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In paper [6] some theorems were proved concerning the 
e x i s t e n c e of s o l u t i o n s of the f i r s t Four ie r problem i n a bo-
unded domain f o r a system of p a r a b o l i c equat ions with a linear 
main p a r t and with a n o n - l i n e a r ope ra to r depending on unknown 
f u n c t i o n s . 

I n the p r e s e n t paper we o b t a i n t h e same r e s u l t s under we-
aker assumptions concerning the n o n - l i n e a r p a r t s of equations. 
These r e s u l t s involve a system of i n t e g r o - d i f f e r e n t i a l equa-
t i o n s wi th f u n c t i o n a l arguments as a p a r t i c u l a r c a s e . 

1 . D i f f e r e n t i a l equa t ions con t a in ing ope ra to r s 
Let G be a bounded open domain of t h e Eucl idean space 

E q + 1 of t h e v a r i a b l e s ( x , t ) = ( x 1 , . . . » x ^ t ) whose boundary con-
s i s t s of two open domains l y i n g oh t h e p lanes t=T 0 =cons t . 0 
and t=T = c o n s t . > 0, and of a s ide s u r f a c e S s i t u a t e d i n 
the s t r i p j ( x , t ) * T 0 ^ t < T}. We d e f i n e 

G = s n { ( x , t ) t 0 s = sn ( x , t ) i 0 < t < r 

^ = S rU (f in I (X) t ) s t ^ o j ) (0 < r < T) , 

where Q denotes the c lo su re of Q. 
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2 H. Ugowski 

In this section, we derive an a priori estimate for the 
norm lal^^ » where u = (u1,... ,uN) is a solution of the 
problem: n 
(1.1) L k u k = L a i d U ' t ) U £ x. ~ "t = ^ C * ^ ) e G T \ L T , 

i , j = i 1 «5 

(1.2) uk(x,t) = /(x,t), (x,t) e L T (k=1,...,N). 
With the aid of the above-mentioned estimate we show the e-
xistence of solutions ofi the problem (1.1), (1.2).This re-
sult enables us to obtain a maximum solution and a minimum 
solution. 

The following assumptions are introduced (see sec. 1 of 
[6]): m 

(1.1) For any (x,t)e G and % eE n we have 
n 

a k
d(x,t) = ak

±(x,t), a k
d(x,t)^ ^ > AQ|i;|2 

i ¡=1 

(A = const. > 0). 

(1.II) The coefficients satisfy the uniform Holder 
V ^ T conditxon with the exponent oc (0 < a < 1) in G and the uni-rn 

form Lipschitz condition on the surface S . 
Then for some constant A^ > 0 

Y f l k | G T I k | S T 

Z A I ^ O 1 « Î Ljf 1-0 / 1 ' 
<J=1 

T = 
(1.III) The surface S belongs both to Cg+oi a n d 

k N — (1.1V) B are operators defined on the set C ^ n ( G ) with 
T ' 

values belonging to the set C(G ). 
(1.V) There are constants A^ > 0 (i=2,3»4,5) and O < 0 < 1 

such that for any r (0< r i T) and any u e (£[ Q(G) we have 
In this paper we shall use the norms Ivl^ , |v|3 • M ^ (for „ ' 'o • ' '1-o' m+a ' 

a scalar-function v) and |u|* (for a vector-function u=(u^,...tu )) JJ _ m+<x 
and symbols C (Q), C 0 and C0 which are defined in sec, 1 and m+<x * 2+ot ¿-o K N 
2 of [4], Moreover, the symbols C(Q), C (q) and C J<%) of sec. 1 of r i P»P+1 
[_6J will be used, 
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On Integro-differentlal equations 3 

(1 .3) | B * u | f «JL, + i j l a l ^ Q + + A 5 | U | ? , 0 • 

where 

G i , r a G n ( x , t ) i » < t < r (T q < ì < r « T) , 

' k=1 i"1 k-1 x 

*T~ N T (1.VI) The vector-function (p = ( < p ' ) , defined on£ , 

belongs to C^ q ( g 0 land possesses an extension $ecìljì(6r)nc"1$') 
(Q^fi-^1). 

(1.VII) I f a function § e ^(GT)n ci[ Q(G) i s an exten-
sion of <p , then 

= L k $ k , (x ,0) e Rq = S n { t=o} . 

T h e o r e m 1. I f assumptions (1 .1) - (1.IV), (1 .VI) , 
(1.VII) are s a t i s f i e d and i f u e ci[ giCOnCg ^(C?) i s a so-
lut ion of the problem (1 .1 ) , ( 1 .2 ) , then u e (GT). Moreo-

1 +Ji 
ver , i f assumption (1.V) i s s a t i s f i e d with a sufficiently small 

? i ' GT constant A ^ ' \ then the norm |u| i s bounded by a constant 
T M depending only on ^ ( i = 0 , 1 , . . . , 6 ) , 0 , fi and G , where 

P r o o f . We apply a method s imilar to that used in the 
proof of Theorem 1 of [6]. Let the function § be an exten-
sion of ip such that 

2) 
More precisely, the constant A^ is bounded by a sufficiently 

small constant depending only on A^A^.Aj, fi and G T. 
r _ For the definition of these norms see the footnote 3 of paper 
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H. Ugowski 

l < 3 - V Mi?i « V 
Then the funct ion v ( x , t ) = u ( x , t ) - ^ ( x , t ) i s a so lut ion of 
the problem 

( 1 . 4 ) = Bku - L k ¿ k , ( x , t ) 6 G T \ L T , 

( 1 . 5 ) v ( x> t ) = 0, ( x , t ) e £ ( k = 1 , . . . , N ) . 

v k k ~T 
Since the functions B u - L ^ are continuous in G and va-
nish on R0 ("by assumptions ( 1 . I V ) , (1 .V I I ) ) , [ the re f o r e accor-
ding to Lemma 2 of [4-] , v k e C1+/3 (GT ) and consequently ueC?fJ3(6T). 
Moreover 

where j-=(1-y3)/2, 0 < r ^ T and K(/3) i s a constant depending 
only on fi , A0> A^ and GT. Hence, "by ( 1 . 3 ) . we have 

( 1 . 6 ) I v ^ < N K ( f i ) T * [ A , \ v C + A 4 ( \ v £ f l J + A a • 

I f 

N(A3 + A5)K(y3)T^ «= 1, 

then (1 .6 ) implies the estimate 

\ v \ C f i « K 1 z ( \ v C f l ) e + K n , 

whence 
T T 

l v l ? + y 3 ^ K 1 4 i . e . lu|^+j3 ^ K 

Now we sha l l consider the case 

N A ^ K ^ T ^ I . 
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On integro-dlfferentlal equations 5 

We put 

(1.7) r = p~1[4liA3K(y3)] 

where p > 1 is a number such, that T is an integer multiple 
of r . Let; ? (t) be a function (defined for real t) with con-
tinuous derivative V(t) such that 0 ^ $ (t) $ (t) = 0 
for t « z/2 and ^ (t) = 1 for t > r » We assume that the 
constant A^ satisfies the following condition 

(1.8) A5 < [/¥*(£) 

where io=2Tr~'-2 while ¿&inax(1, sup|V(t)|) is a sufficien-
tly large constant which will be specified later. 

It follows from (1.7) and (1.8) that 

(1.9) NA^KC/3 

(1.10) NAt-K (j3)rr< 

Assuming that and using (1.9)» (1.10) we obtain from 
(1.6) the estimate 

Now 
we shall estimate the norm |v| $ where v = r/2. It 

is easy to see that the function w(x,t) = §(t)v(x,t) is a so-
lution of the problem. 

lV=?(t)[Bk(T+i)-Lkik] - ^ ( t ) v k
5 g k ( x , t ) l ( x ) t ) 6 G p \ L i ' 3 ' ! 

,3c w ^ x . t ) = 0, (x,t)el/ s S u f u (k=1,...,N). 

Since gk(x,v>) = 0 for (x,s)e S n |t therefore (as befo-
re ) we have 
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6 H. Pgowskl 

I *K(fi) rr\g*\t
9 

Hence, recalling that 

wk(x,t) » vk(x,t) for (x,t) e G2*'3*, 

we get 

G2*'3' O- G",?v> 

which, by (1.3), implies 

+ AK(y3)rr|v|^ + Egg. 

The last inequality together with (1.11) yields 

6 

3« (1.12) Ivl̂ ;-3 < NK(A)t r[(A3+A3)(n2*,'yZN~1*it] IvlJ^ 

Now let as take the constant ^ so large that 

2v,3i> f1 
Then, by (1.9) and (1.10), the coefficient at |v| on the 
right hand side of inequality (1.12) is less than or equal to 
1/2. Thus, in virtue of (1.10), we get from (1.12) the ine-
quality 
(1.13) Kzs(M<la)B + ' 
where a.^ 2+2K(0)rr. It follows from (1.11), (1.13) that 
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On lntegro-differqntial equations 7 

Ivl5' ^ 2(U a \v\s3<"7 + K (\y\6' )9 + K 
' 1+/3 1+fi 27 * 1 +j3' 2 a> 

which together with (1.13) implies the estimate 

^ . a . j r ' i v i f ^ / f ^ i v i ; ; / . ^ . 

In. the next step we estimate the norm We apply the 
method used in the previous step with g"'3' and ij (t) repla-

2P 
ced by G ' and respectively. 

Proceeding further in the above manner, step by step, we 
finally obtain the estimate 

i v i f ^ w . f/f2ivif~;,t
+K1 nvfj+K:, 

1+Ji 1 +JS <0 v 1+fr! lo 

which in the next step implies 

1+a 

Hence 

< 1-t ti> 

I v l ^ ^ K i.e l u l ^ ^M, 

which completes the proof. 
Let us note the following consequence from the proof of. 

Theorem 1. 
R e m a r k 1. Theorem 1 holds true for every solution 

ve ci[)0(G)n O ^ ^ C G 1 ) of the problem 

IiV 5 = co Bk(v+^) - co L k£ k, (x,t) 6 G T \ L T , 

vk(x,t) = 0, (r,t)eL T (k=1,...,N), 

where § is the extension of tp occurring in the proof of 
Theorem. 1 and co is an arbitrary constant. Moreover, for gT 
0 « co ̂  1, the constant M which bounds the norm |v| is in-
dependent of co. 
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8 H. Ugowski 

Now we discuss the existence of solutions of the problem 
considered. The following additional assumptions w i l l be nee-
ded : 

( 1 .V I I I ) The vector-function f , defined on , belongs 

to ci[+a (G7"'0 ) and possesses an extension <^+^(GT)fiC2+o((GT), 
where 0 « * < y3< 1. 

(1.IX) The operators Bk map the space ciT (G) into the m i+ CX 
set U C, (G ) and are continuous in the following senses 
i f 

u,um6 (G), um (x , t ) = u ( x , t ) , (x , t )eG r ° ' 0 (m=1,2,. . . ) 

and 
P 

lim "I u — u j ̂  = 0, m —0° I m 11 + a ' 

then 
T 

lim|Bku -Bku|^ = 0. m —a, 11 IO 

T h e o r e m 2. I f assumptions (1.1) - (1.V), (1 .V I I ) -
(1 . IX) are sat isf ied1 and the constant A^ is su f f i c i ent ly small 
(see the footnote 2 ) , then there exists a solution u (x , t ) of 
the problem (1.1) , (1 .2) ; moreover u e cOj+/) (GT)fiC2+£(GT) f o r 
some t , 0 < 6 < 1 . 

We apply the method of Leray-Schauder. Let us denote by Q 
the set of a l l functions ve ciT (G) such that v (x , t )=0 on 

T N - \ L . Obviously Q i s a Banach space (as a subspace of C^+o((G)). 

For v e Q and us [o_,l] l e t us consider the problem 

l V = coBk(v+£) - Lk ( x , t ) e GT\LT , 

w k ( x , t ) = 0, ( x , t ) e L T (k=1,. . . ,F) , 

where §e of 1 ^ ^ i s aEL e3c f c ens i o i : i of 9. In view 
of Lemmas 1 and 2 of W there exists a unique solution w(x,t) 

s ( w 1 ( x , t ) , . . . .w^tx.t ) ) of this problem and, moreover, W6C®+^(gt) 
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On integro-differentlal equations 9 

0C^+(.(gt) for some 0 < t < 1 . This enables us to define a 
transformation Z by formula Z(v,co) = w. Proceeding further 
l i k e in the proof of Theorem 4- of [6] and using Remark 1 one 
can show the existence of a solution v ( x , t ) (which belongs to 

n f o r s o m e £ » 0 < £ < 1 ) o f t l l e Problem 

Lkvk = Bk(v + f ) - Lk # k , ( x , t ) e G T \ L T , 

v k ( x , t ) a 0 , ( x , t ) e I T ( k = 1 , . . . , N ) . 

Hence i t immediately follows that the function u ( x , t ) = v ( x , t ) 
+ $ ( x , t ) i s a solution of the problem ( 1 . 1 ) , ( 1 . 2 ) and 

) , which was to be proved. 
Adding to assumptions of Theorem 2 the Lipschitz condi-

t i o n for operators B we obtain the existence and uniqueness 
of solutions of the problem in question. 

(1.X) For any u,v e c j 0 (G)n c i f + J ^ ) s u c l 1 t l l a t u = v i r i 

g t g T 
and |u| / j+a , M- ] + o< <M (M being the constant occurring in 
Theorem 1 in the case /3=a) we have for any r ( 0 < r i T ) 

r* T 
| B k u - B k v | ^ | u - v | G + A a |U- V|G+o< , 

0 1 + a 

where A^.Ag are cer ta in posi t ive constants independent of r . 
T h e o r e m ,3. I f assumptions ( 1 . 1 ) - ( 1 . V), (1 .VII)-{l .X) 

4 ) 
are s a t i s f i e d and the constants A^, Ag ' are s u f f i c i e n t l y 
small, then the problem ( 1 . 1 ) , ( 1 . 2 ) has a unique solution 

u = j u k } in the space ¿ J 0 (G) a C ^ (GT) . Moreover, utC^(G T ) 

n 0 2 + e (GT 

) for some t , 0 < t < 1 . 
P r o o f . We have to show only the uniqueness of solu-

t i o n s . So l e t u ,veC^ Q(G) n ^ (Gr ) be two solutions of the 
problem ( 1 . 1 ) , ( 1 . 2 ) . I t means that 

' Conoerning the constant A,- see the footnote 2 whereas Ag is 
m 

bounded, by a small constant depending only on A q, A ^ , a , A^ and G . - 113 -



10 H. Ugowski 

Lk (uk - v k ) = Bku - B\, ( x , t ) eG T \L T , 

uk - v k = 0 on L T (k=1, . . . ,N ) . 

Since, by Theorem 1, 

u,veC?+(x(GT) and lul f + a , Ivl f + a M , 

therefore taking into considerations the last relat ion and 
using liemma 2 of [4] and assumption (1.X) we obtain,for any 
r ( 0 < r « T ) the following inequality 

r r T 
(1.14) lu - v l ? + 0 ( ^ HA^Coc) | u-v | ®+<x + !TAgK(o() r ̂  | u-v | ̂  + a 

(? = (1-«)/2). 

I f 

(1.15) NU? + AgjKtoOT^ 1, 

then (1.14) implies the identity u s v in GT i . e . u = v in G. 

In the case when (1.15) does not hold we proceed l ike in 
the proof of Theorem 1. Therefore we only outline the further 
argumentation. 

Let us put 

r = p- 1 [4 NA?K(o<)]~1/r (3r = (1-» )/2) 

and assume that 

A 8 < [ M ( « ) r W'Y1, 

where the symbols p, ^ , i 0 , ^ ( t ) retain their pre'vious mea-
ning. Then i t follows from (1.14) that 

(1.16) • 

where > 4 . 
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On integro-differential equations 11 

q3V 
In order to estimate the norm 0>=r/2) observe 

that the functions û(x,t)=l;(t)u(x,t), v(x,t)=ç(t) v(x,t) ful-
fil the following relations 

L k(u k-v k) = ^(t)(B ku-B kv) - V ( t ) ( u k - ^ ) , ( X f t ) e G ^ \ ^ ' 3 V , 

u k-v k=0 on H V' 3 V (k=1,... ,N). 

Hence by (1.16) we get (taking a suitable enlarged A ) 

(1.17) lu-vll+oc lu-vli+oc " 

Replacing' in the above reasoning ^(t), Gv'31' and by 
$(t-i), G2lV?1> and L . 2 ^ , respectively (and using (1.17) in-
stead of (1,16)), one can show that 

Finally, for sufficiently large A , we obtain the estima-
te 

,Cr'9 - 2 CT"*,r 

which in the next step implies 

T 
|u-v|£. < 0 . 1 1 1+0( 

~~T Thus u = v in G , and the proof is completed. 

At present we shall consider the existence of a maximum 
solution'and a minimum solution of the problem (1.1 ),(1.2)-^. 
For this purpose we state the following theorem. 

The solution u(x,t) of (1.1), (1.2) is called a maximum (mi-
nimum) solution if for every solution v(x,t) of (1.1), (1.2) the ine-
qualities wk(x,t) « uk(x,t) (wk(x,t) >uk(x,t)) hold in GT(k=1,...,N). 
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12 H. Ugovski 

T h e o r e m 4. Let assumptions (1.I)-(1.V) (with A^ 
sufficiently small) and (1.IX) be satisfied and suppose that 

(1.XI) the vector-function <p , defined on belongs to 
C^+oc(Gro'0 ) and possesses an extension/e C^+;3(GT) n ^ (GT). 

Under these assumptions there exists a solution u(x,t) 
6°1+£(GT)nW2+t(GT) 6 ) o f t h e P r o b l e m (1.1). (1-2), where 
e(0 <e <1) is a certain constant. 

P r o o f . Proceeding in the same manner as in the proof 
of Theorem 1 and using, instead of Lemma 2 of [4], Lemma 2 of pT [5], one can derive an a priori estimate of the norm luli+;3 
for a solution u of problem (1.1), (1.2). The further argu-
mentation is similar to that used in the proof of Theorem 2j 
namely we apply the method of Leray-Schauder, making use of 
the above estimate and of Lemmas 1 and 2 of [5]. 

Theorem 4 enables us to prove, by the same considerations 
as those for Theorem 2 of [5], the following theorem. 

T h e o r e m 5- Let the assumptions of Theorem 4 and 
the following one be satisfied: 

1 N 1 N (1.XII) If the functions u=(u ,...,u ) and v=(v ,...,v ) 

belong to ci[ Q(G)nC2 ^(GT) and fulfil the inequalities 

Lkuk-Bku > l V - B ^ , (x, t) e G T\L T (fc=1 N), m u(x,t)<v(x,t), (x,t)e L , 
m then u(x,t) < v(x,t) in G . 

These being assumed the problem (1.1), (1.2) has a maxi-
mum solution v={vkj and a minimum solution u = |uk|; mo-
reover, v,u e C ^ (GT)n W^+£(GT) for some t ,0 < t < 1. 

As in paper [5], one can obtain a theorem on weak inequa-
lities which is a counterpart of Theorem 3 of [5] • 

6 ̂  TJ 
' For the definition of W„ (Q) see sec. 1 of [5] and the fo-

otnote 4 of [ 5 ] . c i+cx 
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Oil i n t e g r o - d i f f e r e n t i a l equations 13 

2. D i f f e r e n t i a l equations with, funct ional arguments 

In t h i s sec t ion we give examples of operators B for which 
theorems of the previous sec t ion hold true .For these examples 
we formulate the c o r o l l a r i e s only from Theorems 2 , 3 and 5» 
At f i r s t we wi l l d i scus s the general ca se 

(2 .1 ) Bku = f k ( x , t , y k ( u ) , y | ( u ) , V k ( u ) ) ( k a 1 , . . . , N ) . 

v 
Next we s h a l l consider the s p e c i a l case of operators f ^ g i -
ven by formulas 

( 2 . 2 ) y/£(u) = ( u i V ^ i x . t ) ) , u ^ w j u . t ) ) , 

/ u ( V ^ l _ 1 ( y , t ) ) ^ C x f t | d y ) i y u O ^ t y . r ^ x . t j d y . d r ) ) , 
6* 

where 

u(Vk ( x , t ) ) = { u ^ ( V ^ ( x , t ) ) 

/ ^ ( ^ ^ ( y . t J V p U . t j d y ) ) ( j = 1 , . . . , N ) , 

j f u ^ i y . O J y f u . t j d y . d r ) = (v jg (y , r ( x , t ;dy,dr)J 

( j = 1 , . . . , N ) , 

ux(w£(x,t ) ) = 
4 I 

4 i ( W § ( x , t ) ) i ( j = 1 , . . . N ; 1 = 1 , . . . . n ) , 
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G t = ( x : i x , t ) e G T \ S T ) . 

The fo l lowing assumptions w i l l be introduced: 

( 2 . 1 ) The func t ions f ^ ( x , t , p ^ J , . . . . . ,p2°»P31 • ) 
( k = 1 , . . . , N ) , defined on GT x , _ s a t i s f y a uniform Holder 
c o n d i t i o n i n every hounded domain0 GTxH (H c ) . Moreover, 
t h e r e are cons tants 0 ( i = 1 , 2 , 3 , 4 ) , 0 < Q ^ c 1 such t h a t 

| f k ( x , t , p i , p 2 , p 3 ) | ^m1+m2|p1|+m3|p2| 1 +m 4 |p 3 |, 

where 
No 

1 ' i l - L k l -

( 2 . I I ) yi5" ( k = 1 . . ,'N; i = 1 , 2 , 3 ) are operators defined on i. jJ 
Ci, 0 (G) with values belonging t o 

There e x i s t con-
s t a n t s M i> 0 ( i = 5 , . . , 1 0 ) and 0 < - 6 2 ^ 1 such t h a t f o r any 
r(0 r « T) and any u e c ! ^ 0 ( G ) we have 

I > i r r , 7 ) 

I M + m 6 M ? , O • 

k 2 ( u ) l i < M 7 + V ^ l . c / 2 • 
r 

I V^(u>|o < « 9 + M 1 0 | u l l , 0 ' 

^ For a vector-function v=(v'1,...,v °) the norm is defined 
by the formula 0 

10 f-; 
«0 

k|Q 
v 
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On integro-differential equations 15 

Moreover j operators y ^ P the space i°to the set 
N m 

U 0[ (G ) and are continuous in the same sense as operators 
C 

B (see assumption (1.IX)). 
It is easy to see that assumptions (2.1), (2.II) |imply 

(1.IV), (1.V), (1.IX). Therefore we obtain, as a corollary 
from Theorem 2, the following theorem. 

T h e o r e m 6. Let assumptions (1.1) - (1.III), (2.1), 
(2.II), (1.VIII) and (1.VII) (in the case (2.1))be satisfied 
and let the product M^MjQ be sufficiently small. Then Theo-
rem 2 is true in the case (2.1). 

In order to formulate a corollary from Theorem 3 for the 
case (2.1) we make the following assumptions: 

(2.Ill) For any (x,t) £ G T and p i f p^ (i=1,2,3) such that 

|P1|, |p 1|^M 6M, |p2|, |p 2|^M 8M, |p5|, I p ^ I ^ J ^ q M , 

GT 

where M is the bound or the norm luL, of the solution u 1 l+a 

of the problem (1.1), (1.2) in the case (2.1), roe have 

(2.3) |fk(x,t,p1,p2,p3)-fk(x,t,p1,p2,p3)|< 

« n l 1 1 p ^ l +M 1 2 (| P 2-P 2 | +| P 3-P 5 | ) , 

M11' ^12 be:i-nS positive constants. 

(2.IV) For any u,v e ci|)0(G) e a (GT) such that* 

T T 
u=v in dT°'° and , |v|®+0(<M 

(M being the same as in (2.Ill)) and for any r (0< r«T) the-
re hold the inequalitiesj 

Gr r 

r qj 

|vj(u) ->f£(v)|^ ^ J u - v l ^ (1=2,3). 
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16 H. Ugowski 

Since assumptions ( 2 . I l l ) , ( 2 . I V ) imply ( 1 . X ) , there fore 
from Theorem 3 we immediately obtain the following theorem. 

T h e o r e m 7« ^et the assumptions of Theorem 6 and 
( 2 . I l l ) , ( 2 . I V ) with a s u f f i c i e n t l y small product be sa -
t i s f i e d . Then the conclusion of Theorem 3 holds true in the 
case ( 2 . 1 ) . 

Now we s h a l l consider the ex is tence of a maximum solut ion 
and a minimum solut ion of the problem ( 1 . 1 ) , ( 1 . 2 ) f o r opera-lr 
t o r s B given by formulas: 

( 2 . 4 ) Bku = f k ( x , t , u ( x , t ) , u j ( x , t ) , y k ( u ) ) , 

k / k k \ where u^ = ( u ^ , . . . . u ^ ) . 

The following assumptions w i l l be used: 

(2 .V) The funct ions f ( x , t , . . »• • • < la» r i»• • i 
T ( k = 1 , . . . ,N), defined on G x % + n + j j » are non-increasing 

with respec t to the v a r i a b l e s p ^ , . . » P ^ + i » • • » P N » r i » • • 
k ^ ( 2 . V I ) The functions f ( x , t , p , q , r ) _ s a t i s f y a uniformHol-

T 
der condit ion i n every bounded domain G x H (H c )• Mo-
reover , there are constants It^jM^g > 0 such that f o r any 
( x , t , p , q , r ) e GT x we have 

I I /N " Hl \ 
| f k ( x , t , p , q , r ) | < M 1 5 + ^ 6 ( ^ | p . | + L l r i l V 

( 2 . V I I ) y k ( k = 1 , . . . , N ) are operators defined on C? n (G) 
TT ' »u 

1 T 
with values belonging to C (G. ) which are non-decreasing in 
the following sense : i f u ^ v i n G ° , r ( 0 < r ^ T ) , then 
y k ( u ) ^ y k ( v ) i n G r . 

( 2 . V I I I ) There e x i s t constants M^M^g > 0 such that f o r 
any r (0 < r < T) and any u e C? n (G) we have 
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T T r 
K k M o + M 1 8 l u l i ° 0 -

k N 
Moreover, the operators y map c i + 0 ( in to the s e t 

T 
U 0 f (G ) and are continuous i n the same sense as the o-

0<i<1 jj. 

perators B (assumption ( 1 . I X ) ) . 
T h e o r e m 8 . I f assumptions ( 1 . 1 ) - ( 1 . I I I ) , ( 2 . V ) -

( 2 . V I I I ) are s a t i s f i e d , then the a s s e r t i o n of Theorem 5 i s 
t rue in the case ( 2 . 4 ) . 

This theorem i s a consequence of Theorem 5 and of the 
fol lowing lemma. 

L e m m a 1 . Let assumptions ( 1 . 1 ) , ( 1 . I I I ) , (2.V) and 
( 2 . V I I ) be s a t i s f i e d . Suppose that funct ions u,v s Q(G) fl 
C 2 f 1 ( G T ) f u l f i l the i n e q u a l i t i e s ' 

L k u k - f k ( x , t , u , u ^ , y k ( u ) ) > L k v * i - . f k ( x , t , v , v k , y k ( v ) ) 

( x , t ) e G T \ L T ( k = 1 , . . . , N ) , u ( x , t ) < v ( x , t ) , ( x , t ) g L T . 

Under these assumptions we have u(xr,t) v ( x , t ) i n G. 

The method of proving t h i s lemma i s the same as that u-
sed to prove the theorem on strong d i f f e r e n t i a l i n e q u a l i t i e s 
(see [3] , p. 191) . 

At present we s h a l l t r e a t the case ( 2 . 1 ) with operators 
given by ( 2 . 2 ) ( s h o r t l y the case ( 2 . 1 ) , ( 2 . 2 ) ) . The f o l -

lowing assumptions w i l l be needed: 
( 2 . I X ) Operators v f 5 , TliJJ ( i = 1 , . . , 9 ? k , j = 1 , . . , N | 1=1 ,2 ,3 ; 

~~T — 

m = 1 , . . , n ) map G into G and s a t i s f y the uniform Holder 
condi t ion j 

d t V ^ P ^ v f k P ' ) ) ^ ^ ( p , p ' ) 
(0 < a 0 < 1 ) 

d ( w g ( p ) , w g ( p - ) ) < M 1 9 [ d ( P , P - ) r , 
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18 H. Ugowski 

where 

P = ( x , t ) , P ' = ( x ' , t ' ) , d ( P , P ' ) = (Jx-x'| 2 +| t - t '| ) / Z , 

x - x 
L 

Moreover, f o r every r ( 0 < r ^ T ) "the o p e r a t o r s "̂itn. ( i = 

= 1 , 2 , 3 } . . ,Nj m = 1 , . . . , n ) map the domain Gr i n t o GT"T. 

( 2 . X ) Let m(resp.T))_denote the 6" - f i e l d of a l l Lebesgue 
mi , . 

measurable s u b s e t s of G ( r e s p . D = U G+). By v . ' ' ( x . t ^ - D ) 

° Oit^T t i 

and M ^ ( x , t j D ) ( 1 = 1 , 2 , 3 ; k , J = 1 , . . . , N ) we w i l l denote f i -
~T 

n i t e non-negat ives measures (depending on ( x , t ) e G ) d e f i -
ned on TO and n , r e s p e c t i v e l y . The fol lowing c o n d i t i o n s 
a r e imposed: 

1 ° There i s a c o n s t a n t MpQ > 0 such t h a t f o r any ( x , t ) 
eG1 „T 

2 ° There e x i s t s a f i n i t e non-negat ive measure v> ( resp . / i ) 
defined on 1Tl ( r e s p . ft ) such t h a t f o r any D e TTl ( resp .D e l l ) , rp 
and f o r any p o i n t s P ( x , t ) , P ( x ' , t ) of the domain G we h a -
ve 

^ ( x . t t D ) - v J J ' ( x ' , t ' jD) | « v ( D ) [ d ( P , P ' ) 

^ ( x , t ; D ) - / ^ ( x ' . t ' i D ) j < M 2 1 / i ( D ) [ d ^ P , P ' ) ] ° ' 1 J , ^ 1-esp. 

where 1 ^ > 0 and 0 a^ < 1 are. c e r t a i n c o n s t a n t s . 

3 ° There i s a c o n s t a n t l/L^ ^ 0 such t h a t f o r any DeTTI 
( r e s p . D e H ) we have 

V ^ ( x , t j D ) ^ U 2 2 m^ (D) ( r e s p . , u £ J ( x , t ;D) «iM^ m ^ D ) ) k j . 
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m^(D) (m^CB)) being the (n+1)-dimensional (n-dimensional) Le-
besgae measure of D. 

L e m m a 2 . Let >>(x,t;D) be a measure s a t i s f y i n g a l l 
the condit ions imposed on tlie measures i n assum-
pt ion ( 2 . X ) . Suppose that V i s a continuous operator map-
ping the domain G into G. Under these assumptions i f w ( x , t ) 
eC(G), then the funct ion 

w ( x , t ) = / w ( V ( y , r ) ) u ( x , t j d y . d r ) 
e* 

m 
belongs to Ca (G ). 

1 m 
P r o o f . Let P ( x , t ) , P ' ( x , t ' ) e G . Without l o s s of ge-

n e r a l i t y we may assume that t » t ' . Then 

( 2 . 5 ) w(x,t)-w(x',t')=In+I2-Ij, 

where 

X, = J w(V(y, r ) ) v ( x , t } d y , d r ) , 

1 2 = J w ( V ( y , r ) M x , t ; d y , d r ) , 
B'' 

13 = J w ( V ( y , r ) M x ; t } d y f d z - ) . 
s 

With the aid of condit ions 1° and J>° of assumption (2 .X) i t 
fol lows t h a t 

( 2 . 6 ) l ^ l < M ^ M ^ H ^ I t - t ' l . 

A d i r e c t appl i ca t ion of the d e f i n i t i o n of i n t e g r a l and con-
d i t i o n 2° of (2 .X) y i e l d s the estimate 

(2 .7 ) | l 2 - I 3 | « M 2 1 [w|£ V ( G t ' ) [ d ( P , P ' ) p . 

Relat ions ( 2 . 5 ) - ( 2 . 7 ) imply the i n e q u a l i t y 
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20 H. Ugowski 

|w(x , t ) -w(x ' , t ' )| -tconst. [d (P ,P ' ) ] 0 ' 1 t 

which completes the proof. 
T h e o r e m 9- Let assumptions ( 1 . I ) - ( 1 . I I I ) , ( 2 . 1 )w i th 

N0=3N+hN, (2 . IX) , (2.X), ( 1 .V I I I ) and (1 .VI I ) ( in the case (2.1), 
( 2 .2 ) ) be sat is f ied and l e t the constant M̂  ( in (2 . I ) )be suf-
f i c i en t l y small. Then the assertion of Theorem 2 is true in 
the case (2.1) , (2 .2) . 

For the proof i t suf f ices to observe that assumptions 
(2 . IX) , (2.X) imply, by Lemma 2 and Lemma 4 of [XI» the as-
sumptions (2 .V I I ) , ( 2 .V I I I ) and then to apply Theorem 6. 

T h e o r e m 10. Let the assumptions of Theorem 9 be 
sat is f i ed . Denote by M the bound of the norm |u|G® of solu-I + Od 
t ion u of the problem (1.1) , (1.2) in the case (2 .1 ) , (2 .2 ) . HTT 
We assume that for any ( x , t ) e G and p^, p^ ( i=1,2,3) such 
that 

|p i|,|p i|^(1+2M20)M 

there are f u l f i l l e d inequalities (2.3) with a su f f i c i ent ly 
small constant M^g« Under these assumptions the conclusion of 
Theorem 3 is true in the case (2.1) , (2 .2) . 

This theorem is a consequence of Theorem 7-
Finally, in the case (2.4) with y defined by the formu-

la 

(2.8) y k ( u ) =(^(u i (V^ i (x,t ) ) J , { / u i ( v f L ( y , t ) ) / u k i ( x , t ; d y ) } , 

we easily obtain, as a corollary from Theorem 8,the following 
theorem. 

T h e o r e m 11. I f assumptions ( 1 . I ) - ( 1 . I l l ) , (2.V), 
(•2.VI) with N.=3N, (2. IX) for V^3' and (2.X) (with ^ ^ and 
ki ki ki 

replaced by <u 0 and t 0 , respectively) are sat is f i ed , 
then the assertion of Theorem 5 remains valid in the case 
(2 .4 ) , (2.8) . 
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R e m a r k 2. According to the Radon-Nikodym theorem 
(see for example [2 ] , p.299) condition 3° of assumption 
(2.X) implies the existence of non-negative functions 
9 p ( x , t , y ) , < 5 ^ ( x , t f y , 0 such that 

Ai d (x , t|D) 9 i d ( x , t , y ) d y , 
D 

tf^(x,t;D) = J<5 j d ( x , t , y , r )dy dr 
D 

r i T (see also Remark 4 of |_6_|). However, i f G i s a cy l indr i ca l 
domain, then the above-mentioned condition with regard to the 

k i measures i s superfluous in Theorems 9-11 .Moreover, i f i n 
t 

t h i s case we replace the - integrals over G with respect to 
the measures v ^ ( i = 2 , 3 ; k , j = 1 , . . . , N ) (appearing in functions lr T O 
f ) by in t eg ra l s over G , then condition 3 with respect to 
these measures may also be omitted. 

We conclude th i s section by giving an example of operators 
W^ which f u l f i l assumption (2.IX) in the case when G 

i s a c y l i nd r i c a l domain i . e . G = DQ x (TQ,T). Namely,let v ^ , 

w g ( i=1 , . . , 9{ k , j=1, . . ,N} 1=1,2,3; m=1,. . ,n) be operators 
mapping the domain DQ into i t s e l f and s a t i s f y i ng the uni-
form Holder condition 

| (x)-vW (x) | ̂  M^ |x-x'|a°, 

Moreover, take into considerations functions g ^ ( t ) , hj^j(t) 

( i = 1 , . . , 9 i k , j=1, . . ,N} 1=1,2,3; m=1,. . ,n) mapping the i n t e r -
va l [o , ' l ] into [T0»T], s a t i s f y i ng the uniform Holder condi-
t ion with exponent <*0/2 and such that 

h^ ( t ) ,= t for 1=1,2,3» k,d=1,. . ,N; m=1,.. ,n. 
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Obviously the operators Vj^, W^j defined by the formulas 

fulfil assumption (2.IX). 
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