

Bronisław Bochenek, Janina Wolska-Bochenek

APPLICATION OF INTEGRAL EQUATIONS
IN THE THEORY OF DIFFUSION
IN THREE-COMPONENT METAL SYSTEMS

I. Introduction

It was a purpose of many authors to find a convenient and concise mathematical framework - as logical extension of the Fick's law - for the description of interdiffusion in multi-component metallic solid solutions. It is assumed that interstitial components diffuse interstitially and the substitutional components diffuse by a simple exchange mechanism. Thus complications involved in a vacancy mechanism and the associated Kirkendall effect [5] are ignored as well as the general system of one-dimensional diffusion equations for multi-component diffusion in metallic alloys is of the form [1], [3], [4]:

$$(1) \quad \frac{\partial c_\alpha}{\partial t} = \sum_{j=1}^{n-1} \frac{\partial}{\partial x} \left[D_{\alpha j} \frac{\partial c_j}{\partial x} \right]$$

where c_α , ($\alpha = 1, 2, \dots, n-1$) denote concentrations of $(n-1)$ components and $D_{\alpha j}$ coefficients of concentrations.

In the papers [2], [4] there are discussed solutions of the system [1] with the coefficients $D_{\alpha j}$ being constant. In general case the coefficients $D_{\alpha j}$ are variable and moreover they depend on the unknown concentrations c_α .

In the paper [6] an interesting attempt is made to discuss the problem of three-component system in case of variable coefficients depending linearly on two concentrations c_1, c_2 of alloy elements.

In this paper we shall study the following Cauchy problem:
Determine functions $c_1(x,t)$, $c_2(x,t)$ satisfying the system

$$(2) \quad \frac{\partial c_\alpha}{\partial t} = \sum_{j=1}^2 \frac{\partial}{\partial x} \left[D_{\alpha j}(x,t,c_1, c_2) \frac{\partial c_j}{\partial x} \right]$$

($\alpha=1,2$), for every $(x,t) \in (-\infty, +\infty) \times (0, T)$,

and subject to the initial conditions

$$(3) \quad \lim_{t \rightarrow 0} c_\alpha = f_\alpha(x), \quad (\alpha=1,2), \quad x \in (-\infty, +\infty),$$

where the functions f_α are given.

We shall try to show the possibility of applying directly to the problem (2), (3) the theory of J.Petrovsky [7], W.Pogorzelski [8], [9], and the results of D.Sadowska [10], and M.Tryjarska [11] concerning parabolic systems of differential equations.

II. Fundamental solution for the system (2) in case of constant coefficients

Let us assume that the coefficients $D_{\alpha j}$, ($j=1,2$) are real constants satisfying the following conditions

$$(4) \quad D_{11} + D_{22} > 0$$

$$(5) \quad \det_{\alpha,j} \| D_{\alpha j} \| > 0$$

Thus the equation, [8 p.154]

$$(6) \quad \begin{aligned} \det_{\alpha,j} \| D_{\alpha j} (-is)^2 - \delta_\alpha^j r \| &= r^2 + (D_{11} + D_{22})s^2 r + \\ &+ (D_{11}D_{22} - D_{12}D_{21})s^4 = 0 \end{aligned}$$

where δ_α^j denotes the Kronecker symbol, has the roots r_j , ($j=1,2$) of the form

$$(7) \quad r_j = -s^2 \varrho_j, \quad (j=1,2),$$

where

$$(8) \quad \varrho_j = \frac{D_{11} + D_{22} + (-1)^j \sqrt{D}}{2}$$

$$(9) \quad D = (D_{11} + D_{22})^2 - 4(D_{11}D_{22} - D_{12}D_{21})$$

The real parts of the roots r_j , ($j=1,2$) satisfy the inequality

$$(10) \quad \operatorname{Re}_{j=1,2} (r_j) < -s^2 \delta < 0$$

for each value of the real variable s , where $\delta > \operatorname{Re}(\varrho_1)$ is by virtue of (4), (5) a real positive constant. The system (2) with constant coefficients $D_{\alpha j}$, ($\alpha, j = 1, 2$) is then parabolic in the sense of Petrovsky.

According to the general theory given in detail in [7], [8] the elements of the fundamental matrix of solutions of the system (2) have the form of Fourier integrals

$$(11) \quad W_{\alpha\beta}(x, t; \xi, \tau) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} v_{\alpha}^{\beta}(t, \tau, s) e^{i(x-\xi)\delta} ds$$

($\alpha, \beta = 1, 2$), where x, ξ denote arbitrary points of the real axis Ox , $\tau < t$ a real value arbitrarily fixed in the interval $[0, T]$.

The functions v_1^{β}, v_2^{β} , ($\beta=1,2$) satisfy the system of ordinary differential equations

$$(12) \quad \frac{dv_{\alpha}^{\beta}}{dt} = \sum_{j=1}^2 D_{\alpha j}(is)^2 v_j^{\beta}(t, \tau, s)$$

and initial conditions

$$(13) \quad \lim_{\tau \rightarrow t} v_\alpha^\beta(t, \tau, s) = \delta_\alpha^\beta$$

It is easy to show that the solution $\|v_\alpha^\beta\|$ of the problem (12), (13) in case $D \neq 0$ is of the form

$$(14) \quad \|v_\alpha^\beta\| = \begin{cases} \sum_{j=1}^2 k_j \exp[-s^2 \varphi_j(t-\tau)], & \tau < t \\ 0, & \sum_{j=1}^2 k_j \frac{D_{11} - \varphi_j}{D_{12}} \exp[-s^2 \varphi_j(t-\tau)] \end{cases}$$

where φ_j and D are defined by (8), (9) and

$$(15) \quad k_1 = \frac{D_{11} + D_{12} - \varphi_2}{\varphi_1 - \varphi_2}, \quad k_2 = \frac{\varphi_1 - D_{12} - D_{11}}{\varphi_1 - \varphi_2}$$

In case $D=0$ the matrix $\|v_\alpha^\beta\|$ is of the form

$$(16) \quad \|v_\alpha^\beta\| = \begin{cases} \exp\left[-s^2 \frac{D_{11} + D_{22}}{2}(t-\tau)\right], & \tau < t \\ 0, & \frac{D_{22} - D_{11}}{2D_{12}} \exp\left[-s^2 \frac{D_{11} + D_{22}}{2}(t-\tau)\right] \end{cases}$$

Each element of the matrix (14) or (16) satisfies the inequality

$$(17) \quad |v_\alpha^\beta(t, \tau, s)| < K \exp[-\delta s^2(t-\tau)],$$

where K is a positive constant, $K = \max(2k_j, 2k_j \frac{D_{11} - \varphi_j}{D_{12}}, 1)$,
 $j=1,2$.

By virtue of the inequality (17) we can assert that the improper integrals (11) are absolutely convergent.

A simple calculus permits us to obtain the matrix of fundamental solutions of the system (2) with constant coefficients, namely in case $D \neq 0$

$$(19) \quad \left\| W_{\alpha\beta} \right\| = \begin{vmatrix} \sum_{j=1}^2 \frac{k_j}{2\sqrt{\pi\varrho_j(t-\tau)}} \exp \left[-\frac{(x-\xi)^2}{4\varrho_j(t-\tau)} \right], & 0 \\ 0, & \sum_{j=1}^2 \frac{k_j(D_{11}-\varrho_j)}{2\sqrt{\pi\varrho_j(t-\tau)D_{12}}} \exp \left[-\frac{(x-\xi)^2}{4\varrho_j(t-\tau)} \right] \end{vmatrix}$$

or in case $D = 0$

$$(20) \quad \left\| W_{\alpha\beta} \right\| = \begin{vmatrix} \frac{\exp \left[-\frac{(x-\xi)^2}{2(D_{11}+D_{22})(t-\tau)} \right]}{\sqrt{2\pi(D_{11}+D_{22})(t-\tau)}}, & 0 \\ 0, & \frac{\exp \left[-\frac{(x-\xi)^2}{2(D_{11}+D_{22})(t-\tau)} \right]}{2D_{12}\sqrt{2\pi(D_{11}+D_{22})(t-\tau)}} \end{vmatrix}$$

In both cases (19), (20) the elements $W_{\alpha\beta}$ of the fundamental matrix $\| W_{\alpha\beta} \|$ and their derivatives satisfy the inequalities

$$(21) \quad \left| \frac{\partial^m}{\partial x^m} W_{\alpha\beta} \right| < \frac{\text{const}}{(t-\tau)^\mu} \frac{\exp[-k|x-\xi|]}{|x-\xi|^{1+m-2\mu}}$$

where $(m=0,1,2)$ and μ satisfies the inequality

$$(22) \quad 0 < \mu < \min(1, \frac{1+m}{2}) ,$$

k being a positive constant, ([8] p.161).

III. Fundamental solution for the system (2) in case of variable coefficients. The Cauchy problem.

Let us discuss now the system (2) where the coefficients $D_{\alpha j}$, $(\alpha, j=1,2)$ are variable, depend on both concentrations c_1, c_2 and satisfy the following assumptions:

I. The real functions $D_{\alpha j}(x, t, u_1, u_2)$ are defined, continuous and bounded in the domain

$$(23) \quad \Omega : \left\{ (-\infty, +\infty) \times [0, T] : |u_j| < \infty \right\}$$

$$(\alpha, j = 1, 2),$$

and satisfy in Ω Hölder conditions

$$(24) \quad |D_{\alpha j}(x, t, u_1, u_2) - D_{\alpha j}(x, t', u_1, u_2)| < \text{const} |t - t'|^h$$

where t, t' denote arbitrary values in the interval $[0, T]$ and $h' \in (0, 1)$.

Moreover they possess continuous and bounded derivatives^{x)} with respect to the variables x, u_1, u_2 uniformly continuous with respect to the variable t and satisfying Hölder conditions

$$(25) \quad \left| \frac{\partial}{\partial x} D_{\alpha j}(x, t, u_1, u_2) - \frac{\partial}{\partial x} D_{\alpha j}(x', t, u_1, u_2) \right| < \text{const} \left[|x - x'|^h + t^x \sum_{j=1}^2 |u_j - u'_j|^h \right],$$

x) In relation with the paper [13] it would be possible to accept some discontinuities concerning the derivatives $\frac{\partial D_{\alpha j}}{\partial x}$, and in relation with the paper [11] (p.154) the inequality

$$\left| \frac{\partial}{\partial u_k} D_{\alpha j} \right| < M t^{-\mu} + M' \sum_{j=1}^2 |u_j|.$$

$$(26) \quad \left| \frac{\partial}{\partial u_k} D_{\alpha j}(x, t, u_1, u_2) - \frac{\partial}{\partial u_k} D_{\alpha j}(x', t, u'_1, u'_2) \right| < \text{const} \left[|x-x'|^{\tilde{h}} + \sum_{j=1}^2 |u_j - u'_j|^{\tilde{h}''} \right],$$

where x, x' are two arbitrary points of the real axis Ox , $h, \tilde{h}, \tilde{h}''$, $\gamma \in (0, 1)$, $(\alpha, j, k = 1, 2)$.

II. The system (2) is parabolic in the sense of Petrovsky. Moreover we admit the following assumption concerning the functions of the initial condition (3):

III. The real functions $f_{\alpha}, (\alpha = 1, 2)$ are continuous and bounded for every $x \in (-\infty, +\infty)$.

The system (2) can be represented in the form:

$$(27) \quad \begin{aligned} \hat{\psi}^{(\alpha)}(c_1, c_2) &= \sum_{j=1}^2 D_{\alpha j}(x, t, c_1, c_2) \frac{\partial^2 c_j}{\partial x^2} + \sum_{j=1}^2 \frac{\partial D_{\alpha j}}{\partial x} \frac{\partial c_j}{\partial x} - \frac{\partial c_{\alpha}}{\partial t} = \\ &= F_{\alpha}(x, t, \frac{\partial c_1}{\partial x}, \frac{\partial c_2}{\partial x}) \end{aligned}$$

$(\alpha = 1, 2),$

where we have denoted

$$(28) \quad F_{\alpha}(x, t, \frac{\partial c_1}{\partial x}, \frac{\partial c_2}{\partial x}) = - \sum_{k,j=1}^2 \frac{\partial D_{\alpha j}}{\partial c_k} \frac{\partial c_j}{\partial x} \frac{\partial c_k}{\partial x}$$

The homogeneous system (27) of M -th degree with initial condition (3) in case $\alpha = 1, 2, \dots, N$, for $x \in E_n$ was studied by D. Sadowska [10]. The unhomogenous system of type (27) with homogeneous initial condition, where the coefficients $D_{\alpha j}$ depend moreover on the derivatives of the unknown functions was studied by M. Tryjarska [11].

We shall look for a solution of the problem (2), (3) (or (27), (3)) in the class of functions $c_{\alpha}(x, t)$ satisfying following conditions

$$(29) \quad \left| \frac{\partial^m c_\alpha}{\partial x^m} \right| < \infty$$

$$(30) \quad \left| \frac{\partial^m c_\alpha}{\partial x^m} (x, t) - \frac{\partial^m c_\alpha}{\partial x^m} (x', t') \right| \leq x \left[|x - x'|^{\frac{h}{h'}} + |t - t'|^{\frac{h}{h'}} \right]$$

$(m=0,1), \gamma < \frac{h}{h'} < 1$, and α denotes a positive constant.

In relation with the papers [8], [9], [10], [11] the elements of the fundamental solution $\Gamma^{(c)}$ of the homogeneous system (27) would be defined by the formula

$$(31) \quad \begin{aligned} \Gamma_{\alpha\beta}^{(c)}(x, t; \xi, \tau) &= W_{\alpha\beta}^{\xi, \tau, (c)}(x, t; \xi, \tau) + \\ &+ \int_{\tau-\infty}^t \int_{-\infty}^{\infty} \sum_{\nu=1}^2 W_{\alpha\nu}^{\beta, \beta, (c)}(x, t; \eta, \delta) \phi_{\nu\beta}^{\beta, \beta, (c)}(\eta, \delta; \xi, \tau) d\eta d\delta \end{aligned}$$

where $W_{\alpha\beta}^{\xi, \tau, (c)}$ denote the elements of the matrix (19), (20) with the coefficients $D_{\alpha\beta}^{\xi, \tau, (c)}$ fixed for $x = \xi$, $t = \tau$ i.e.

$$(32) \quad D_{\alpha\beta}^{\xi, \tau, (c)} = D_{\alpha\beta} \left[\xi, \tau, c_1(\xi, \tau), c_2(\xi, \tau) \right]$$

The integrals in (31) are the elements of the vector of quasi-potential of linear charge, and the functions $\phi_{\alpha\beta}^{\xi, \tau, (c)}$ form for the fixed β regularly continuous solutions of the system of integral, singular Volterra equations ([10], p.89-91):

$$(33) \quad \begin{aligned} \phi_{\alpha\beta}^{(c)}(x, t; \xi, \tau) &= \hat{\psi}_{(j)(c)}^{(\alpha)} \left[W_{j\beta}^{\xi, \tau, (c)}(x, t; \xi, \tau) \right] + \\ &+ \int_{\tau-\infty}^t \int_{-\infty}^{\infty} \sum_{\nu=1}^2 \hat{\psi}_{(j)(c)}^{(\alpha)} \left[W_{j\nu}^{\beta, \beta, (c)}(x, t; \eta, \delta) \right] \phi_{\nu\beta}^{(c)}(\eta, \delta; \xi, \tau) d\eta d\delta \end{aligned}$$

Thus the elements of the fundamental solution $\Gamma^{(c)}$ and their first derivatives satisfy the following inequalities:

$$(34) \quad \left| \frac{\partial^m}{\partial x^m} \Gamma_{\alpha\beta}^{(c)}(x, t; \xi, \tau) \right| \leq \frac{p_m(T, x)}{(t - \tau)^{\mu_0}} \frac{\exp[-k|x - \xi|]}{|x - \xi|^{2\mu_0 - 1 - m}}$$

($m=0, 1$) where

$$(35) \quad \mu_0 \in (1 - \frac{1}{2} \min(h, 2h'), \gamma),$$

p_m is a positive constant depending on T, x .

By using the fundamental solution (31) of the homogeneous system (27) one can build generalized potentials relative to this system, namely the Poisson-Weierstrass integral as well the potential of line-charge and seek the solution of the problem (2), (3) (or (27), (3)) in the form

$$(36) \quad \begin{aligned} c_{\alpha}(x, t) = & \int_0^t \int_{-\infty}^{+\infty} \sum_{\beta=1}^2 \Gamma_{\alpha\beta}^{(c)}(x, t; \xi, \tau) F_{\beta}(\xi, \tau, \frac{\partial c_1}{\partial \xi}, \frac{\partial c_2}{\partial \xi}) d\xi d\tau + \\ & + \int_{-\infty}^{+\infty} \sum_{\beta=1}^2 \Gamma_{\alpha\beta}^{(c)}(x, t; \xi, 0) f_{\beta}(\xi) d\xi \end{aligned}$$

$\alpha=1, 2$, where F_1, F_2 are defined by (28).

It is obvious that by virtue of the formulae (28), (29), (30) and assumption I we can state that the functions $F_{\alpha}(x, t, q_1, q_2)$ for every $(x, t) \in (-\infty, +\infty) \times [0, T]$ and $|q_{\alpha}| < \infty$, ($\alpha=1, 2$), are bounded and satisfy Hölder-Lipschitz conditions

$$(37) \quad \left| F_{\alpha}(x, t, q_1, q_2) - F_{\alpha}(x', t, q'_1, q'_2) \right| \leq \text{const} \left[|x - x'|^{h^*} + \right. \\ \left. + \sum_{j=1}^2 |q_j - q'_j| \right],$$

where $h^* = \min(h, \tilde{h})$.

On the strength of (29), (30), (34), (37) and supposition III we can examine, instead of the system (36), the following auxiliary system of 4 integral non-linear equations:

$$\begin{aligned}
 (38) \quad c_\alpha(x, t) &= \int_0^t \int_{-\infty}^{+\infty} \sum_{\beta=1}^2 \bar{f}_{\alpha\beta}^{(c)}(x, t; \xi, \tau) F_\beta(\xi, \tau, g_1, g_2) d\xi d\tau + \\
 &+ \int_{-\infty}^{+\infty} \sum_{\beta=1}^2 \bar{f}_{\alpha\beta}^{(c)}(x, t; \xi, 0) f_\beta(\xi) d\xi \\
 g_\alpha(x, t) &= \int_0^t \int_{-\infty}^{+\infty} \sum_{\beta=1}^2 \frac{\partial}{\partial x} \bar{f}_{\alpha\beta}^{(c)}(x, t; \xi, \tau) F_\beta(\xi, \tau, g_1, g_2) d\xi d\tau + \\
 &+ \int_{-\infty}^{+\infty} \sum_{\beta=1}^2 \frac{\partial}{\partial x} \bar{f}_{\alpha\beta}^{(c)}(x, t; \xi, 0) f_\beta(\xi) d\xi \\
 &\quad (\alpha=1, 2),
 \end{aligned}$$

with four unknown functions c_1, c_2, g_1, g_2 .

The system (38) can be examined by the method of successive approximations, like the system (59) in the paper [11] - and one can prove that a unique solution exists for every $(x, t) \in (-\infty, +\infty), x \in [0, \varepsilon]$ (where ε is sufficiently small positive constant) that the functions $g_\alpha = \frac{\partial c_\alpha}{\partial x}$, and that $\lim_{t \rightarrow 0} c_\alpha = f_\alpha(x)$.

Thus the solution of the system (38) gives also the solution of the system (36) and of the Cauchy problem (2), (3).

BIBLIOGRAPHY

- [1] L.S. Darken: Atom movements. Trans. Am. Soc. Met. (1951) 17-22.
- [2] H. Fujita, L.J. Gosting: Exact solution of the equations for free diffusion in three-component systems with interacting flows, and its use in evaluation of the diffusion coefficients. J. Am. Chem. Soc. 78 (1956) 1099-1106.
- [3] J.S. Kirkaldy: Diffusion in multicomponent metallic systems. Canad. J. Phys. 35 (1957) 435-440.

- [4] J.S. Kirkaldy: Diffusion in multicomponent metallic systems. *Canad. J.Phys* 36 (1958) 899-925.
- [5] A.X. К о т т р е л л: Строение металлов и сплавов. Москва 1959, с. 221-223.
- [6] M.A. К р и ш т а л, П.Н. З а х а р о в, А.П. М о -
к р о в: Диффузия примесей в железоуглеродистых системах. *Физика металлов и металловедение* 33 (1972) 794-799.
- [7] J. Petrowsky: Über das Cauchysche Problem für ein System linearer partieller Differentialgleichungen im Gebiete der nicht analytischen Funktionen. *Bull.de l'Univ.de Moskow.* 7 (1938) 1-74.
- [8] W. P o g o r z e l s k i: Étude de la matrice des solutions fondamentales du système parabolique d'équations aux dérivées partielles, *Ricerche Mat.* vol.VII, (1958) p.1-33.
- [9] W. P o g o r z e l s k i: Propriétés des intégrales généralisées de Poisson-Weierstrass et problème de Cauchy pour un système parabolique. *Ann.Sci. École Norm. Sup.*76 (1959) p.125-149.
- [10] D. S a d o w s k a: Problème de Cauchy pour un système parabolique dont les coefficients dépendent de fonctions inconnues. *Bull. Acad.Polon.Sci. Sér.Sci. Math. Astronom Phys.*11 (1961) 811-816.
- [11] M. T r y j a r s k a: Problème de Cauchy pour un système parabolique d'équations quasi-linéaires. *Zeszyty Nauk.Politech.Warszaw. Mat.*8 (1966) 151-172.
- [12] Г.В. Щ е р б и н с к и й, В.И. Ш а и д у р о в: Зако-
номерности перераспределения элементов в трех компонент-
ных сплавах. *Физика металлов и металловедение* 25 (1968)
965-971.
- [13] J.W o l s k a - B o c h e n e k: Contribution à la théorie de W. Pogorzelski concernant une équation parabolique et un système parabolique d'équations aux coefficients discontinus. *Zeszyty Nauk. Politech. Warszaw. Mat.* 11 (1968) 7-22.

Address of the Author: prof.Bronisław Bochenek, Warszawa, ul.Koszykowa 75 m. 22.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY, WARSAW

Received October 3th, 1972.

