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Introduction

Dans ce travail on construit la solution fondamentale
spéciale de 1°équation (1) et du systéme (24). On démontre
1’intégrabilité de ces solutions par rapport & t dens 1’inter-
valle (O,+«).

I. Solution fondamentale speciale de 1 équation de la chaleur

1. La solution fondamentale de 1°équation parabolique ou
bien du systéme parabolique est dite speciale, si elle est in-
tégrable par rapport & t dans (0y +w). Une telle 1ntegrale
de la solution fondamentale présente une solution de 1° équ~
ation elliptique ou bilen du systéme elliptique limite.

L’équation

(1) 2%u - 2% _o
ax 3%

(34

posséde pour x ¢ R, t ¢ R+ une solution fondamentale de 1lg
forme

(2) cu(z,6) = —— exp (- £>

2¥n e

Z = X=yy, O6=t-7y t>r, FeR.
On peut facilement démontrer que la solution (2) n’est pas
intégrable par rapport a t dans (Oy + «w)e On construira 1la
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2 S.Cakala

solution spéciale de 1°équation (1) en appliquant la méthode
de Gruzewska-Eidelman.

Dans ce but on développe la solution (2) en série de Taylor
par rapport & la variable z en un point donné d’avance a >0,
puis on élimine de cette série les premiers éléments. Ensuite
on prend la fonction. '

(3) aw(z'e) = u(z,0) - QP(Z;G)

\

ou
2 7
1 a ala-2z
2(2,6) = L2 agen)]
(4) af (216) oVAe exp (1 T O 4

D’aprés la formule (7.2) de 1l’article [1], (p.243), on a
pour & >1 la limitetion suivente

(5)

const

|aw(2993| < —e_g_——

2. Condition de convergence de la série des noyaux ité-
rés.
En appliquant 1’opérateur

2
] [
( 322 38

& le fonction (3) on obtient le noyau spécial aN(z,e)

(7) N(2,8) = Lan(z,e)] = 35 [&P(z,e)] =
= 4~ n‘% e‘%exp <_ 49.62> [aBia;Z) + 3;29—252 _ 1} .

On suppose ici que

(8) a>\|z|
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L'équation de la chaleur 3

Alors pour 6O > 1 on obtlent la limitation suivante

(9) | N(z,0)] < 2°B8F

eZ

L’évaluation (9) est en accord avec la limitation (7.3),p.2u49,
de 1°article [1] pour M = 2, n=1.

Ensuite on construit la fonction

N (k)
(ﬂb) af(2:9) _ 2:‘ & (z,0)
k=1
‘ou les noyaux itérés sont déterminés par la formule

8 g
() A0 = /f N(zm,6-3) N (m,5)am a3
0 -9

1
a>0, JM(a,0) = xn(z,0).
De 1°hypothése IV du travail [1], [formule (5.9)p. 258] ,
résulte une condition concernant le nombre a, qui garantit la

convergence uniforme et absolue de la série (10). En effet on
a la condition

w g
(12) f/,éN(z,e)’ dz 48 <1
L)

d’ol on obtient ainsi 1°inégalité

2
6q , 39
(13) 2 t =5 <1
a 2a
et enfin

a>—é§(6 + VE?).

3. Bvaluation de la fonction . §(z,6).

Pour -obtenir une évaluation de la fonction 2% 11 faut
trouver la racine positive § du noyau aN(Z,G). En s appuy-
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4 S.Cakala

ant sur la formule (7), on peut voir que pour © —o et pour
@ — «» le noyau aN(z,e) —= 0,
L équation

2

46 + 2a (2a - 3z) 6 - a3(a-z) =0

détermine la racine positive 92 du noyau aN(z,e) sous la for-
me suivante

(15) 62(_z) = % (3z - 2a +vga2 - 16az + 922), 1zl < q.

Pour obtenir 1°évaluation de la fonction ¢, on profite
de 1’équation intégrale de Lévy

6 g
(16) of (2,8) = N(z,8) + // N(z-m, 6-5) _¢(m,5) dn a5

o -4
que 1°on peut écrire sous la forme suivante

T 4
(16°) agzﬁ(z,e) = aN(z,e),+ ff aN(z—m,e—s) a® (mny,5)dm 45 +
0 -

6 9
+ ff aN(z—m,G—S) a¢(m,s) dm 4% .
-9

Pour évaluer la fonction a¢ pour 6>1 il faut profiter
de la limitation (9). (Pour © < 41 on peut appliquer les é-
valuations duv travail [1]). Remarquons que le noyau. aN qui
figure sous le signe de la premiére incégralé de (16') admet
1%accroissement 6 —3> 5y On peut donc profiter de la limi-
tation (9). Remarquons que, d° apres le travail [’I] 1’intégra—
le de la fonction | ¢(m 5)| existe et qu’elle est bornée. Il
en résulte que la premiére intégrale de (16°) est 0(9 )s Pour
évaluer la seconde intégrale de (16 ) on substitue v = 6~ 3 et
on obtient

la¢(z,9)l < 0 (S) + 0 /fl N(z-m, v)| I #(m, G—v)r
-
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L'équation de la chaleur 5

En appliquant la formule (15) on décompose 1 intervalle
(0, -g—) en deux intervalles (0,6,) et (6,5, 3)

8, = 6,(z-m)

Alors

-3 3 %
| #(z,0)|< 008" +f/ N(zm,v)|, ¢ (@,6-v)| av am +
s

8
. fif [ - (2, )] | $(m,6-v)| av am .

58
En appliquant le théoréme de la moyenne pour 1 intégra—

le, on falt sortir la fonction |a¢ ldevant les signes des
a P

intégrales et ensuite en profitant de 1°égalité N = %

on évalue les intégrales réstantes. Comme

lin P(2,8) = o

et

_1
aP(z—m, %) = 0 (9 7) —-o0 pour O —v; on obtient

3

(1?7 |a¢ (z,e)lé 0-(6 )+ c(z) | max ‘aqs(z,e—v,]) +

-4¢2¢Q
+ ug?ﬁ‘q’ ,a¢(Z,G—V2)”
ot .
c(z) = f aP(z—m,Gz)d.m; 8, = 65(s-m).

-4
En tenant compte de la limitation de la fonction a¢ pour
®—~cw, on prend une suite commune G', (6'—~ ), pour laquelle
les deux termes sont convergents. Alors on a

3
1¢(z,9’)l40@'2) +2c¢c(z) max | a¢(z,6)
‘a -9¢2¢ g
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6 S.Cgkata

Cette inégalité est vraie pour chaque z. En effet on a
4
’, ,
max. $(2z,8) \sO(G ) + 2 c(2) maxl ¢(z,9’)‘
z la z '8

et ,
‘ 57
[1-2c(z):|max|a¢(z,6)|é o(e" ) .
Z
On peut démontrer que pour a > 14q on a
1-2c(z)>0
et enfin on obtient

| $(219)] < SO2E

On peut poser la questiont la derniére inégalité a-t-elle
lieu pour chaque sulte de 6=« ¢
Supposons que 1°élément

3
6’| 9(z,0)|

soit 1llimité. Alors pour la suite 6 =« on a

3

e’f) m;xlaqs(z,eo)l—-— v

Mais pour cette suite 90 on a
'i‘ ]
|g#(248,)| < 0(8; ) + c(z)[mz.x]ad:(z,eo- 1)|+m:x|a¢(z,eo—vau

D’une fagon analogue de la suite Go on peut extraire la
suite 6 -~ pour laquelle on a

3
a2
6 |a¢(z,e:3)|g const.
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L*équation de la chaleur 7

On obtient ainsi une contradiction awec 1 hypothése. Dans
ces conditions on a donc

+t
(18) | a?(z08)| < 5552

4, Bvaluation de la solution fondamentale spéciale de 1°équa—
tion (1)
On écrit la solution fondamentale de 1°équation (1) sous
la forme

8 4
(19) o£(248) = w(z,0) + [ [ w(z-m,e-3),0(m, )am a5 .
0-4

Grace & la formule (5”,3), p.248 du travail[1], on peut
constater, que pour 6 > 0, =g < 2 < q on a

I
o]
.

(20) L[aG(z,e)] =

La fonction déterminée par la formule (19) est donc la so-
lution fondementale spéciale de 1’équation (1). On peut aussi
vérifier ce résultat directement car on a

[G(z e)]
= [w(z 9) + Ljf w(z—m 6-3) ¢(m,5)dm 45 =

=,N(2,6)-,4(2,8) +/ L u(z-m 6-5)- ¢(Z—m,9-5)} ¢(m,3)dmd} =
= N(2,0)-_(2,0) +/f%[aP(z—m,G~S)} LA, 5) dn a3 =

= N(2,8)-,4(z,0) +ff N(zem,6=3)  #(m, 5)dm 45 = o,

On a pu obtenir le résultat (20) car la solution u(z,8)
de 1’équation (1) vérifie le théoréme de Poisson. Il suffit
de savoir que la fonction ¢(m, ) est héldérienne par rapport
a la variable m. Il faut profiter des formules (7) et (10) et
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8 S.Cakala

appliquer le théoréme sur la dérivation de 1 intégrale par
rapport & la variable 6. La fonctlon ¢(m %) vyérifie la con-
dition de Hélder par rapport a m, 8 cause des formules (12.3)
et (13.3) p.250 du travail (1] et aussi en vertu de la limi-
tation (9) de cet article. En évaluant la fonction (19) on ob-
tient

| o G(2y e)| |7 (29 e)| ff] (z-m,e-s)| | o#(m,5) dm a5 +
(21)

8 q
fflaW(Z—m,G—S)l l a¢(m’5)| dm 45 .
g

Rémarquons que dans la premiére intégrale de la  formule
{21) la fonction aw(z—m,@-Q) admet 1°accroissement 6 = S>n%
et qu’elle vérifie la limitation (5). L“intégrale de la fonc—
tion |a¢(m,s)| existe et elle est bornée. Dans la seconde in-
tégrale de la formule (21) la fonction a¢(m,5) vérifie la 1i-
mitetion (18) car § > g-, et la fonction  W(z-m,8-3%) admet
des singularités faibles grdce aux formules (7.2) p.243, (9.2)
P.244 du travail [1]. En conséquence pour 6 >1 on obtient

(22) |6 (240)| < =

(pour ® < 1 on appligue les évaluations du travail*[1]). I1
est a remarquer, que le résultat (22) est meilleur que 1 éva-
luation de la solution _G(z,0) du travail (1], ot on a démon-
tré seulement 1 existence de 1’intégrale de la fonetion (z,0)
{v.-la formule (1.10)} En appliquant le théoréme des accrois-
sements et en profitant de la limitation (18) et aussi de la
limitation des dérivées de la fonction G(z 8) on peutv démon-
trer facilement la condition de Hélder suivante

Ia (2,0) - G(z S)I con:tlz—zl
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L équation de la chaleur 9

II. Solution fondamentale spéciale du systeme parabolique

5. Construction de la solution
Soit la matrice des opérateurs différentiels

L-w O
s 32 _
(23) of=fw L O o L=-—p -3g
0 0 L

On introduit le vecteur — Ffonction ¥ = [v1,v2,v5]
Nous 'allons chercher la matrice de solutions fondamentales gpe-
ciales du systéme

Le systeme (24) est une partie du systeme (6) du travail
[2]. La recherche de la matrice des solutions fondamentales

spéciales du systéme (24) se fait comme dans le travail,IZLOn
écrit cette matrice sous la forme

6 g
(25) " (2,0) = ,§(2-0) + [ [ §(zm,-5) F(m,5)am a3
0-9

S

ou

(26) ag(zse) = {5ij}aG(Z,9)

0, pour i # j

S, .
+d 1, pour  i=j 1,3 = 1,2,3.

La fonction _G(z,8) est déterminée par la formule (19).

La fonction _F(z,0) est la matrice dont les éléments ont
L4 ? ’ ’ ’, A b
la forme des series des noyaux iteres, ¢ est-a-dire qu on at

(D) o' (209) = {aﬁij(z’e)]i 3=1,2,3
=19y
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10 S.Cgkala

(28) Fig(208) =) .A‘N:;(Z'e)
k=1 '

3

(k+1) § 4 K
(29) d 13(248) =ff gfias(z-”,@-S) aﬂ(;j(”»S)'d” as
0-g

F=1
(&)
(30) Y (2,8) = E{f/(z,e) =o[[a5(z,6)]='.
4 —w O G 0 0 0 -uG O
= W L aG 0 = wG 0 0
0 L 0O 0 G 0 0 o0
/ a

En appliquant la formule (29) on trouve les noyaux itérés

FEN (2,00
a

(31)
0 (=t 21 62D (z6) 0
1-1 211 (21-13
(=), & (8 0 0
\ O 0 0
1=1,2,oob
et
- (-1)1w21 G(zl)?('z,e) 0 0
g2y & (,6) = 0 (-1t 02t 6,00
0 0 o
ou
g 6
33) &1 (z,0) =f/ & (z=m,6-5) ae(l"')(m,s)dm as
0 -9 1= 2’3100'
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L équation de la chaleur

11

Les formules (27), (28), (31) - (33) donnent

(34) aF3i(2:0) = Fy3(2,0) = o, pour k=1,2,3

(35)  Fqq(248) = Fpo(2,8) =) («1t o® 6V (z,0)
=1

(36)  Fin(2,8) = = Fpa(2,0) = Z(-q)l £ 6(211) (5, 6)

(=1

On déterminera plus tard la condition de convergencs

des

séries (35), (36). Les formules (25), (19), (34) - (36) déter—
minent la matrice des solutions fondamentales speciales, qu’on

écrit sous la forme

a

r 11(z,G) a

r (z,8) 0
12

(37) dh (2,8) = | = aF‘12(z,6) af‘ 11(z,e) 0

0 0
aG(Z,S)

Nous allons démontrer que la matrice (37) vérifie le
stéme (24), c’est & dire qu’on a

<[ (z,0)] = 0.

En vue de la formule (20), il suffit de démontrer que

i}
o

(38) L [ar 11(2,9)] +w[aF 12(z,8)]

I
(@]

(39) L @0] —o[ (29)]

- 157 =
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12 SeCakatla

Les formules (25), (35) et (36) nous donnent

[}

8 ¢
aF 41(2,9) = aQ(Z,G) +%/:/'aG(z—m,G—S)anq(m,S)dm a3

(40)

- Z (-1t w2t (BB (5,69
(=0

CONN (z 9) -ff G (Z=i,6=5) & ,(mp5)am a5 =

(o

Z (=)t 22 a1(}(21)(2’6),

=1

Nous allons étudier d abord la formule (38). On obtient

= fi; (~1)* w21i[-ae<2¥)<z.e)] = ~ola" 11(z.e>]

(=0

car, grice & la formule (20)

L[aG(z,G)] =0, &= a1

a

On a aussl la relation suivante

1,63 (2,0)] = - ;6@ (z,0)
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car

L[aG(a)(z,G)} = Lff S(zm, 6-5) 6B (m,35)am a5 =
o -9

8 q
- aG(Z)(z’e) +f./ L':aG(z..m,G—?,):l aG(2)(mv 5)dm 45 =
0 -9

= - &3 (z,0) .
On a aussi
L[ae(21+1)(z,e)] = - 6@ (z,0) (1= 1,2,000)
et ainsi on obtient la formule (39). La matrice (37) est donc

la solution fondamentale spéciale du systéme (24).

6. Convergence des séries (35) et (36)

En profitant de 1°hypothése IV (v.[1] p.258) et de la for-
mule (30) on obtient la condition suivante

w g
(42) f/ 20| 6(2,0)| dz a® < 1.
0 -4
Il faudra profiter de la formule (19).D’abord on va évaluer
1’intégrale de la fonction a?(248) (voir (16)). Les formules
(12) et (13) donnent

w4 6 32
f/ | J(2,6)| az a6 =%+ =
9

(13) '

a>0,q>0, a > |z
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Alors on a d aprés (16)

(44) f‘fe | ¢(z,6)’ az ap< 594 3% , 5
g a a 2_aZ

= ,/Q/i/wj ,aN(z-m,e—S)I | g% (m,5)|d35 a6 an dz =

Q@ o w

(45) ff/f | (a5 | 9my5) |20 a5 am 2z =

-3-9 o
g-m

/f I ¢(w,5)| dm 43 f fl N(v,0)| 46 dvs<

_(Q*m) 0

6 6\ [
<<Tq+-;g— J_gf{gm,nlm as .

Les formules (44) et (45) donnent

w §
3(4ag + q°)
,0)| dz de
(46) f |a¢(z )l i < 2(&2—6aq-6q2)

pourvu que

(47) a>aq (3 +\19), q>0

Nous allons étudier la limitation du nombre a.D’accord avec
les formules (3), (19), (42) et (46) on a

y// n(z,0) a2 de|\//ar<-z—e Fho «

iy + aq

+
i
E\
1
N
S
[o7}
N
el
an
o
(e}
~ojwl
1



L équation de la chaleur 15

w ¢
i, = ( u(a ) 4z a8 =
1 2at
0 -g k= 1
Q 9 z=a)¥ &1 [au(a,0)
= f (z-a)dzfﬂﬁﬁ—lde +f Zﬁj}?—)— f—a—Ldedz_
-4
f (z=a) (- %) dz + 0 = aq.
On obtient .alors
w g
(48) }ffaw(z,e)dz de | < 2aq
o -4

Nous allons évaluer le quasi-potentiel de la formule (19).
On as

fff/ | ¥ (2=my6=3)| | #(my3)|dm a5 dz a® =
=f/-d.m_‘f dzflagt(m,;)l delaw(z-m, 6)| dae
def,agb(m 5| d.mf dvfl (V0| ao

(49) g
w Qm
= f dsf|a¢(m,5)| dm f (a=v)av <
0 -g-m
bl Qc
s/ds f (2aq + 2qm) | ¢(m,3)| dm <
.0 -q

[ 9
< 2q (a+q) / d5f|a¢(m,§) | an <
0 -9

2
< 3 (a+q)(4a + q) |
a£—6aq-6q
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16 S.Cgkala

Nous avons obtenu ce résultat en profitant de la limita-
tion (46) et grdace a 1 inégalité

m<q .

Les inégalités (42), (48), (49) donnent

©w g
50 ff G(z,0)| dz d6 < [2a + a(a + q)(4a + q)]<1

On voit que la condition (50) a lieu d&s que le nombre q est
suffisamment petit. Alors les séries (35) et (36) sont abso-
lument et uniformément convergentes. Il est & remarquer
que pour a > gq (3 + V15) 1 évaluation (18) est vraie.

III. Intégrabilité des solutions fondamentales spéciales

7. Pour démontrer que

w

(51) 802) = [ 6(z,0)0 = 0

0

on profitera de la formule (19). On peut écrire la  fonction
aw(z,e), v.(B)}, sous la forme suivante

(52) (2,0) = Z(ZE?) 2%u(8,0)
k=2

da

En intégrant cette fonction par rapport & la variable 6
on obtient

© C k k=1 [ du(a,0) 4o _
jaw(z,e) a6 = Z%Q— I f —— =

0 k=2 0
(53) _ i (=) 2 s [[- m%>/ ~otc# o] -
0
§ i ()

k=2

)h
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L équation de la chaleur 17

Pour étudier le deuxiéme terme de la formule (19) il faut
démontrer 1°égalité

(54) fa¢(z,8) dae = 0,
0

D’abord on profite de la formule (7) et on obtient

«

(55) /aN(z,G) ae = 0

0

et

w

w 6 ¢
k
[0 @00 a0 = [ [ icamn ompyal O 5)8500 =

0 0 0—q_

I+, %3 w
= / dﬂ/ aN(k)(z-ﬂ,S)deaN(n,e) a0 =0
z-¢ 0 0

Les formules (10), (55) et (56) entrainent la formule (54)
Grice & la formule (54) on a

w8 Q
/f_/a"(z-”ve-ﬁ) a#(145) ands ae =
-9

0 o

q ©w v
(57 = / dﬂ// (2=, 6-3)_¢(1,5)d6 a5
-4 0 g

9 © w
f dﬂf aw(z—l'l,e) de a¢(I7,§)d§
-4 0 0

Les formules (19), (53) et (57) donnent la formule (51).
La fonction _g(2z) = O est la solution de 1’équation

(56)

n

0.

i}

‘—2‘= Oo
dz

8. En profitant de la propriété (51) et des formules (33)
-(36) on déduit, par analogie avec la formule (56):
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18 S.Cakala

(58) J[aFij (z,6) d6 = O, 1, = 1,2,3.
0
Les formules (25) et (51) donnent

v

7(z) = rz,0) de = §(z,8) 46 +
a / a %/7 a

0

w 8 g
+ ff L§(z-m,6=5) _F(m,5)dm d3 do
0 0-

9 qu
=/f a.g(z-m,e—S) aF(m,S)de ds dm =
403

Q@ v w
=ff/a9(z-m,9) aLF(m,S)dG d5 dm =
-g 0 0

0.

i}

= o a9(z—m,6) waF(m,S)dS de dm
-3 6 0

La matrice azr(z) est une solution du systéme elliptique
limite & savoir du systéme (24) avec 1°opérateur

L =8 (cp. (23))
= c . »
azg [ P
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