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1. Introduction 
In the present paper the conditions of uniqueness and 

existence of the solutions of mixed boundary value problem 
for hyperbolic systems (of partial differential equations of 
second order) are discussed. The obtained results generalize 
theorems proved by O.A.Ladyzhenskaya in [1] to the case of 
hyperbolic systems. Notation used throughout the paper and 
formulation of the problem are given in Section 2. Uniqueness 
is proved in Section 5, whereas the existence of the solution 
and a method of its construction are considered in Section 

2. Formulation of the problem 
We shall use the following notations: x = (xQ,x^,...,xm) 

is a point of (m+1) - dimensional space, where xQ is tiime-
-coordinate. The remaining space coordinates are briefly 
denoted by x = (x1,... .x^) e h"1. Let a be an open bounded 
region in ^ and let 2Q. be its boundary. We denote by Q = 
= £i x (0,a) the set of points x = (xQ,x) and by S its lateral 
surface. 

The system of differential equations considered in this 
paper is of the form 

m m l 4 ̂ oV+r A i ( x ) N + a o % + 

i.j-1 J i'1 

A u - u _ „ = F(x) xoxo 

where u(x) = 
^ (x) 

un(x) 
is a vector function. 
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2 J.Grzegorczyk 

The matrix of scalar coefficients aij(x) is symmetrical, 
a. .(x) = a..(x), and the functions a- .(x) are supposed to be •L j j i. -l-j 
continuous and to have continuous and bounded generalized 

¿a. 
derivatives ± J (i,j=0,... ,m). The elements of square n x n 

o 
matrices A,A^ , (i=0,1,...,m) are composed of functions of x. 
The elements of A^ are supposed to be bounded and to have 
measurable and bounded generalized derivatives. 

The rijht hand side of (1) 

F(x) = 

V x ) 

is a vector function of the point x; F^(x) 
are square integrable over Q. We write: 
^(x) e L2(Q), (i = 1,2,...n). 

In further considerations we shall omit the summation sign 
in (1) and we assume the summation convention over repeated 
indices. Thus 

A ^ x ) 

and so on. 
In the sequel we shall consider various functional spaces. 

Thus L2(£2) and L2(Q) are spaces of square integrable func-
tions, over Si and Q, respectively. After defining weak deri-

(k) vatives we shall define the corresponding spaces ' of 
differentiable functions. We shall denote by a dot D(£2), 
D^(Q),DP(Q) the spaces of functions with compact support and 

° ° \ 0 
by a circle D(£2), D^Cq), Dp(Q) the spaces obtained from • • • 
D(£2), D̂ j(Q) and D^ÍQ) by completion in the corresponding 
norm. 

The norm in the space I^CQ) is defined by the formula 

f |2'dx 

ofr more generally in Lp(ß) 

Lp(fi) ̂ (i flPdx 
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On mixed boundary value problem 3 

The function " ̂ ,...,km integrable over each subregion 
&of ÍÍ is said to be the generalized derivative of a function 
if(x), of order k=k^+...+km and of the f o r m — ^ - — ^ — , if 

d x^i . . . dx.„ m 
and only if for each differentiate, in classical meaning, 
function yr vanishing together with all derivatives up to or-
der k in close vicinity of the boundary of Q , there is 

/ 
il. 

ki <5x_m m 
dfì1 = 0 

where k=k1+. .+k m 
Generalized derivatives in the region Q are defined in an 
a p.al o go ur: way. 

Let us consider the set of all functions <p which have 
in i2 continuous generalized derivatives with respect to 
X 1 ' up to order inclusively, and introduce the norm 
in this r;et by the formula 

\?\ 
"p (ffi) 

r k n 

/IT. E 
a. /-o <x.1t...,oi=i\ 

dx¿ 'OL, 

L<fi dfì 

in which p > 1. 
The space derived fron this set.by the completion in the 

^(£2). Thus <f (x) e W^Cfí) norm indicated above is denoted 7/ . .... _ .. 
p P 

means that <p (x) has generalized derivatives up to order (1) integrable in Dower p. For- example V/ ' 
k, 

For- example W^''^) is the set of 
square integrable functions having in Q square integrable 
generalized derivatives of the first order, that is 

df A M 
ax, 

M ) The space ' ($1) is defined analogously. 
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4 J.Grzegorczyk 

Let D(il) be the s e t of a l l f u n c t i o n s continuous and d i f -
f e r e n t i a b l e i n SI which vanish in c l o s e v i c i n i t y of dSl , t h a t 
i s , which vanish in a r i n g - l i k e s e t of p o i n t s , the d i s t a n c e 
of which from <?£2 i s l e s s than £ > 0 . By completing i n 

('I} 0 
t h e norm of (-52) we s h a l l der ive D(£!), or a c l a s s . S i n c e 
t h e norm used i s t h a t of W2 (£2), t h e r e i s t h e i n c l u s i o n 
D(.£2) C (£2) and hence D(£) i s a subspace of W ^ C Q ) . In an 
analogous manner we introduce the space of a l l functions conti-
nuous and d i f f e r e n t i a b l e in Q, vanishing f o r x e Q s = x | o , a ] , 
where i s the s e t of po in ts of Q , the d i s t a n c e of which 
from dSi does not exceed S . Completing D̂ , (Q) in t h e norm of (y\ ) o I . 
Ŵ  (Q) v̂ e o b t a i n Now l e t us cons ider the s e t D 2(Q) 
o f such f u n c t i o n s i n which vanish f o r each x o e J a - £ , a j , 
where £ i s an a r b i t r a r y p o s i t i v e number not exceeding a . Thus 
D 2(Q) i s the s e t of a l l f u n c t i o n s having f i r s t d e r i v a t i v e s 
and vanishing in a c l o s e v i c i n i t y of upper and l a t e r a l s i d e s 
of the c y l i n d r i c a l r e g i o n Q. The completion of ¿ 2 ( Q ) in the 
norm of ^ l eads to D 2 (Q) . 

We say t h a t a v e c t o r of a matr ix be longs to a space , i f 
t h e i r components a r e elements of t h i s space . 

With the n o t a t i o n introduced above, the problem c o n s i d e -
red i n t h i s paper may be formulated as f o l l o w s : 

A s o l u t i o n of the system (1 ) i s required which s a t i s f i e s 
the f o l l o w i n g mixed boundary value c o n d i t i o n s : 

( 2 ) 

where 

9 ( x ) 

u ( 0 , x ) = cp (x) 

u^ ( 0 , x ) = y{x) 
o 

f o r x e £ 

u(x) = 0 f o r x e S 

^ (x ) 

<?n(x) 

eD(ft) and f (x) = 6 L 2 ( £ ) . 

yram 

- 1 2 2 -



On mixed boundary value problem 5 

As we shall prove in the paper, the considered problem has 
a weak solution. A weak solution of (1), (2) is defined as 
follows. First observe, that introducing the function 

def 
(3) $(x) = 

0 for b < x Q < a 

J u(z,x)dz for 0 < x Q < b 
£ D2(Q) 

and taking the scalar product of (1) and (3), after perfor-
ming integration over Q according to (2), we arrive at the 
equality 

•/K V - V- ̂ (vv * Au - F: dx + 
(4) 

where 

(5) 

• $T(0,x) f(x)dx = 0 
•ft " 

2 def T 2 2 $ = $ +...+ $n . 

According to this equality, a function ueD^(Q) is said to 
be a weak solution of (1), (2), if for an arbitrary vector 
function 

$(x) = 
$n(x) 

e D2(Q)J 

the identity 
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6 J.Grzegorczyk 

holds t rue and the c o n d i t i o n u(O t x) = f (x) i s ' s a t i s f i e d a l -

mo t everywhere. 

Uniqueness of weak s o l u t i o n 

We s h a l l prove the ."ollowing theorem. 

T h e o r e m o n u n i q u e n e s s . A weak s o l u -

t i o n of the problem ( 1 ) , (2) i s unique. 

P r o o f . Let us assume t h a t t h e r e e x i s t two d i f f e r e n t 

s o l u t i o n s u ^ ) ( x ) and and l e t u(x) = u ^ ^ ( x ) . 

The v e c t o r f u n c t i o n u(x) s a t i s f i e s the e q u a l i t y 

f r T T T / x-i 

Q 

dx = 0 

and the c o n d i t i o n u ( 0 , x ) = 0 . 

I f we take 

0 

"a 

J u ( z t x ) d 2 

f o r b < x Q < a 

f o r 0 < x <"b 

£D2(Q) 

then 

/ 
a 

T I 
$ $ - aj_-;<i> <£> 

-*• v - X • XX. 
0 0 1 

X X 
0 0 0 

+ <i>T ( A, $ + A $ 
' x x . x 

0 1 c 

dx = 0. 

.".lakin; use of the formulas 

' ; 1 j 

T T T 
$ $ $ = 2 $ $ 

x :<„ x„ X X X 
0 0 0 

X X X 
0 0 0 
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On mixed boundary value problem 7 

and 

° \ x i V 

T / \ T 
a . , $ $ + a f . j $ $ 

X. X X . \ - / X X. X . 
1 0 0 s 0 i 0 

we o b t a i n 

„ ¿ a . . T 1 

(8) 

+ ^ M x X. + ; 0 1 0 
dx = 0 . 

T a k i n g i n t o account the d e f i n i t i o n of (x,i we can w r i t e 

\ ex -o « \ o / o "fe 

(9) 

2 / — J \*x / x J
B \ 0/ -0 c 

"a o 
dx = 

a 0 

IX . 

Moreover, we have 

1 f ( a i . i $ x . $ x 3 x to = i / d i / 7 a , , $ 
\ w 1 O / O v " 1 0/ 0 

dx = 

(10) 
T " . /• T 

to = ' 2 J 
"a •»• <J 0 "a ' 

By t h e theorem of Gauss i t f o l l o w s t h a t 

1 /* x _ 1 /* 
= 2" / a i i $ x to = p" / a i i ( ° f x ) $ x i O . x j $ < , x ) d x . * / i o x ± i j X i x • 

/• T 

« 0 1 
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= - / ( $ A ^ dx -/*$ A ± $ cos(n,x. )d5' = 
\ / i o «fa o 

(11) 

since the integral over d Q vanishes f o r xQ = 0. 
Hence we obtain 

¿ y j $ 2 ( b , x ) + ( 0 , x ) $ x (0 tx) 

Next, from the inequality 

¿ a x d h ^ B t . 

dx = 

T 
dx. 

(12) 

and from the assumption that the matrices (A.,) ,A. ( i j = 
1 x j x 

=0,1, . . . ,m) f A, and derivatives (a.-^)„ for ( i , , . . . , m ) are It) xo 
bounded i t fol lows that under the proper choice of constant C 
we have 

/ u , o> fx) (°»5E) ^ = c / f e > 2 + 

4 L ° i i J 

dx. 

From the def init ion of the vector function $ we infer that 
*o \ o 

dx < 
/ r 0 " » ' * i f v ? 

dxo . 
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On mixed, boundary value problem 9 

def 
Denoting v i ( x ) = / dz, we see, that 

% i 

o x0 

(13) v.(b,x) = / d z , dz = v / t . 2 ) - v i ( x ) 
i < i 

and taking into account the estimate 
b x0 bT b 

"o ^"b 

we find 

J fu 2(b,x) + (y - c^b) £ v ? ( b , x ) 

r t\  m  

< o j d x | [ u 2 W + £ v?(x) 

dx <. 

d x 0 . 

If wg "bsdt© "b suff icXGntly sdxslXI such "fcticLfc v — c^fa ̂  -p 3.nd 
' 2c x 

if c ? = max (c,,, 1» v 

m 

, then 

/• T m 1 r M 171 \ 
(14) / u 2(b,x) + £ v 2 ( b , x ) d x < c 2 A d x /7u 2 + £ v 2 dx Q . 

a' L i - i Jo \ ¿=1 / 

Introducing the function 

(15) (b) = f d i / Y u 2
 + ¿ v f W 

we obtain 

(16) M ^ < C 2 y ( i 5 ) 

After multiplying both sides of (16) by e ^ we obtain 

(17) 

-c 2b 

db 
-c 0b 

e 2 y (b) < 0 
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10 J.Grzegorczyk 

-c2"b 
Thus the function e y(b) does not increase and (17) im-

-c2"b 
plies that y(b)e <y(C); and consequently y(b) = 0 since 
we have y(0) = 0. 

From the definition of y(b) we obtain 

(18) u^(x) + ̂  v?(x) = 
i-1 

J/ 

and consequently u(x) = 0 for 0<x Q -̂ ¡r . 

Continuing this procedure we shall prove that 
Û  (x) 0 

U(x) = 
• 
• 

U^(x) 

-

• 
• 
• 

0 

and so forth up to exhaustion of the set [ofaj, q.e..&'» 

4. Existence of weak solutions 
Now we are going to present a method of construction of 

weak solutions of the problem (1),(2) under the following as-
sumptions: vector functions ^(x) - $f(x) are supposed to "be 
continuous in £ and vanishing near the boundai^ ¿)JQ of the 
region .52 . We assume continuity of F(x), A.(x) (i=0,1,...,m), 
A(x) in Q. The coefficients a... .¡(x) and their derivatives , " 
(i>j=1,...,m) should be continuos in Q. 

Our construction is based on the corresponding finite-
-difference scheme. This scheme is formed by taking in 
x = (x/j,...fx ) - space hyperplanes = kjAx^, where k^ are 
integers (i=0,1,...,m). 

The intersection points (k^xo, k^Ax^,... fkmAxm) of these 
hyperplanes will be taken as nodal points of a mesh. We denote 
by h the set of all nodal points which belong to the open 

- 128 -



On mixed boundary value problem 11 

set ; Q^ = 0 , rAx Q where r is the entire part of 

, and a denotes the step of the mesh. The nodal points of 
o 

the "boundary of w i l l be denoted by and we 
write S^ = ^ 0 , r A x J . From now on nodal points w i l l "be 
written "briefly x = (x o , x ) = (xqx^ , . . . ,xm ) . 

Let v (x ) ,w(x ) be two vector functions of the nodal points 
of the mesh. We shall introduce the following notation (see 
N ) : 

(19) 

l l y ( x ) =KT ± v ( x 0 , x 1 , . . . , x i _ 1 , x i + A x i , x i + 1 , . . . , x m ) -

— v (x 0 , x 1 9•• . f x m ) 

or in a more concise form 1 v = 
In an analogous way 

v (x ± + A x . ) - v t x ^ 

, 1 
i V L 

v(x±) - - A x ^ 

: Ax . . 

(20) 

The following identi t ies may be ver i f i ed easily 

l x (w T v ) = ( l i w T ) v + w T (x i + A x i ) l i v 

l-Jw^v) = ( l i w T ) v + v T ( x ± - A x ^ l . j V . 

Let us ver i f y the f i r s t one 

l 1 (w Tv ) ( w'1'(xi + A x i ) v ( x 1 +AX j_) - wTvJ = 

1 m / A T / T1 
w (x i-iAx^)v(x i+Ax i )-w v+w (x i-tAx i)v-w (x.j+Ax.^v 

- 129 -



12 J.Grzegorczyk 

_ v ( x . + A x , ) - v ( x . ) w T (x .+Ax. ) -w T (x . ) 
= w (x.+ A x . ) ^ ^ ^ v ( x . ) 

1 1 

I S i V 

= ( l V ) v + w T l \ , 

q . e . d . The proof of the second i d e n t i t y i s s i m i l a r . 
The appl ica t ion of the notat ion introduced above makes i t 

poss ib le to replace (1) and (2) by the following f i n i t e - d i f -
ference scheme 

m 

( V ) l i a i . ( x ) l . u ( x ) + ^ A i ( x ) l i a ( x ) + A ( x ) u ( x ) - l ° l o u ( x ) = F ( x ) 

( 2 ' ) u(x tO) = <p(x), u(x t AXQ) = q> (x) + AxQ f (x) f o r x e 2 

u(x) = 0 f o r x e S h . 

F i r s t we s h a l l prove that the so lut ion u(x) of a f i n i t e -
d i f f e r e n c e scheme, defined at nodal points Q^jCxQ^-S) i s uni-
que. 

The values of c o e f f i c i e n t s of the system ( V ) a t the no-
des placed outside of Q^ and neighbouring with S^ w i l l be 
defined through t h e i r values taken a t the closed points lying 
on S . Further we assume that u(x) = 0 a t a l l nodes x of a 
layer 0 < X Q < r A x Q , which does not belong to Q^. Taking s c a -
l a r product of vector f i n i t e - d i f f e r e n c e equation ( 1 7 ) with 

rn 0 T / 1QU (x)+l u (x) and taking into account that 

( l 0 u T + l ° u T ) l ° l 0 u = 

and 

( l 0 u T + l % T ) l i a i ^ i u = l i ( l o u T + l ° u T ) a i . l i u - l i ( l o u T ) { a i d l i u } f X ( ^ ^ 
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On mixed boundary value problem 13 

we obtain 

( 2 1 ) 

where 

+ ( l 0 + l ° ) u T ^ g A ^ u + A u - F j -l°(l 0u) 2 = 0 

denoting the value of j- is calculated at 

the point (xQ,x^,... . x ^ »x.j+hjx.^,... ,xm). Assuming h=Ax^= 
= A x 2 = . . . = A x m and multiplying both sides of (21) by h m A x c 

and performing summation we arrive at 
H 

uT ) f A x 0 X ; h m [ l i ( l 0 u ^ u ^ a i . l i u ) - l i ( l o u X 
M &h 

( 2 2 ) + ( l 0 u T + l ° u T / 2 A il iu+Au-Fj-l i(l ou) 2 

-0 

a- .1 .u ID J 

= 0 

(*i + 

where ) ( • ) - denotes the sum of values of ( * ) at the 

nodal pointé of ) ( ' ) - the sum .of values of ( • ) 

for x o = A X Q , 2Axo/.=..,(p-1)Axo, (p 4 r). 
Making use of the equalities 

£ [ i X - W a ^ . 
a h 

£ l i ( l 0 u T + l ° u T ) 

= 0 

a d d V r M j 

• I :i*h) Z - 1 0 iJ 3 

and 

L l 0 ( v ) 2 = s : 
S=1 

x =pAx o o 

0 0 
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we obtain 
P-1 

(23) 
S=1 Qf, S'1 Q.h 

+ l°uT)(£ A.^u+Au-f) + £ hm(l0u)2 

V=0 / 

x =pAx„ o r o 
= - 0. 

x„= A o o 

Now, making use of identity (20) we arrive at two equalities 

a) E I ^ V 1 ! * ),:Ldu sAxn 

P-1 

= h1 

(24) 
T A x ° L 
S2h S=1 

a (1,1^+1,1^)1 u 
SAXn 

+ ^ l.u 
ls-4)AXo 1 

1 .u 
s&x„ 3 \(s-l) A 

+ 

a/i 
H-0 

b) 
&/) 5 = / 

1 (a. .1.^-1 .u o^ in i n sAxn 

= h m £ 
Sih 

a i j v V - pAx0 
a . .l.u l.u , 
JJ i a \xg=0 

Substraction of both sides of these identities leads to an ex-
pression which vanishes identically. Addition of this expres-
sion to the left side of (23) yields 

x0-0 

p-1 . \ i m 

+ h ^ A x ^ l0u^l°u^ • ̂ A.l.u+Au-E + 
s-1 ^ ' ^i-0 ' 
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On mixed boundary value problem 15 

h m r f a . , l . a 
° fel 1 J 1 

+ A x U L. 

(25) * 

. .l.uxl 1 .a " " o J pAx0 * » X Z 
SI/, 

a. .l°l.uTl .u 

P-i 

* » T ^ I 
S/> s-1 

-i o 
1 aid (S-*}AX0 

Ltt J, A 
l sAx„ 

1^'u 

xo = 0 

(S'l)AXg ' 

Denoting jf^ = max max | aij| 
i-D Q 

f = max "max 
ijk Q 

a ( k ) 
id 

¿a. . 
1 x 7 

where ai. are elements of matrix A, , and a. . are elements xd A K 
A x 

of matrix A Q , "X = — a n d applying the estimate 

< h m /I * E L H d V ® 1 o u - 1 o u ( V h > pAx0 < 

(26) 

< h m ( v ) 2 + m ( i o u ^ 

m 

/»A'fl 
< 

a* 

Slh i=0 

a i d l 0 i i u V 

- I tWl^ - V 
J 

< 
xo = 0 

< h m r ^ m r f f (-I.u)2 + m(l°u) 2 

^ I <-/ 
l.u* 1 5 A*» l J u < 
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16 J . G r z e g o r c z y k 

p-1 m 

5-1 i-1 
< » > E E A * o E I < v > 2 U * 

HI 

* i r * * * , , E E 
Slh /=/ 

< 

p-1 

< h m y " z \ x o Y ^ - ( A , 1 , u + A 1 u + A u - F ) < O L 1 1 0 0 
S=1 

< ° i » m E A x o E E ( 1 1 U ) • u + ^ 
i-o J 

w h e r e c o n s t a n t c ^ d e p e n d s o n t h e d i m e n s i o n o f t h e s p a c e a n d 

o n t h e e l e m e n t s o f t h e m a t r i c e s A ^ a n d A , we arrive a t 

h m Z 
»h 

( V ) 2 + « H d V ^ V 

•XX 
* 0 = D 

( 2 7 ) 

+ c ^ h - S ^ o Z Z ( 1 i u ) 2
 + ^ + ^ 

s = l [ 1 = 0 
m 

SAxn 

+ h m ^ a e m j ] £ ( 1 i u ) 2 + m ( 1
0

u ) ' 
S2h [ l =1 

p A x 0 

+ h m ^ 9 e m 2 ] Z ( 1 i u 2 ) + m ( l 0 ^ 2 ) 
11 = 1 

x o = 0 

P-1 m 

Qh 5 = 15 = 1 

r 

x„ a n 5 = 1 

A p p l y i n g t h e i n e q u a l i t y a • • ^ • • « v ^ a n d t r a n s f e r r i n g 
J J 

t h e t h i r d t e r m t o t h e l e f t s i d e , we o b t a i n 

_m 
2 ] { ( l o u ) 2 ( 1 - T l * m 2 ) + J ] ( l i u ) 2 ( v -

a h 
PAxo 
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On mixed boundary value problem 17 

rtr 

( l ° u ) 2 + a i d l i u T l ; j u + mrAx0hm 

i =1 

x ; ( i ^ ) 2 + u2 + F2 

i=0 
X0 = sAx0 

Ax 2 
I f we choose 3€ = ^ such a way that 1 - aem M ^ O and. 
v> - ^ > arLd t a k e i u t o a c c o u n ' b the estimate 

(28) £ u 2 ( x ) < d ^ ( l i u ) i 

a„ ffih 

where d is the diamater of the set we obtain 
m v 

(29) ( V ) 2 < 4 r V ^ I X I 
1=0 1 S=1 

where 
fth «• 

E d ^ ) 2 .2 +t 
1 = 0 

So = h* £ ( ^ j S i / y ^ ^ x / E ( l . u ) 2 

Oft /-/ J 

Now l e t us introduce 

(30) 

and 

P m 

y (p ) = E ( 1 i u ) £ 

5-/ 
5AX„ 

(31) h (p ) = - f S 0 + c 3 h m ^ A x o ¿ p 2 ( S A X O ) , 

the» inequality (29) w i l l take the form 

(32) y (p ) -7 (p-D < c ? y ( p ) + h ( p ) 

Af ter certain manipulations this y ie lds 

Ax 
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18 J.Grzegorczyk 

The de f in i t ion of y (p) and the conditions-of f i n i t e - d i f f e -
rence problem explain the equal i ty 

m D 
(33) y (1 ) =Ax0h'11 £ ^ + £ ( l . ^ + A x ^ . f ) 

•fy M 

Denoting E = and applying the l a s t inequal i ty (p-1) 
~ 3 o 

- t imes we obtain 

y (p ) < Ep_1 y (1 ) + EAx0 £ Ep _ s h ( s ) . 
s =2 

If AxQ i s taken so small , that 1-CJAxq> -tj- , tihen 

p 
y(p) < E P _ 1 y ( l ) + E p _ 1 Ax o £ h(s ) < 

(34) s-2 

< EP" 1Axo (p-1)h(p) + E p - 1 y (1 ) = Ep _ 1(ah(p) + y(1)) . 

Making use of the inequal i ty 

P=3A*„ 

we obtain 

y(p) < e i c ^ ( y ( 1 ) + a h ( r ) ) . 

Now, the estimates 

AxohmE^2 + £ d i ^ + ^ i ^ ) 2 
i=1 

KXj) - y ( x r h ) ' 

i - 1 
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<c/)Axohm £ y 2
 + £ d ^ ) 2 , , 

fift ¿=1 

f m 

¿'1 i •0 

m 

= h m ] T y 2 + ai.l1/l. <?+ m/Axohm £ (l.^)2 
/-y 

< 

with proper choice of constant c^ yield 
P m r 

(35) 
sAx0 < 

/// 

<c 5h m + £ (I.?)2 + Ax0 £f 2(sAx 0) 
5=/ 

The application of inequality h m J^u2 < to 
Sih ^ ¿-1 the left hand side of the inequality (35) with a proper choice 

of constant Cg leads to 

(36) 
EuL 2 + 
S—1 Qh [ ¿-0 ^ 

x0 = sbx0 < 

< °6 h m E V2 + E (1i?)2 + A x o £ F2(sAx0) Aa . 1-1 s=1 

p=1,2,...r. 

The substitution of the right hand side of (29) into the same 
side of (35) and the application of (28), with a proper choice 
of the corresponding constant leads to inequality 

(37) 
m 

^ • E < v > : 

•»A i-0 
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* V-Tp2 +1 <h?>2 
i-1 s-1 

p=1 ,2 , . . . , r . 

The r ight hand sides of inequal i t ies (36), (37) are commonlj 
bounded with respect to h smaller than a posit ive.constant. 

Let h and AXq take, respect ive ly , the values 
h g . . . and x h^, xh2»••., Xhg,... 
S. OO . 

which 
1 ' 2 ' 

tend to zero as 

Under these assumptions the fo l lowing theorems hold". 
T h e o r e m 1. Consider sequence of functions 

defined at the nodal points of with the property h m ^ Ĵ  

+ ^T ^ i 1 ^ ^ 2 ] ^ a n d u = 0 o n t h e boundary of SL Then, 
there exists the subsequence [ u h s j such that i t con-
verges in the space L 2 ( £ ) and weakly converges in W.^CQ) 
to a function u(x) e D(S2) f o r xei2 . 

T h e o r e m 2. I f and either one of the 

sequences U ( m ) 

Q > 
u^ weakly converges in L2(£!) 

to a function u(x) as h-MD, then also the remaining two of 
these sequences converge weakly to u (x ) . 

m 
T h e o r e m 3. I f the inequality hm ^ ^ c 

holds true and i f one of three sequences ju^' j , j u ( m ) j and j u^ • 
converges in L2 (&) to a function u(x),then also the remaining 
two sequence converge in L2OQ) to u(x) f o r where Q'c Q . 

T h e o r e m I f a function u^ depends on parameter 

x , where x =sAx , s=0 ,1 , . . . , a 
a i r +1, and vanishes on the 

boundary of and outside of £2.̂  and i f hm Axp ^ 
A oi & 

+ L ( W 

ah 

^ c then there exists a subsequence j u^ L which 

converges in the norm of L2(i2) to a function of the class D^CQ) 
uniformly with respect to xQ e [0,a] and which converges 

1) c i s a posit ive constant. 
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(1) 
weakly in the norm Ŵ  (Q). Uniform convergence in L^(Q) 
means that: 

A V A l l v - l , ^ 6 -
£>0 N(e) s>H(£) 1 S « ^ ( . f t ) 

The functions entering in formulation of these theorems 
aire defined as follows 

m 

v ( x ) = u ( x 1 V JJ ( x s - k s h ) + 

+ £ u ( x i , . . . , x r ^ , x r + r . . . , x m ) || (x s -k sh)+. . . + U l i 

M »-1 

m 

u ( r ) ( x ) = u ( x 1 t . . . , x r _ 1 t x r + 1 , . . . , x m ) ] J (x s-kgh)+...+uh 

S = 1 
s t r 

uh (x) = u(k/jh,k2t,... >kmh), kjh < x 1 < (k.j+1 )h 

The sequence sat is f ies the assumptions of Theorem 1, 

therefore the sequence u^ converges weakly, in the norm 
f 11 s ** of Wg Ci2) to a function of the class .Moreover, this sequenoe 

ju^ converges in LgCfi) on each hyperplane xQ = const. The 

convergence is uniform with respect to xQ 6 [ o ,a ] . Consequ-
ently, we infer that u(x) belongs to LgCfl) and depends conti-
nuously on xQ , and hence u(0,x) = 9 ( x ) . 

Let us prove that u(x) is a weak solution of the problem 
( 1 ) , ( 2 ) . We have proved above, that the boundary and in i t i a l 
conditions are satisfied.. Thus, we have only to prove that 
equations ( V ) and ( 2 ' ) are sat is f ied. 

Let $ £ D^CQ) and assume h so small that $ = 0 on S^; 
is extended over a l l semispace xo> 0., 
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22 J . Grzegorczyk 

Let us notice that uh sat is f ies the equation 

h D T A x o E * T [ l i a i o Y + E + - i ° v 

•2/t S=1 i-0 

After transformation we obtain fj r /// 

h m E 4 x o E ^ d 1 1 * V + ^ E + 
Si/, 5—/ 

$ T A u + 1 ° $ T 1 ° U + § T F i u 
+ h [ f V u = 0 . 

This equation may "be written as an integral relation by ap-
plication of step functions 

m 
r^r r*>J 

+ 

(38) 

/ / k l ° $ T ) d ° u ) - a . . ( x ) ( l i $ T ) ( l d u ) + | T E V i ' i i 

si o L ¿=o 

+ $TAu - J 1 ? dx +J<|T(0,x) f ( x ) dx = 0 

These step functions $ ,(1 $ ) , a i j , A i , P , yr are uniformly con-
vergent as h -*"0. For h'=h , under assumptions stated above s 

~ * ~ d on h, the functions u and (1 u) converge weakly to u and - j— 
i 

(see Theorem 1),After taking limit,the equation (38) leads to 

1 ^ 3xo U ^ $ h 1 

(39) 
-a 

rn m 
+ $ AU - <J> F dx + y $ T ( o,x) if (x)dx = 0 

Let $eD2 (Q), then there exists e &2(Q) such that 
$ "^klliffC) (q)i a s k a Q d the convergence is uniform 

with respect to x o e ( 0 , a ) . For a l l functions $ equality 
(39) holds true, and since ue we also have u e W ^ ' ( Q ) . 
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If the above conditions are satisfied, then the following 
estimates may be derived 

/ dx. 3x. / <?x. 

(40) 

• f*1 - 4) (£ ̂  • *> - >) 
T T 

(x)dx 

dx + 

< 

W ^ Î Q ) 
1$ 

where the right hand term converges uniformly to zero as 
h 0 . From this estimate we conclude that for an arbitrary 
function ieDgiQ) identity (39) holds true. This fact proves 
the existence of a weak solution of the problem (1),(2), un-
der assumption that the functions F(x), <p(x), , yr{x) are 
continuous in Q, ¿2,resp. ,and that y and y vanish in a 
close vicinity of the boundary of . 
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