2.V) and condition 1° of (2.VI) that

$$|\psi_i^k(u(x,t))|_{h,0}^G < \infty \quad (i=1,2) ,$$

$$\left| M_2(t) \psi_3^k(u(x,t)) \right|_{h,o}^G < \infty \quad 9) .$$

Hence, taking into considerations relation (2.14) and the inequality

$$|F^k(x,t,p_1,p_2,p_3)| \leq |F^k(x,t,0,0,0)| + M_1(|p_1| + |p_2|) + M_3(t)|p_3|$$

(which is a consequence of (2.3)), we have $|f^k|_{h,o}^G < \infty$. This implies, by (2.12), (2.13) and Remark of section 1, that $v^k \in C_{h,1+\beta}(G)$, whence, owing to (2.III) and (2.17), $v=zu$ belongs to Λ .

Now we shall prove that Z is a contraction. So let $u, \bar{u} \in \Lambda$ and $v=zu, \bar{v}=z\bar{u}$. Then

$$(2.18) \quad L^k(v^k - \bar{v}^k) = f^k(x,t) - \bar{f}^k(x,t), \quad (x,t) \in G, \quad (k=1, \dots, N)$$

$$(2.19) \quad v^k(x,t) - \bar{v}^k(x,t) = 0, \quad (x,t) \in G \setminus \bar{T}_0 \cup S,$$

where $\bar{f}^k(x,t) = F^k(x,t, \psi_1^k(\bar{u}), \psi_2^k(\bar{u}), \psi_3^k(\bar{u}))$.

Using assumptions (2.IV), (2.V), condition 1° of (2.VI) and inequality (2.5) we find that

$$|\psi_i^k(u) - \psi_i^k(\bar{u})|_{h,o}^G \leq (1+2N_1) |u - \bar{u}|_{h,1+\beta}^{\Omega} \quad (i=1,2),$$

$$\left| M_2(t) [\psi_3^k(u) - \psi_3^k(\bar{u})] \right|_{h,o}^G \leq (1+2N_1) |u - \bar{u}|_{h,1+\beta}^{\Omega},$$

9) We recall that $\psi_i^k(u)$ is a vector-function with N_0 components. For the vector-function $w = (w^1, \dots, w^{N_0})$ the norm $|w|_{h,o}^G$ is defined by formula

$$|w|_{h,o}^G = \sum_{i=1}^{N_0} |w^i|_{h,o}^G .$$

whence, by (2.3), we have

$$(2.20) \quad |f^k(x, t) - \bar{f}^k(x, t)| \leq (1+2M_1)(1+2N_1) |u - \bar{u}|_{h, 1+\beta}^{\Omega} < \infty.$$

According to the Remark of section 1 relations (2.18) - (2.20) imply, by (2.13) (with $\phi^k \equiv 0$), the inequality

$$|v^k - \bar{v}^k|_{h, 1+\beta}^G \leq a(1+2M_1)(1+2N_1) |u - \bar{u}|_{h, 1+\beta}^{\Omega} \quad (k=1, \dots, N),$$

whence (in view of (2.19))

$$|zu - z\bar{u}|_{h, 1+\beta}^{\Omega} \leq aN(1+2M_1)(1+2N_1) |u - \bar{u}|_{h, 1+\beta}^{\Omega}.$$

From the last inequality and from (2.8) it immediately follows that Z is a contraction. Therefore, by the Banach fixed point theorem, Z has a unique fixed point u which is obviously a (unique) solution of the problem (2.1), (2.2) in the space $C_{h, 1+\beta}^N(\Omega)$. This completes the proof.

3. On the Cauchy problem

Now let $G = E_n \times (0, \infty)$ and $G^r = E_n \times (0, r)$ ($r > 0$). We preserve the meaning of symbols L and L^k and notation concerning norms and functional spaces, which were used in the previous sections.

In this section we derive an estimate for the norm $|u|_{h, 1+\beta}^G$, where $u(x, t)$ is a solution of the problem

$$(3.1) \quad Lu = f(x, t), \quad (x, t) \in G,$$

$$(3.2) \quad u(x, 0) = \varphi(x), \quad x \in E_n.$$

The above estimate will be applied to prove the existence and uniqueness of solutions of the problem

$$(3.3) \quad L^k u^k = F^k \left(x, t, \psi_1^k(u), \psi_2^k(u), \psi_3^k(u) \right), \quad (x, t) \in G,$$

$$(3.4) \quad u^k(x, t) = \varphi^k(x, t), \quad (x, t) \in \overline{E_n} \times [T_0, 0] \quad (T_0 = \text{const.} < 0, \quad k=1, \dots, N),$$

where

$$\psi_1^k(u(x,t)) = \left(\left\{ u^i(x,t) \right\}, \left\{ u_{x_j}^i(x,t) \right\}, \left\{ \int_{D_2} u^i(y,t) \mu_1^{ki}(x,t;dy) \right\}, \right. \\ \left. \left\{ \int_0^t \omega_1^{ki}(x,t;dr) \int_{D_2} u^i(y,r) \nu_1^{ki}(x,t;dy) \right\} \right),$$

$$\psi_m^k(u(x,t)) = \left(\left\{ u^i(w_{3m-5}^{ki}(x), q_{3m-5}^{ki}(t)) \right\}, \left\{ u_{x_j}^i(z_{m-1,j}^{ki}(x), s_{m-1,j}^{ki}(t)) \right\}, \right. \\ \left. \left\{ \int_{D_2} u^i(w_{3m-4}^{ki}(y), q_{3m-4}^{ki}(t)) \mu_m^{ki}(x,t;dy) \right\}, \right. \\ \left. \left\{ \int_0^t \omega_m^{ki}(x,t;dr) \int_{D_2} u^i(w_{3m-3}^{ki}(y), q_{3m-3}^{ki}(r)) \nu_m^{ki}(x,t;dy) \right\} \right)$$

($k, i=1, \dots, N; j=1, \dots, n; m=2, 3$),

D_1, D_2 being arbitrary fixed closed domains of the space E_n .

For the problem (3.1), (3.2) we introduce the following assumptions:

(3.I) For every $\tau > 0$ the operator L is uniformly parabolic in \bar{G}^τ and its coefficients belong to $C_\alpha(G^\tau)$, where $\alpha \in (0,1)$ is independent of τ . Thus the inequalities (1.3) and (1.4) remain valid.

(3.II) The function $f(x,t)$ is bounded in every domain \bar{G}^τ and satisfy the uniform Hölder condition with exponent α in every bounded domain $H \times [0, \tau]$ ($H \subset E_n$).

(3.III) The function $\varphi(x)$ together with its first and second order derivatives are bounded in E_n . Moreover, φ and φ_{x_i} are uniformly Hölder continuous with exponent $\beta \in (0,1)$ in E_n , while the derivatives $\varphi_{x_i x_j}$ are locally Hölder continuous with exponent α in E_n .

Theorem 3. If assumptions (3.I) - (3.III) are fulfilled, then problem (3.1), (3.2) has a unique solution $u(x,t)$ in the class of all functions bounded in every domain \bar{G}^τ . Moreover, for every $\alpha \in (0,1]$ there exists a function

$h=h(t)$, depending only on $a, \alpha, \beta, K_0(\tau)$ and $K_1(\tau)$, satisfying condition 1⁰ of Theorem 1 and such that

$$|f|_{h,0}^G, \quad |L\varphi|_{h,0}^G < \infty,$$

$$(3.5) \quad |u|_{h,1+\beta}^G \leq a(|f|_{h,0}^G + |L\varphi|_{h,0}^G) + e^{-h(t)} |\varphi|_{1+\beta}^{E_n}.$$

P r o o f. The first part of the theorem follows from the existence and uniqueness of solutions of the problem

$$Lu = f(x, t), \quad (x, t) \in E_n \times (0, \tau],$$

$$u(x, 0) = \varphi(x), \quad x \in E_n$$

for every $\tau > 0$ (see Theorem 12 of [1], p. 25 and Theorem 10 of [1], p. 44).

Now we outline the proof of the second part of the theorem. In the case $\varphi(x) \equiv 0$ we choose the same function $h=h(t)$ as at the beginning of the proof of Theorem 1 (obviously with $G_t = E_n$). Proceeding like in the proof of Theorem 1 of [4], we can derive the inequality

$$|u|_{h,1+\beta}^{G^2} \leq H_0 [h'(0)]^{-r} |f|_{h,0}^{G^2}, \quad r = (1-\beta)/(3+\beta),$$

where H_0 is a positive constant depending only on $\alpha, \beta, K_0(2)$ and $K_1(2)$. Next, repeating the argumentation used in the proof of Theorem 1 following after the inequality (1.20), we obtain the estimate

$$(3.6) \quad |u|_{h,1+\beta}^G \leq a |f|_{h,0}^G.$$

In the case $\varphi(x) \neq 0$ observe that the function $v(x, t) = u(x, t) - \varphi(x)$ is a solution of the problem

$$Lv = f(x, t) - L\varphi, \quad (x, t) \in G,$$

$$v(x,0) = 0, \quad x \in E_n.$$

Let us assume that $h(t) \geq c_1 + \ln K_1(t)$. Then $|L\varphi|_{h,0}^G < \infty$, whence, by (3.6), we have

$$|v|_{h,1+\beta}^G \leq a(|f|_{h,0}^G + |L\varphi|_{h,0}^G)$$

which implies (3.5). This completes the proof.

Remark. Note that Remark of section 1 holds true (with obvious modifications) for problem (3.1), (3.2).

Now we shall consider problem (3.3), (3.4). The following assumptions will be needed.

(3.IV) Operators L^k ($k=1, \dots, N$) satisfy assumption (3.I).

(3.V) Assumption (2.II) with condition 1° replaced by the following one:

For any $r > 0$ and any bounded domains $H_1 \subset E_n$ and $H_2 \subset E_{3N_0}$ the functions $F^k(x, t, p_1, p_2, p_3)$ ($k=1, \dots, N$) satisfy the uniform Hölder condition with exponent α in $(x, t) \in H_1 \times [0, r]$, uniformly with respect to $(p_1, p_2, p_3) \in H_2$.

(3.VI) The functions $\varphi^k(x, t)$ ($k=1, \dots, N$) belong to $C_{1+\beta}(\bar{G}^{\frac{1}{\beta}})$ while the derivatives $\varphi_{x_i x_j}^k$ and φ_t^k are bounded in G^{T_0} and satisfy the uniform Hölder condition with exponent α in every bounded domain contained in G^{T_0} .

(3.VII) The transformations w_i^{kj} and z_{lm}^{kj} ($k, j=1, \dots, N$; $i=1, \dots, 6$; $l=1, 2$; $m=1, \dots, n$) map the space E_n into itself and satisfy the local Hölder condition with exponent $\alpha_0 \in (0, 1)$; i.e. for any bounded domain $H \subset E_n$ and any $x, x' \in H$ we have

$$|w_i^{kj}(x) - w_i^{kj}(x')|, \quad |z_{lm}^{kj}(x) - z_{lm}^{kj}(x')| \leq M(H) |x - x'|^{\alpha_0},$$

$M(H)$ being a positive constant depending on H .

(3.VII) Denote by m_1, m_2 and n the σ -field of all Borel's subsets of the domains D_1, D_2 and of the interval $[0, \infty)$, respectively. By $\mu_i^{kj}(x, t; D)$, $\nu_i^{kj}(x, t; D)$ and $\omega_i^{kj}(x, t; D)$ ($k, j=1, \dots, N$; $i=1, 2, 3$) we denote finite non-negative measures (depending on $(x, t) \in \bar{G}$) defined on m_1, m_2 and n , respectively. The following conditions are imposed:

1° There is a constant $N_1 > 0$ such that for any $(x, t) \in \bar{G}$ we have

$$\mu_i^{kj}(x, t; D_1), \nu_i^{kj}(x, t; D_2), \omega_i^{kj}(x, t; (0, \infty)) \leq N_1.$$

2° For any bounded domain $H \subset \bar{G}$ there exist finite non-negative measures $\bar{\mu}$, $\bar{\nu}$ and $\bar{\omega}$ defined on m_1, m_2 and n respectively, such that for any points $P(x, t)$, $P'(x', t') \in H$ hold the inequalities

$$|\mu_i^{kj}(x, t; D) - \mu_i^{kj}(x', t'; D)| \leq \bar{\mu}(D) [d(P, P')]^{\alpha_1}, \quad D \in m_1,$$

$$|\nu_i^{kj}(x, t; D) - \nu_i^{kj}(x', t'; D)| \leq \bar{\nu}(D) [d(P, P')]^{\alpha_1}, \quad D \in m_2,$$

$$|\omega_i^{kj}(x, t; D) - \omega_i^{kj}(x', t'; D)| \leq \bar{\omega}(D) [d(P, P')]^{\alpha_1}, \quad D \in n,$$

$$D \subset [0, \max(t, t')] ,$$

where $\alpha_1 \in (0, 1)$ is independent of H .

3° For every bounded domain $H^\tau = H \times [0, \tau]$ ($H \subset E_n$) there is a constant $N_2 = N_2(H)$ such that for any $(x, t) \in H^\tau$ we have

$$\omega_i^{kj}(x, t; D) \leq N_2 m(D), \quad D \in n, \quad D \subset [0, \tau] ,$$

$m(D)$ being the Lebesgue measure of D .

Theorem 4. Under assumptions (2.IV), (3.IV) -- (3.VIII) there exists a function $h(t)$ depending only on $\alpha, \beta, M_1, N_1, K_0(t)$ and $K_1(t)$ such that:

- 1° there is fulfilled condition 1° of Theorem 1;
- 2° the norms

$$|F^k(x, t, 0, 0, 0)|_{h, 0}^G, \quad |L^k \varphi^k|_{h, 0}^G \quad (k=1, \dots, N)$$

are finite;

3° if condition (2.5) is satisfied, then problem (3.3), (3.4) has a unique solution $u = (u^1, \dots, u^N)$ in the space $C_{h, 1+\beta}^N(\Omega)$, where $\Omega = E_n \times (T_0, \infty)$.

Proof. We proceed similarly as in the proof of Theorem 2. Namely, let us consider the problem

$$(3.7) \quad L^k u^k = F^k(x, t, 0, 0, 0) \equiv f^k(x, t), \quad (x, t) \in G,$$

$$(3.8) \quad u^k(x, 0) = \varphi^k(x, 0), \quad x \in E_n \quad (k=1, \dots, N).$$

For

$$a = [2N(1+M_1)(1+N_1+N_1^2)]^{-1}$$

there exist (by Theorem 3) functions $h^k(t)$ ($k=1, \dots, N$) satisfying condition 1° of Theorem 1 and such that

$$|f^k|_{h_k, 0}^G, \quad |L^k \varphi^k|_{h_k, 0}^G < \infty,$$

$$|u^k|_{h_k, 1+\beta}^G \leq a \left(|f^k|_{h_k, 0}^G + |L^k \varphi^k|_{h_k, 0}^G \right) + e^{-h_k(0)} |\varphi^k(x, 0)|_{1+\beta}^{E_n},$$

where $u^k(x, t)$ ($k=1, \dots, N$) is a solution of (3.7), (3.8). Hence, by Remark to Theorem 3, we have

$$|f^k|_{h, 0}^G, \quad |L^k \varphi^k|_{h, 0}^G < \infty,$$

$$|u^k|_{h, 1+\beta}^G \leq a \left(|f^k|_{h, 0}^G + |L^k \varphi^k|_{h, 0}^G \right) + e^{-h(0)} |\varphi^k(x, 0)|_{1+\beta}^{E_n},$$

where the function $h(t)$ is defined by formula (2.11). The further argumentation is the same as in the proof of Theorem 2 after relation (2.14). Thus the proof is completed.

REFERENCES

- [1] A. Friedman: Partial differential equations of parabolic type. Englewood Cliffs 1964.
- [2] H. Gąowsk i: On integro-differential equations of parabolic and elliptic type. Ann. Polon. Math. 22 (1970) 255-275.
- [3] H. Gąowsk i: On integro-differential equations of parabolic type with functional arguments. Demonstratio Math. 5 (1973) 105-126.
- [4] H. Gąowsk i: On the Cauchy problem for integro-differential equations of parabolic type. Zeszyty Nauk. Politech. Gdańsk. Matematyka, in print.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF GDANSK, 80-233 GDANSK

Received December 12th, 1972.

