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CONVERGENCE OF SOME TRIGONOMETRIC SUMS

1, Preliminaries

Let E[resp. E"‘] be the class of all real functions f£(%)
Lebesgue~integrable over any finite interval, such that

T+C -T
a - a -
Tflf(t)ldt_0(1)[0(’l)J and Tf|f(t)|dt_ o (1) [0 (1]
T -Tc
as T —=oo, for every fixed c¢ > 0.
Consider an arbitrary function f e E* and a positive num~
ber 1. Write, for any xX e (=oc,o0) and n = 1,2, ...,

n
Sl(x s£) =5 a, + Z (akcos kT”x + bysin lU’Tx-) ,
k=1

n
21
Sn(x;f) = ; (&, K Sin kT”x - b, cos == ),

-1
1 1 1
6 L(x5f) = — Z sy (x;£),
m=0
1 1
6n(X;f) =0 Sm(X.f) ’
m=1
with
{
1ff(t)cos k7% 45, b, =2/ £(t)sin k—“’ at.
1/ k=1
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21 R.Taberski

An easy calculation shows (see [2], I, pp. 49, 88, 91)
that
L
1 1 1
Sn(x,f) T/f(u)Dn(u-x)du ,
-{

{
gi‘(x;f) = - %/f(u)ﬁt(u—x)du ’
U
i
6i(x;f) =% tf(u)Ki‘(u—x)du ,
{
Fxit) = -%[f(u)i}l(u-x)du,
where
n . Tt
sin(2n+1) 57~
Dl(t) =14 Z cos £7E : 21
n 2 . 1 oain LT '
k=1 sin -3y

7% ’
k=1 2sin 3y
2
-1 sin 2L
10 _ 1 1,y _ 1 21
K(8) =3 ) Dpl®) =op(——5% ]
m=0 21
n-4 Sin M
~1 1 =1 _A 7t 1
Ko(t) = ) Br(t) = cot g - T
med n(2sin 21)

In the paper [1], we gave some criteria of the Dini and
Young type concerning the convergence of Si(x;f) as 1 -—= oo,
n—- and 1/n - O, Here, the remaining three sums will be

examined,
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Convergence of some trigonometric sums

In Sections 3 and 4 the following notation will be used:

Yo () = £(x+t) - £(x-t),

%l(x;h) = - %

.

rt

¥ (t)cot 57 4t (0<n<1),
and

lim

Fx) = _5—14%(1&)00#&—'{ at = 1im Fx;n)

provided the limit exists (cf. [2], I, p. 51).

2. Convergence of 6%(x;f)

Given any feE”* let us start with the identities

{-x {+X
61(x;8) = 25 ‘/f(x+t)Ki‘(t)dt+/f(x—t)Ki‘(’c)dt ,
={+x

[

{-x {+x
1= /Ki(t)dt +/Kﬁ(t)dt
Lx

~{+X

which are valid for x ¢ (~ooy°), 1>0, n =1, 2,... . Denote
by g(x) an arbitrary real number. Then,
{-x

Si(x;f) - g(x) =2i1_/ {f(x+t)+ f(x-t) -2g(x)J Ki(t)dt +

(X
-lrx

+ 2il/ [f(xﬂ:) - g(x)_] K{l‘.(t)dt +

-{-x
£

* ;_1/ [f(x-ﬂ - g(x)} KL (t)at =
= Ii(x) + T.%(x) + Vi(x), whenever 1> x
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Clearly,

-X

(x) =%Z

){f(xﬂ:) + £(x~t) - 2g(x)} K]!;(t)dt = J‘t(x) - Ri(xd.
-X

I

B K

{f(x+t) + Fx=-t) - 2g(x)} Ki‘(t)dt =

\\

0

b

If - 1<a<x<b<1 and |s(X)|<K3 (a,b,K mean constants),

{ {
’4Ri‘(x)’ <3 f]f(x+t)|K[11(t)dt +%V|f(x—t)th(t)dt
{-x L-X
2 {
2 1 1 1
+ 2 |g(x)] /Kn(t)dt AT / |2 (ert)] at| +
{-x 21 {-x
l
+—;‘_ / |f(x-t)|dt |g(x)| <
1-x
l'h\' 2x-1
< 2 Jr(l-x) If(u)ldu + = /|f(u)|du + % K
2n sin 4l .
Hence
}im R:[Ll(x) = 0, uniformly in xe <a, b>
/1 —e= 00
Analogously,
. 1 _ _
t,/]p'}f-lw Un(x) =0= [};E'Em er-l(x) *
Collecting the results, we obtain
(1) 6}1(x;f) - g(x) = J[ll(x) +0(1) as 1, n——oo,

uniformly in x ¢ <a, b>
The behaviour of Jt (x) will be investigated below.
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Convergence of some trigonometric sums 5

Lemma 1, If f(t) 1is Lebesgue - integrable over
every finite interval and if

(2) / -J—f%i dt<oo,

[E1»1

then, for each real a, b {(a<b) and &> 0,

L/ﬂl_:;nb 1ff(x+t)K (t)at = 1>4),

uniformly in x € <a, b> .
Proof. Given any ¢ >0, we choose a A> max(d, |al+
bl + 1) such that

b-4

</+/‘?)-l£(-g-ﬂ du<%.
Yo g

u

Then, in case 1/n <1 and x¢€ <a, b>

Hia

{ TFIE(x + t)
ff(x + t)Ki(t)dt’< T /~lt+l a <% .
a 4

By the mean-value theorem,

2
%!f(x + t)Ki (t)at =

. 2 fré"/f(x + t)sin® 20 at  (§<E<D).
Hence
A
% -!f{,x + t)Krll(t)dt’ <

uniformly in x¢ { a, b), whenever 1/n 1is small enough,
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6 R,Taberski

Thus, the prioof is completed.

Lemma 2, Suppose that f£(t) is Lebesgue-integrable
over any finite interval, and that f(t)/t:2 is of bounded va-
riation over some intervals (-o= , -H>, <H,oo) (H>0). Then,
for each real a, b(agb) and §>0,

L
a 1 =
tz/”l_iino lff(x + t) Kn(t)dt =0 1>48,

uniformly in x € <a, b> .
' Proof. By the well-known Jordan theoren,

_ﬁgl= £,(8) = £,(8) for te<H, ),
t

where f.(t) (j =1, 2) are non-negative and non-increasing
in this interval. Therefore

{
-%_[f(xﬂ;)K (t)at = lfﬂEﬂL (x+6) %KL (t)at =

(x+%)

{
= 11 f{f,‘ (x+t) = £5(x+t) } (x+t)2Kl'(t)dt , 1fA>4 a+A>H
A
Applying the mean-value theorem, we have

¢ .
%[fj(x+t)(x+t)2K3;(t)dt = fj(x+A);_—7(x+t)2Ki'(t)dt (A<E.<1).

4 J

Hence
(
1 2g} ’ < fj(a+A);_‘—/‘x2+2xt+t2]Kt(t)dt .
A )
But ;
1/ 1 1 1 1
= [ K (£)dt < .
1) n >2In 7 502 _2§ A?
: 1
1 1
P s cg 2
a
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2

Consequently,

12/%’_._0 . ff(x+t)K (t)at = 0, uniformly in x e e, b .

It is easy to see that, in the last relation, the function

f(x + t) canbe repiaced by f£(xi-t),
The integral of f(xi-t)K]ri(t), extended over <5’,A> is

small as we please (see above). Thus, the result follows,.
Assuming that £ ¢ E* and 1-=oe, n o=, we have

Theorem 1,.If f(t) satisfies the conditions of
Lemma 1 [resp. Lemma 2|, then, for all real x such that

A
1
(3) }_15‘?[ lf(x+t) + £ (x=t) - 2g(x)|dt =

the relation

(4) 1im 51(x if) = g(x) [lim b"i(x;f) = g(x)J
(o0

in -0

holds “(ef. [2], I, p. 90; II, pp. 242-3).
Proof. Inview of (1), it is enough to show that

J{.‘(x = -—f {f(x+t) + £(x-t) - 2g(x)} K (t)ds

tends to zero as 1l/mn — O [resp. 12/n -’-OJ .
Let us put

¢
P lu) = £(x+u) + £(x-u) - 2 glx), A(t) =f Igox(u)ldu
0
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8 R.Taberski

and choose, for a given ¢ > 0, an arbitrary 2>0 such that
A(t) <&t, whenever O0<t 7.

Write
it 7 {

3t(x) = %</+/ /)wx(t)Ki(t)dt =A+B+C.

4

Clearly,
yd 1, & 1
1 1 A Ayl + <
lal < ljo'lKn(t)|d7!(t)< ST AR <5 i £,

In this case

7
1 1 [ _
|B| < /l‘/’x(t)lK ($)at < 2n/?dﬂ(t) =

7
JL A aarm) L, [0 4]
2n{ 12 (/n)*? % } ’

whence

Applying Lemma 1 [resp. Lemma 2], we get

|C|<8§f

provided 1/n [resp. 12/n] 1s small enough, and the proof
is completed.

Remark 1, If there exist two real numbers fq(x),
f2(x) for which
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Convergence of some trigonometric sums 9

A 4
1 1
}%E/[f(xw) - f,](x)ldt = 0= lim E/]f(x-t) - £,(x) | at,

then relations (3). - (4) hold with g(x) = [f,] (x) + fz(x)]/E.

Remark 2, For any fe¢E¥* continudbus at every point
of a finite interval <a, b> , the convergence (4) is uniform
in xe(a, b) and g(x) = £(x) in this interval.

3, Behaviour of gi(x;f)

Considering f's . of class E, we have
{-x {4x

8L(x;1) = -%f £(x+t)B (£)dt = —;‘_—f £ (x-t)B% (t)at

~l-x =(4X

for xe(-ecy>=), 1>0, n = 1, 2, +.. » Consequently,if 1> x,

{-x L4x

’érll(x;f) = - 2i1 4‘ Vx(t)'ﬁt(t)dt»- 2"—1 [ f(x+{:)l3t(t)dt +
bt t-x

{+x
{~

+ oo /x £(x-t)DL(t)at = GL(x) - P}l(x) + QL (x) .

It is easily seen,

L-x I
Gl(x) = -7 0/ y, (5)BL(t)at = -%/’Vx(t)ﬁi(t)dt *

l
+ % yx(t)f)i(t)dt = Mi(x) + W}l(X)

(X
and
1 t Vx(t) £ .cos(2n+1) %
Mi(X):-T —TFZ ‘dt +T/ylx t)'—if’a—_dt=

= #1(x) + Yt(x) ’
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10 R,Taberski

‘whenever fl(x) is finite. In this case

§J[-1(x;f) -#Fx) = Ylli(x) + wi(x) - Prll(x) + Q,];(x) .

If - 1<agxg<b<l (a, b = const), then

{
/|f(x+t)|
X

1l 1 1 1
Wl |< 4 BLee) fat |+ <

[:|f(x-t)| \3&(1:) ‘dt

Lex 2x-

[lf(u)|du +%|_X/_;[|f(u) ldu

< =l 1
o1g Z(1=X)
sin ]r 1

Considering x20 and x<0, separately, we obtain

linm WI];(X) = 0, uniformly in xe <a, b> .

[,/)—a-eo
Pl 1 .
The terms n(x), Qn(x) behave similarly. Hence
(5) gt(x;f) - (x) = Yt(x) +0(1) as 1, n—=—oo,

uniformly in x € < a, b> , brovided fl(x)‘ is finite in this
interval, Further ivestigations will be concentrated about
Yi(x) and §l(x).

Assuming that 1-—+e , n—-+, we have
Lemma 3, If f(t) is Lebesgue-integrable over every
finite interval and if

f _._t__lf(t)' dt < o=,
1€
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Convergence of some trigonometric sums 11

then, for each real a, b (a <b) and 4 >0,

£ cos(2n+’l) 131
lim / X + dt =0
th —~ 1 2 sin JZIE !

uniformly in x € (&, b) .

The proof runs as in Section 3 of [’I].

Theorem 2, If f(t) satisfies the conditions of
Lemma 3%, then, at every x for which

IAQ)
(6) /VLt—dt<°°,
0

the relation

Ty (%)
3l(w.f) =
R

holds (ef. [2], I, p. 52; II, pp. 242-3).
Proof. The assumption of Lemma 3 imply fe E and

1YL (8)]
/—t_ dt < e for every x ¢ (=oe, o),
1

Consider a point x such that (6) is fulfilled. Then the
Liebesgue-integrals

T ly (o)l rx(8)
— dt, (t) t dt (1>0)
JE e, [P, [yt

are finite. Moreover,

Flx) = —21/;/ (t)eot 5% at- (1>0).
0
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12 R.Taberski

We shall prove that

(7) lim Fx) =

{ —e= oo

§LA

7Y (t)
/td'
0

Write

L
(%)
2l(x) = FHx) + ﬂ[vxt at _/y (t) [it S cot %} s .

Choose, for a given ¢ >0, a positive A such that

7 v ()
_/‘W% it <& .
A

Evidently, if 1>A,

a4 .
1 1 Yy (%) 75 . a%
Zn(x)=7<_o/+'[> % '1-21001:21 dt = A+ B
and
[4 o
L )] 1/qux( ) ¢
|Bl<7/ — <5 e A< 5.
a a
Further,

. A
1 7A 78\ ¥y (8)] £
al< 3 (4 -1 oot —21>[x—t at <

for 1 large enough, and relation (7) follows.
Take into account the expression

¢
cos(2n+1)
Yi(x) = —1—/ per 21 dat
9 2sin 51
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Convergence of some trigonometric sums 13

and a positive § for which
o]
4
f X oag<e.
A t

Then, by Lemma 3,

(8) 'Yr];(X)l <§2—+% 75

; cos(2n+1) %
/Vx(t) - at|< € ,
Y 2 sin 21

if 1/n is small,

Applying (5), (7), (8), we get at once the desired asser-~
tion.

Remark. It can easily be observed that if f¢ E and

VRO
(4

the thesis of Theorem 2 is also true.

4, Property of gi(x;f)

If feBE,
Lox L4x
§1(x;£) = -1 ff(x+t)i%(t)dt = %/ £ (x-t)K (t)at
~L-x =LX
for x€(=o,>=), 1>0, n =1, 2, ... . Hence

( {
€r11(x;f) = -%b/yrx(t)ii(t)dt + %l/yx(t)ﬁi(t)dt +
-X
=l [A2 -L+X
+ %lfyx(t)f{}l(t)dt + %/f(x-t)ﬁi‘(t)dt—% /f(x+t)f{qr1(t)dt.
-1 {-x -{-x
Putting ¢
- 1 1 ~1
X Fn(x) = -T/Vx(t)Kn(t)dt ,
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14 R.Taberski

and reasoning as in preceding Section, we obtain
=1 1

(9) 0, (x;f) = F(x) + 0(1) as 1, n=eo=,

uniformly in x over any finite interval (a, b) .

Theorem 3. Suppose that fe E satisfies condi-
tion (2). Consider an arbitrary x¢ (-e,e) for which

h
1
Jin g /l;ﬁ’x(t)l at = 0.
- 5
Then
lim 6. (x3f) = -—/ at (1, n =—==)
=0 n I-—o v ’ ’

provided that the last integral is finite (cf, [2], I, p.92;
II, p. 246).
Proof. BSetting

=2
1 1 . Tt nrt
Q)n(t) = (2 sin §]—_> sin———,

1
we have
n-1
~ ~ 1
KL (t) =+ 0 Br(t) =4 cot Zo =3 1(6) (1>0, n>1).
m=
It is easily seen,
n
111 1
(10) T,Kn(t)'<ﬁ me mg% always ,
(11) T|ererjc =25, £ o<itl<a.
4nt
Let us write
U L 1
1 i f % =
Fo(x) = =1 (_0/.+ w)v’x(t)Kn(’G)dt
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Convergence of some trigonometric sums 15

L tn
- Pt/ + 1 [re® dlnas -a}/wx(t)i{%(t)dt .
in 7

Choose, for a given & > 0, a positive A such that
A .
(d(h)Ef l;tfx(u) ,du < €h, whenever O<h A,
0

Then, by (10),

1

h "
%_g/wx(t)it(t)dtl<—% /le(t)ldth, if <A,

In view of (11),

a
2 ¥_(t)]
%’4wx(t)¢i(t)dt‘< % [/,,Iite— dat =

P

_ L) _Q/m) Zfﬂ(tz dt}<
‘*n[ 2% amf Y,

< ﬁ{% + -ﬁa + 26'(]9;1 -%)}<—5—é~, when —nl~<A.

The assumption (2) and inequality (11) imply
t

1 1 .
AT [ Vet)Pp(t)at =0 (1,n o).

Hence

(12) F%l(x) - f‘l(x; l/n)‘< 2¢ as 1/n are small enough.

}dt ;

Further,

{ {
~ v (%)
fl(x; 1/n) + %f Xt dat =/wx(t)[-7"lﬁ -2i1 cot
Yn (7

PR
et
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16 R.Taberski

D {
¥ (%)
=</+/) X {1-%cot’”{}dt=A+B,
th “p

where D 1is a positive number such that

.
f v (6)
/ 5 dt<e, if T,=>T,2>D.
7
By the mean-value theorem,
{
velt)
B =/ % at, with a certain £e{D, 1) .
3

Hence

!B|<€/2 for 12D.

Also, this theorem yields

7D ) [ ¥x®) 1
A:(’l-a—l'do‘bﬁ! 76 at (E<T<D).

Consequently,

lA l < g/2 for sufficiently large 1.

Thus, we have

o _ Ty (t)
1im £ (x; 1/n) = - 1/%‘—— at (1, n =)
and by (9) and (12) the result follows.

- 116 -



17

Convergence of some trigonometric sums

REFERENCES

[1] R Taberski: On general Dirichlet’s integrals. Prace Mate-

matyczne 17 (1973) in print.
[2] A, Zygmnund: Trigonometric series, I, II, Cambridge 1959.

INSTITUTE OF MATHEMATICS, A MICKIEWICZ UNIVERSITY IN POZNAN,
61-712 POZNAN

4th

Received May , 1972..

- 117 -






