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ON MIXED BOUNDARY VALUE PROBLEM
FOR HYPERBOLIC SYSTEMS

1. Introduction

In the present paper the conditions of uniqueness and
existence of the solutions of mixed boundary value problen
for hyperbolic systems (of partial differential equations of
second order) are discussed. The obtained results generalize
theorems proved by O.A.ladyzhenskays in [1] to the case of
hyperbolic systems. Notation used throughout the paper and
formulation of the problem are given in Section 2. Uniqueness
is proved in Section 3, whereas the existence of the solution
and a method of its construction are considered in Section 4.

2. Formulation of the problem
We shall use the following notations: x = (xo,xq,...,xm)

is a point of (m+1) ~ dimensional space, where Xy is time-
-coordinate. The remaining space coordinates are briefly
denoted by X = (XqyeeesXy)e R®. Let @ be an open bounded
region in R® and let 2Q be its boundary. We denote by Q =
= Q x (0,a) the set of points X = (xo,i) and by S its lateral
surface.

The system of differential equations :onsidered in this

paper is of the form

m m
d -
(1) } I (aij“x.)" .§1Ai(x)uxi +Au, +Au-u = F(x)
{=

[’/_1 i J [0} 0 0
w, (x)
where u(x) = : is & vector function.
u, (x)

- 119 -



2 J.Grzegorczyk

The matrix of scalar coefficients (x) is symmetrical,
lJ\x) = aj (x) and the functions aj (x) are supposed to be
continuous and to have continuous and bounded generalized

da. .
derivatives ‘7?%9‘(i’j=0'f"’m)' The elements of square nxn
i

matrices A,Ai y {i=0,1,...,m) are compcsed of functions of x.
The elements of A-1 are supposed to be bounded and to have
measurable and bounded generalized derivatives.

The risht hand side of (1)

F,(x)
is a vector function of the point x; F,(x)

ﬁ (x) are square integrable over Q. We write:
Fi(x) € Ly(Q), (i=1,2,..0n),

In further considerations we shall omit the summation sign
in (1) and we assume the summation convention over repeated
indices. Thus ”

A, (x E: A, 195

(=1
and so on.

In the sequel we shall consider various functional spaces.
Thus L,(R) and L,(Q) are spaces of square integrable func-
tions, over £ and Q, respectively. After defining weak deri-
vatives we shall define the corresponding spaces Wékz of
differentiable functions. We shall denote by a dot D{(Q),
ﬁq(Q),ﬁz(Q) Ehe spaces ofofunctions with compact suppert and
by a circle D(R), D (Q), D,(Q) the spaces obtained from
D(Q), D (@) and D2(Q) by <completion in the corresponding
norm.

The norm in the space Lz(Q) is defined by the formula

I£] L, (R) =(Z|f|'2.u>§

or more generally in L (Q)

L () ‘(/If] dx>%
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On mixed boundary value problem 3

The function O}, eee km integrable over each subregion

Qﬁof ) is said to be the generalized derivative of a function

¢(x), of order k=k, +...+k; and of the form-—j;——g T if

axqq...axm'm
and only if for each differentiable, in classical meaning,
function ¥ vanishing together with all derivatives up to or-

der k in close vicinity of the boundary of Q , there is

Ty k+1 Q
/ (p L k ( 1) l\ .-o,l{m d ,] = O
2 5x 1 dx v
1 1 m

where k=k1+_...+km
Generalized derivatives in the region § are defined in an
analogous way.

Let us consider the set of all furctions ¢  which have
in Q continuous gencralized derivatives with respect to
Xqveees¥ UP to order Kk 1inclusively, and introduce the norm
in this set by the formula

[ Kk n i 2 é—’ '1p
ol /| L L () |
“p 3 1 i

(=0 o4y,

in which p > 1.

The space derived from this set by the completion in the
norn indicated abvove is denoted W )(Q) Thus ¢ (X) € W(k)(Q)
means that ¢ (X) has generalized aerlvatlves up to order k,
integrable in power p. For example Wéq)ﬂQ) is the set of
saquare integsrable functiouws having in £ square integrable
generalized derivatives of the first order, that is

¢
_ 2 ai <\
121, 0, A/l 1 185 o]

The space ﬁ£1)aﬁ) is defined analogdusly.
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4 J.Grzegorcayk

Let D(Q) be the set of all functions continuous and dif-
ferentiable in 2 which vanish in close vicinity of 42 , that
is, which vanish in a ring-like set of points, the distance
of which from d§ is less than &> 0, By completing D) in
the norm of Wéq)CQ) we shall derive 5&9), ar a class. Since
the norm used is that of W21)CQ), there 1is the inclusion
BQQ)C:Wz(q)(Q) and hence B(Q) is a subspace of Wéq)ﬁﬂ). In an
analogous manner we introduce the space IH(Q) of all funcbtions conti-
nuous and differentiable in Q, vanishing for xe;@} =SZJX{O,a],
where SZ$ is the set of points of £ , fhe distance of which
from JS2 does not exceed § . Completing Dq(Q) in the norm of
Wéq)(Q) we obtain 51(9>- Now let us consider the set ﬁa(Q)
of such functions in Dq(Q), which vanish for each xoe[a-e,gL
where € 1is an arbitrary positive number not exceeding a. Thus
ﬁ2(Q) is the set of all functions having first derivatives
and vanishing in a close vicinity of upper and lateral sides
of the cylindrical region Q. The completion of ﬁa(Q) in the
norm of Wéq) leads to 52(Q).

We say that a vector of a matrix belongs ¢to a spdce, if
their components are elements of this space.

With the notation introduced above, the problem conside-
red in this paper may be formulated as follows:

A solution of the system (1) is required which satisfies
the following mixed boundary value conditions:

u(0,%) = ¢(x)

@) o (0 =y@ | o8 T
Lu(:i) =0 for xes$
where
P, () ¥4 (%)
@) =| . [eDE) and y (%) =| . |eL,(Q).
so;l(:‘c) W;(i)
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On mixed boundary value problem 5

As we shall prove in the paper, the considered problem has
a weak solution. A weak solution of (1), (2) is defined as
follows. First observe, that introducing the function

def | 0O for b<xo<a

(3) @) =1 x e b (@)
u(z,x)dz for O<xo<b
b

and taking the scalar product of (1) and (3), after perfor-
ming integration over Q according to (2), we arrive at the
equality

/[CPT ®T @T(
u - a. . u, + A.u +Au-1*')]dx+
1 X, %, 1j -xl_j X4 i7xy

(4)
T, . - o
+/ $7(0,%) y(x)dx = 0
Z‘ .

where

2 def T 2 2
(5) O — @ D =, 4.t .

According to this equality, a function ueD,i(Q) is said to
be a weak solution of (1), (2), if for an arbitrary vector
function

&, (x)

d(x) =| : £ ]32(Q);
iLCI);l(x)

the identity

/{(I)T —a..@)T +dg Au +Au—-FJ dx+/€b (0,%) y(x)dx=0
2 L% uxo 13 ¥ xy uxi ("1 pix)ax =
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+

holds true and the condition u(0,X) = ¢(i) is satircfied al-

)
8

ro 't everywhere.

4., Unigueness of weal solution

We shall prove the “ollowing theorem.

Theorem on uniqgqueness, A weak solu-
tion of the problem (1), (2) is unique,

Proof. Let us assume that there exist two different
solutions u(q)(x) and u(z)(x) and let u(x) = u(q)(x)—u(z)(x).
The vector function u(x) satisfies the equality

T T T /
j [@xo uxc - aijq)xj uxi + @ (Aiuxi + Au)] dx = O

Q
and the condition u(0,X) = 0.
If we take
0 for ngoga
Q)(X) = Xg 5D2(Q)
/u(z,;‘c)dz for ngogb
[}
then
T - T T
fl:@l & - ai_?(‘b @ + @ <Ai(1) + ACI) >:|dX=O.
X, ZX dU T x X%, X X, x
o “o'o 3 o i o i o
2 ;

Jdaking uee of the foraulas

J 2 T
e, 00 )-

2 0

-
Oy
~—

T T T
-6 & +6 & =20 ¢
X --‘CO Xo Xo XOXO zo XOJCO
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On mixed boundary value problem 7

and

J ( T T \ T
@) _d_fo \aij ©X. d)x. ) 2[‘3‘1'—? (b:{. ¢ +(\ai'v:/lx ? Xy q)x.
o]

X X
i %3 i %o

we obtain

\2 / T da,., T
1 1 1
J136: 3 (o). - 2iselon
(8)
1
dX = O.

Taking into account the definition of & (x; we can writec

b -

2 2 2

15 O) dx = 1/d>‘c/<¢> > dx =+ [d
/‘2\}: X, 252 / %)%, o} 2;2 X,

Q

(9)

lMoreover, we have

_ 1 .7 - -
%X = - E/;aij(o,x)d)xi {0,%) @x‘j( ,X)dX.

By the theorem of Gauss it follows that

T
‘4‘@ Ai @x X.dx =
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8 J.Grzegorczyk

T T
= —/(@ Ai)xié Xodx -:4@ Ai ®Xo COS(n,Xi)d6 =

Q
= _[(in Aiq’xo + QT(Ai)xiCbx())dx ’

(1)

since the integral over ¢d@Q vanishes for X, = O.
Hence we obtain

T
%![@2(1),:‘:) + aij(.O,S'c)Qxi (o,i)@xj (o,;{)] a% =

=/[..1(a..) g ) +Zm¢T A D +@T(A.) ) )-(I)TA@X }dx
A 2 137x x4 xj . x; T1¥x, Lixgex, o

Next, from the inequality

n m
2
(12) Y ey 8 E>vYyET,  v>o0
of=1 (=1
and from the assumption that the matrices (Ai)x_,Ai (ij=
i;j)xo for (1,j=1,ee.,m) are
bounded it follows that under the proper choice of constant C
we have

/ [@xo(b,i) +V<I>§i (O,i)}di = cﬁ@‘? +iq§ii}di.

2 i=0

=0,7,000ym), A, and derivatives (a

From the definition of the vector function ¢ we infer that

/ [uz(b,i) +1)(-0/xg.uxid"z>2}d}-c <

<[ e > /ux i,
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On mixed boundary value problem 9

def 03u
Denoting v, (x) =/—— dz, we see, that

X0 xl
Xp
(13) v, (b,%) / /g_ 6z = v, (t,%) - v, (x)
b b
and taking into account the estimate
b, A 7 2 f o
/(/udz) 2dxo</[(b-xo)/u2dxo} dx <P /u dx,
] b (] 10 9
we find

Z [u2(b,f) + (v =~ ¢,b) i v?(b,;‘c)] ax <

t=1
0 m
L ¢ /dic/[ua(x) +Z v2(x)]dx
=~ M1 i o*
2 4 (=1
If we take b sugficiently small such that » - c,]b>% and
c .
L] 1
if ¢, = max é:,l, T) » Tthen

4

m n
(14)/ {u (b,X) +; vy 2 (b x)]dx<02[di/<u2 + Zvla_) ax, .

Introducing the function

17}
(15) (b = /di/

2 0

we obtaln

(16)
After multiplying both sides of (16) by e e we obtain

-C,b
(17) %)[e 2 y(b)] <o .
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10 J.Grzegorczyk

-c,b
Thus the function e e y(b) does not increase and (17) im-
-C,b
plies that y(b)e 2.<‘y(0); and consequently y(b) = O since
we have y(0) = O,

From the definition of y(b) we obtain

~ m
(18) us(x) + Z: v?(x) =0

(=1

_ »
and consequently u(x) = 0 for Oéxoé e, *

.

Continuing this procedure we shall prove that

o

u, (x)

I

for g < X< -

U.(X) = : P o )

u, (x)

QO * o o
Y

and so forth up to exhaustion of the set [O,a], Qe0eds

4, Existence of weak solutions

Now we are going to present a method of construction of
weak solutions of the problem (1),(2) under the following as—
sumptions: vector functions ¢(X) - y(X) are supposed to be
continuous in £ and vanishing near the boundary J£ of the
region §2 . We assume continuity of F(x), Ai(x) (120319000, m),

e ¥,
A(x) in Q. The coefficients aij(x) and their derivatives z3=

J
(i33=1y.4.,m) should be continuos in Q.

Our construction is based on +the corresponding finite-
-difference scheme, This scheme 1is formed by taking 1n
X = (xq,...,xn) - space hyperplanes X; = kﬁﬁxi, where k; are
integers (i=0,1,...,m).

The intersection points (ké&xo, kfﬁxq,...,kﬁﬂxm) of these
hyperplanes will be taken as nodal points of a mesh., We denote
by & h the set of all nodal points which belong to the open

- 128 -



On mixed boundary value problem 11

set 2 ; Q, = [O,rAxo] X'.Q.h, where r 1is the entire part of
A—;L— , and a denotes the step of the mesh, The nodal points of
0

the boundary of Q’h will be denoted by Q9 and we
write Sh = I:O,rAxO] . From now on nodal points will De
written briefly x = (xo,i) = (xox,l,...,xm).

Let v(x),w(x) be two vector functions of the nodal points
of the mesh, We shall introduce the following notation (see

[2]):

1v(x) = E%E [v(xo’xﬂ""’Xi-ﬂ’xiTZSxi’xi+1""’Xm) -
(19)

- V(Xo’xﬂ""'xm)J

or in a more concise form 1%v = [v(xi +Axi) - v(xi)}: Axi .
In an analogous way

1
1;v =Ei [v(xi) - v(xi -Axi)] .
The following identities may be verified easily
ll(WTv) = (lle)v + WT(Xi + Ax.l)liv
(20)
L T T _
y(wv) = (Lw)v o+ w (x5 Axi)liv .
.Let us verify the first one

1i(wTv) =A% <WT(X- +Axi)v(xi +Axi) - wTv) =

. 1
1

=A% [WT(xiﬂxi)v(xi+Axi)—wTv+wT(xi+Axi)v_wT(ximxi)v} -
1
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12 J.Grze gorczyk

v(xi+Axi)-v(xi) WT(xi+Axi)—wT(xi)

T -
= w (xi+Ax.l) K%y + &% v(xi) =
—_— —_—
1ty lle

= (lin)v + wlty ,
g.e.d. The proof of the second identity is similar.
The application of the notation introduced above makes it
possible to replace (1) and (2) by the following finite-dif-
ference schene

. m
(1) llaij(x)lju(x)+;Ai(x)liu(x)+A(x)u(x)-—lolou(x)=F(x)

{ =

(2') u(x,0) = ¢ ), u(x, bx,) = @)+ Lx y(X) for Xel
u(x) = 0 for xESh.

First we shall prove that the solution u(x) of a finite-
difference scheme, defined at nodal points Qh,(th—S) is uni-
que.

The values of coefficients of the system (1’) at the no-
des placed outside of Qh and neighbouring with Sh will be
defined through their values taken at the closed points lying
on 8, Further we assume that u(x) = 0 at all nodes x of a
layer O<x0< rAxO, which does not belong to Qh' Taking sca-
lar product of vector finite-difference equation (1’) with
louT(x)+louT(x) and taking into account that

T o T\, 0 = .0 2
(Lu™+17u)1" 1 u = 17(1u)
and

T .o T,,i i T .o T R T
(10u +1% 7)1 aijliu"l (1,u+1l%u )aijliu 1 (lou )[aijliu}(x,mx,-)
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On mixed boundary value problem 13

we obtain

i T T
1 (lou +1% )alalJu -7 (l u +l u)e {aijlju}(xiwx.) +
(21) ,
+ (lo+l°)uT<Z Ailiu+Au—F> —10(1011)‘2 =
i=f
where {} (x; +4x;) denoting the value of {} is calculated at

the point (xo,x,],...,xl 49X XS gaeee, Xy ). Assuming h=Ax,=
—Ax _Axm and multiplying both sides of (21) by hmAx
and performing summation we arrive at

- m[,i,, T .o.T i, M.
:Axoz h [1 (lou +1°u )aijliu)-l (lou +1,u ) {algla }(Xp/i} +
J= Lp
(22) m .
T .o T i 2
+ (lou +1°u ><‘ Ailiu+Au-F>-l (1ou) } =0
(= .
where Z (- )= denotes the sum of values of ( - ) at the
nodal po:l.nts of Sy Z ( » ) ~ the sum of values of ( . )

o1 2hxy, 0l (=1)0x, (p <
Making use of the equalities

z: [1i(1 uT+lOu$)a..l.uJ =0
o} 13 J
L

i T ,0.T _
; 1 (lou +1°ut)e {aJJlJu}(Xﬁh) =
h

for x, =Ax

T o T
= . 1.
E [ll(lou +1° )alJ i }(x,— E 15 (l ul+1% )alJ i

& 2 1 2 °
0]
SZ_, 1 (loll) = E_Xo (lou)
XO=AAXO
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we obtain

p-1
m T .¢.T m T
X; Axogh li(lou +1% )alalau ZAX Z h (lou +
S= h
2
( 3) o1 5 onpro
+ 1% )(Z A 1. u+Au—F> + Z hm(lou) =.0.
i=0 .Q./, XO=AXO

Now, making use of identity (20) we arrive at two equalities

, ,
Ty, -
a) hm[:_hAxo ; { 1, [aij(liu ) lju] }sAxo =

p-1
= mZAxO [aij(lilouT-;-lilouT)lju} +

SA4x
Lp S=1 0

%a. . 1u’ .
* [l alJJ (s-1)Ax, [ 1" }sAxo [lau}(s—ﬁAxo

m T i T
+ h QE Aonaijliu lju}pr; [a Jl 13y lJu}X":o]l
h
m A P
1 1. =
b) E X, E [ (al:J 111 lJu sax,

- pl _ . T
ZH Liu Ty u}pro [ajjliu lju}XfU] .

Substraction of both sides of these identities leads to an ex-
pression which vanishes identically. Addition of this expres-
sion to the left side of (23) yields

m2{<l u)2+a B u} o, = 9;{(10‘1)2*%511“%3“ ]x,,=0 *

(24)

+ b ;Ax (1 ul41% ) (ZA 1. u+Au-F> +
s=1 i
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On mixed boundary value problem 15

m T m T
+Axoh ;{a lulolau}pAo+hAxZ[a llulu})(o:o +
(25) A e

N o T . J }
+h .QZAXOZ/‘ {l a5 }(S")AXD {liu ]‘sAxo {l u [ s-ax,”
h 3=

Denoting y, = max max I i.l
A J
i3 Q

4] )

where ( ) are elements of matrix Ak’ and a?_a. are elements

1J
Ax
of matrix A, =——h9 and applying the estimate

sz ] [

ijk

<
Z{alallu 11, u}prﬂ

T
< ht Y1 % Z{;aialiu (l u=-1 u(x —h)>]pr <

m

m 2 2

< b ypm ; {Z’ (1iu) + m(lou) J/’A’(o <
- ]=

m
< m 2 2 .
< B g m;[zouiu) }pr,,'
hoL L=

I o) T +
(26) h Axo ;[aijl 1iu 1juJ. =0
h

m
< nt 7,20 %[Z(‘l’iu)z + m(lou)2 }x o <
h -l ¢
p-1

n T J
<h ZAK Z{ 813 ]&-4}410 {liu }sAxo {1 4 }(5-4)Ax0

S=1
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16 J.Grzegorczyk

p-1 m
m 2
< h ym ZZ Axo Z [(liu) }5Ax0 +
q, 5=1 i=7
m
+ ZyhtAxg ZZ[(l w) ] <
2y i=1
p-1
o ZAXO ~(Ailiu + Aolou +4Au-F) <
S;/; ©s=1
< ¢ h® Ax ’ m‘(ll U.)2+u1‘2+F2
=~ 1 Z “o Z Z i 54X,
2p Saf =0

where constant ¢4 depends on the dimension of the space and
on the elements of the matrices Ai and A, we arrive at

n® 2:{(1011)2 +agsly ule1. u}pr <
Q
mZ{(l u) + a, Jl uTlJu} S
P
mZAX Z{Z (1. u) +u + Fz}sAx +
0
m
(27) + pt qumz{

Z:(liu)2 + m(lou)2]PM0 +
Qi1

L'—:
m ' Y 02
I ) IR R C N

‘Q'h =1
P'1 m m 2
cl i 3 S et s B efan, XY law?, , .
Q, S=1s sax, Qs =1 °

Applying the inequality ay ij s {J vé and transferring
the third term to the left side, we obtain

m
= Qz{uou)%-wma) .3 Gw2e-rum} | <
h
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On mixed boundary value problem 17

m
n™ ; (lou)2 + aijliuleu + m;‘Axohm Z'(liu)z} +
L:

Xo=0
P m
ROV R DI o Ez}xo= shx,
Qn  s=1|i1=0 0

Ax
If we choose % =.-—hg- in such & way that 1- 74 aemaz v4>0 and

V- Tq%m2V,> 0, and take into account the estimate

(28) > B < Y (yw)?
S2h

Ry

where do is the diamater of the setb Slh, we obtain

(29) w3 Z(liu) 77 Sgres ZAX Z{Z(liu)a+t2}sﬂxo
=0

Qp L=
where

m
- 0 2 T m 2
S, =h ;[(1 w)S+ay 1wl usmyAx b [7: (1,u) }ono .
h i~

Now let us introduce

p
(30) y(p) = hmAxoZZ{Z(l u) J

S=1
and

(31) h(p) = 1 S, + ¢ mZAx ZF (shx,) ,

5=1

them dnequaiity (29) will take the form

(32) LP)A'%M ¢53 (p)+h(p)

o]

After certaln manipulations this yields

Ax
1
y(p) = 7‘@}—{; y(p=1) + ,‘—_c??—}g h(p) .
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18 J.Grzegorczyk

The definition of y(p) and the conditions -of finite-diffe-
rence problem explain the equality

m
(33) y(1) =Ax0hmZ[1//2 + )y 90+Axolil/f)J .
L2 i=f

Denoting E = 1‘_°;Ho and applying the last inequality (p-1)

-times we obtain

p
y(») < BV y(1) 4 E Dx, Z EP™S n(s).
522

If Axo is taken so small, that 1-03Axo> %, then

p
y(@) < BT y(1) + B2 Ax, ) n(s) <
(34) >~

< &P Ax (p-1)h(p) + B y(1) = P77 (an(p) + y(1) .

Making use of the inequality

cAx pezAX
EP = (’l 420 )p exp 270 < exp<2 a)
’I-CBE—CO ’l-c?xo c3

we obtain

() <e?9%(3(1)+an(x)) .

Now, the estimates

m
Axohm;[qlz + Z (ligp+ Axoliw)z} =
h =1

” ¥Wx) - pla o)\
=Axohm§:[uf2 + Z<li¢+Axo J n VE > }
2y

i=q



On mixed boundary value pro‘blem 19

n 2 & 2
< ¢ fxb Z[w £y (1 9) } )
-Q/; i=1

m
n™ Z{(lou)2+aij1iuleu+mfoohm Z (liu)z}
2 i~

o=

_hleu/ +al'J l(/)l ¢+m]AthZIgﬂ)}<

(=1
<o L o]

with proper choice of constant c5 yield

n®Ax_ Z ZZ{(l ) }SAX <

(35) M et
<ec h Z[U@ + Z (ligo)2 + Axo ZF2(sAxO)} .
4, =1 5=t
The application of inequality hmZ < nt Z Z(l u) %o

2p =1
the left hand side of the 1nequa11ty (35) with a proper choice

of constant g leads to

Y m
nx ) Z[Z (1;0° u2] eshry S

5=1 52’7 [.—.0 >

(36) , ” . ,
< ¢g nt Z[w + Z (1;9)° +Ax Z Fa(sAxo)}p P=1,2,.4.T.

S i=1 5=1

The substitution of the right hand side of (29) intb the same
side of (35) and the application of (28), with a proper choice
"of the corresponding constant leads to inequality

. m
o) BN MO
=0
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)
< c7hm;{ (11(;0)2 +Axoz F2} ’ P=1425e00,sT,
A (=1

5=1

The right hand sides of inequalities (36), (37) are commonly
bounded with respect to h smaller than a positive.constant.

Let h and Ax  take, respectively, the values h yhy...,
hs... and ¥ h,], xha,..., xhs,... which tend to zero as
S —=—oc ,

Under these assumptions the following theorems hold.
Theoren 1. Consider sequence {uh of functions

defined at the nodal points of &,, with the property  h" [ o2

Z (lluh) ] ¢V ana u=0 on the boundary of S?. I"I'hen,
there exists the subsequence {uh } of such that it con~-
verges in the space L, (Q) and weakly converges in WI(’])(.Q.)
to a function u(x)e D(SZ) for Xe .

Theorem 2, If h" ;uh<c and either one of the

sequences {ullx}’ {u(m)} and {&’h} weakly converges in L2(52)

to a function u(x) as h-+=0, then also the remaining two of
these sequences converge weakly to u(x).

m
Theorem 3. If the inequality h® ; Zf(liu)z <ec

i=
holds true and if one of three sequences {uh’ }, u(m; } and {ﬁh}
converges in L2(SZ) to a function u(x),then also the remaining
two sequence converge in L,(R) to u(x) for TeQ, where Q'cQ.
Theorem 4, If a function uy, depends on parameter

X, Where x°=sAxo, s=O,’1,...,[A—§—J+’1, and vanishes on the
[o]

2
. m o4
boundary of £, and outside of R, and If h Axogsgo [uh
(liuh)2]<c then there exists a subsequence uh which
(=
converges in the norm of L2(SZ) to a function of the class f) (Q)
uniformly with respect to xoe [O,a} and which converges

1) c is a positive constant.
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weakly in the norm ng)(Q). Uniform convergence in L2($'2)
means that:

<€,

P

ES0  NE) SPN(E) s ‘I'P_(.Q)
The functions entering in formulation of these theorems

are deflned as follows

m
u.;l-(X) = W(Xqyen00Xy) ﬂ; (xg = kh) +

m m
+ Z u(x,l,...,xr_,l,xr_'_,],...,xm) W (xs_ksh)+"'+uh
r=1 - 5$=1

m
u(r)(x) = u(x,],...,xr_,],xrm,...,xm) -ﬂ- (xs-ksh)+...+u.h
s=1

S#r

4, (x) = ulkyh,kb, ...,k h), kh<x, <(k+1)h .

The sequence {uh } satisfies the assumptions of Theorem 1,
s

therefore the sequence {ul'l ] converges weakly in the norm

s
of W?E")(_Q) to a function of the class D,I(Q).Murecvem, this sequence
/

uhs] converges in LE(Q) on each hyperplane X, = const. The
convergence is uniform with respect to X, € [O,a]. Consequ-
ently, we infer that u(x) belongs to La(Q) and depends conti-
nuously on x, and hence u(0,%) = ¢(x).

Let us prove that u(x) is a weak solution of the problem
(1),(2). We have proved above, that the boundary and initial
conditions are satisfied. Thus, we have only to prove that
equations (1’) and (2’ ) are satisfied.

Lot cp'eﬁaﬂ((q) and assume h so small that @ =0 on §;
¢ is extended over all semispace x°> O.
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Let us notice that u satisfies the equation
ST 7 T
m i 0
n™ Y Ax Z ® [1 ayslyu+ Z A,(0)1u + Au -1 10uJ = TF,
Q/, 5=7 (=0
After transformation we obtain
Y i om 7 m
m i
h ;Axo; [aijl 0] lju +® ;Ailiu +
7 = =

+¢au + 1°9T1% +@TF} + hm[ZQTlou ]X0=0= 0.
2

This equation may be written as an integral relation by ap-
plication of step functions

/fd[(l ) (1%0) - a6 (I §T) (IR +<§T;}ziiiﬁ +
58)

N

é <I> }dx+ cp (Ox)yf(x)dx 0.

Q

These step functions ¢T,('il$T),£/ij,Ki,F, ¥ are uniformly con-
vergent as h =0, For h‘:hs, under assumptions stated above

on h, the functions T and (ilE) converge weakly to u and —3%
i

(see Theorem 1).After taking limit, the equation (38) leads to

29T . 29" du
f[Txo e ;1 233 0) Jxg 3% & Y Ay Jx
2 o

(39)

+ dTau —(I)TFde +/¢>T(o,z) y(F)ax = 0.
2
Let ¢ eﬁZ(Q), then there exists d)k € 1&)2(Q,) such that
HCb —¢>k“7w(’|)(Q)l —0 as k-=—oc and the comvergence is uniform
T2

with respect to x ¢ (0ya). For all functions ¢ equality
(39) holds true, and since u ¢ f),l (Q) we also have uewzq)(Q).
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If the above conditions are satisfied, then the following
estimates may be derived

+

f 00" b \ow _ (X)(acbT AR
Q Ix, dxojaxo iJ axi axi/ axj

(=) 1

T T
+/<<b _(1)1{))(0=6’;l’(}_C)(h—c <

Q

T T\ &
+<q> _¢k>(ZAig%+Au-F>}dx+

(40)

< °8[”u” 7@ Jo-o.] 1Y (@) +”w”;L2(Q)“¢ b L2(§2)J

where the right hand term converges uniformly +to zero as

h -= 0, From this estimate we conclude that for an arbitrary

function ®t552(Q) identity (39) holds true. This fact proves

the existence of a weak solution of the problem (4),(2), un-

der assumption that the functions F(x), ¢(i),-g%%, v (x) are
i

continuous in Qy £2yresp.,and that ¢ and ¥ vanish in a
close vicinity of the boundary of £ .
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