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ON INTEGRO-DIFFERENTIAL EQUATIONS
OF PARABOLIC TYPE WITH FUNCTIONAL ARGUMENTS

In paper [6] some ‘theorems were proved concerning the
existence of solutions of the first Fourier problem in a bo-
unded domaln for a system of parabolic equations with a linear
main part and with a non-linear operator depending on unknown
funoctions.

In the present paper we obtain the same results under we-
aker assumptions concerning the non-linear parts of equations.
These results involve a system of integro-differential equa~
tions with fupnctional arguments as & particular case.

1., Differential equations containing operators

Let G be a bounded open domain of +the BEuclidean space
Ep1 of the variables (x,t):(xq,...,xn,t) whose boundary con-
sists of two open domains lying on the planes t=T°=const. < 0
and t=T = const. > 0, and of a side surface S situated in

the strip {(x,t): T,< t < T]. We define

¢ = Gﬂ{(x,t)x 0 <t<r}, s = sn\{ (x,t)1 O<t<r] ,

T _
Y. =8 @n{mt) t<0}) (0<r<m,
where @ denotes the closure of Q.
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2 He Ugowski

In this ection we derlve an a pr10r1 estimate for  the
norm |u|1+ﬁ , Where u = (u geceyl ) is a solution of the

problems
n

N m 7
(1.1) 1%f = Z afj(x,t)ugixj - o = B, (x,6) ¢G\L

(,7=1
(1.2) W, 6) = p5(x,8), (x,6) € ET (k=lyeea, N

With the aid of the .above-mentioned estimate we show the e-
xistence of solutions of the problem (1.1), (1.2).This re-
sult enables us to obtain a maximum solution and a minimum
solution.
. The following assumptions are introduced (see sec. 1 of
[6]):

(1.I) For any (x,t)e¢ G and § e¢E, we have

n
afy(x,6) = o (x,8), 21 ay; 06,805y 35 > 41512
Y (4, = const. >0).
(1.II) The coefficients afj satisfy the uniform Hélder
condition with the exponent o (O <« <1) in GE and the uni-
form Lipschitz condition on the surface ST.
Then for some constant A1 >0

Y (o) el 55 ) <, -

Lf=1
(1.III) The surface ST belongs both to 5é+a and %o
Coge .
(1.IV) B
values belonging to the set C(G ).
(1.V) There are constants A; > O (i=2,3,4,5) and 0<6 <1
such that for any r (O<r <T) and any u e CN O(@) we have

are operators defined on the set 01 O(G) with

1) In this paper we shall use the norms Ile 0 Iv]1 o |v1§+a (for
a scalar-function v) and |u|Q (for a vector-function u=(ul,...,u ))
and symbols c (Q), c2+ and Coy which are defined in sec, 1 and
2 of [&4]s Moreover, the symbols €(Q), C€"(q) and CN 5, prq(2) of sec. 1 of
(6] will ve used,

- 106 -



On integro-differential equations 3

(1.3) | B%a| & <A2- + A |u;,|T(; +A <u|,l 0>9+ A5|u|1 o

where

v, T

G’ =Gn{(x,t)tv<t<rJ (T <v<r=<T),

N n N
Q . Z kQ k|Q
’ul’]’o‘ |U. |°+ qu_lo d
k=1 i=1 k=1 1
(1.VI) The vector-function ¢=(<p i ¢ ), defined onZT
i ,0
belongs to Cl'\\T,O G ° and possesses an extension ¢ec,%(6 )nCJ{{i’)

(0<p=1). .
(1.VII) If a function ¢ ¢ Cg,,](GT)n C{\IT’O(@) is an exten-
sion of ¢, then

B¥g= 156 %, (x,0)¢R, = 80 {5=0}.

Theorem 1, If assumptlons (1.I) - (’I ), (1.VI),
(1.VII) are satisfied and if u ¢ C’l (G)n ¢ N ,I(E}T) is a so~
lution of the problem (1.1), (1.2), then ue GE (GT). Moreo-

+

ver, if assumption (1.V) is satlsfied with a sufficiently small
constant A52), then the norm lul,] "y is bounded by a constant

M depending only on A; (1=0,14..4,6),08 , 3 and ot s Where

6T GT 3 rn,o
A6‘>'§°|1+ > A5>l¢‘21 ) ]‘P|10 .
£ " s

Pr oo f. We apply a method similar to that used in the
proof of Theorem 1 of [6}. Let the function ¢ be an  exten~-
sion of ¢ such that

2 .
) More precisely, the constant A. is bounded by a sufficiently
small constant depending only on Ao’A1’A3' A and GT,

[6] 3) For the definition of these norms sée the footnote 3 of paper
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4 H. Ugowski

T T
G G
1915,0 < 40 95,4 < 44

Then the function v(x,t) = u(x,t) - §(x,t) is a solution of
the problem

(1.4) IE - ¥y - 1K GE, (x,8) eaE\ 2T |

(1.5) vE(x,t) = 0, (x,8)e £T (k=1,...,N) .

Since the functions Bku - I‘k ¢k are continuous in G_T and va-
nish on R/ (vy assumptions (1.1Iv), (1.VII)),therefore accor-
ding to Lemma 2 of [4], vEe C,I_'_B(GT) and consequently ue(;' ,(6")
Moreqver

T
WV |5.p < K(B)ZT [B*(v+ §)-L* g* [}

where y=(1-5)/2, O<t<T and K(B) is a constant depending
only on 8 , Ay, A, and al, Hence, by (1.3), we have

6t r 6% 6"
(1.6) |v|1+/5<NK(/s)ﬂLAjlv{1%+A4(lv|1+ﬁ> Alvlhﬁ] Y.

It

N(Ag + A5>K(/3)T’< 1,

then (1.6) implies the estimate

GT
V]3p < (|v|,+ﬂ) Ky,

whence
T T
G . G
IvI,H_/3 i,e. Iul,]ﬂasK .
Now we shall consider the case

¥
NAZK(B)T =1
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On integro-differential equaticns 5

We put

-1
(1.7) r=p [4NA3K(/3)] ",

where p > 1 is a number such that T is an integer multiple
of r . Let £(t) be a function (defined for real +) with con-
tinuous derivative &' (%) such that 0 < § (t) <1, §(%) =0
for t < /2 and E(%t) =1 for t=tv . We assume that the
constant A5 satisfies the following condition

(1.8) A5 < I:NK(/j)Ta’)["”]_?,
where i°=2Tr"7-2 while 2=>wmax(1, sup|§'(t)|) is a sufficien~

tly large constant which will be specified later.
It follows from (1.7) and (1.8) that

(1.9) NABK Brl< 1/4,
(1.10) NAK (3)7< A

Assuming that A“"'> 4 ang using (1.9), (1.10) we obtain from
(1.6) the estimate

(1.11) viES <2ae e

T “ﬁ+/((lv| /3)+/<

39
Now we shall estimate the norm |v]%+ﬂ ¢ Where » =z/2. It

is easy to see that the function w(x,t) = g (t)v(x,t) is a so-
lution of the problemn,

15w _g(t)[B (v §)=1% k] - E(6)vE= g5(x,8), (x,8) € PN\ £

,3\: —_
WE(x, ) = 0, (k60X = SPUGP  (k=,...,N).

Since gk(x,v) = Q0 for (x,v)e S n{t =9}, therefore (as befo-
re) we have
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6 H, Ugowski

(WHEr < K(B) T 1gh ™

Hence, recalling that

2v,3v

wk(x,t) = vk(x,‘c) for (x,t)eG

?

we get

2v, 3y g,z\,

V95, 5 < B Crs o + AR [VE] S+ Ty s
which, by (1.3), implies
2,3y 3y

T T
G < Nr(B)T [AB‘vl’?*B + A5 IVl{G + 4,( |v|E|"+/5)e:| +

|v|1+ﬁ 1+

929
+ AR(B) IVIG 5 + By

The last inequality tegether with (1.11) ylelds

(1.12) lvlﬁzv P2 NK(8)TT[(Ay+ AN(1020°° )+zn/"z'[°] Vg
FNK(B)TT 28,1 e A (102X ) 22N l"]lvl ; /(23(|v|“/3) £,

Now let us take the constant A so large that

. “‘0“7 —¢
PNK(E) 77 (agh # AT e AT (14227T) < /4
2v,3p

Then, by (1.9) and (1.10), the coefficient at |vi (,'J]"+,6‘ on the
right hand side of inequality (1.12) is less than or equal to
1/2. Thus, in virtue of (1.40), we get from (1.12) the ine-
quality

2v, 3y

¢} (o G 8
(1.13) i, . <an xvlw3 +K25(Ivl *B) Ky »

where a,< 2+2K(p)r¥. It follows from (1.11), (1.13) that
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On integro-differential equations 7

6 io G
iy, 5 =< 2(1+a)a |v|1,3+/<27(|vlw3 * Kog s

which together with (1.13) implies the estimate

'

— 3v, 7T
wis” < (2+3a1)/\"’|v|3* ~K, (vl K, .

1+43 1+/3)

4y

In the next step we estimate the norm IVIG £ We apply the
method used 1n the previous step with Gv"” and g(t) repla-
ced by ¢2** ang £ (t-v), respectively.

Proceeding further 1in the above manner, step by step, we
finally obtain the estimate

GT\) -2 6T—V
vl ai,ﬂﬂ Ivl“ +K; (IvI

1+3 1*/3) lo’

which in the next step implies

6T p
it < k(g )k

Hence

G’I' _ T
IvI,H_/3 <K 1i.e lu.I,H_/3

<M,

which completes the proof.
Let us note the followlng consequence from the proof of.

Theorem 1.

Remark 1, Theorem 1 holds true for every solubtion
ved (8)ncY ,(GT) of the problem

1,0 2,1

5 = 0 B5(v+ ) —ka¢k, (xy5) ¢ ET\ZT ’
vE(x,5) = 0; (x36)e ET  (k=1,...,N),

where ¢ is the extension of ¢ occu.rriné in +the proof of
Theorem 1 and w 1is an arbitrary constant. Moreover, for
O<w<1, the constant M which bounds the norm |v|,l+[5:sin
dependent of cw.
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8 H. Ugowski

Now we discuss the existence of solubtions of the problem
considered. The following additional assumptions will be nee—
ded:

(1.VIII) The vector-function ¢ , defined on ZT s belongs
to Of, @hincg, (&M,
where O<a < p<1.

(1.IX) The operators BK map the space Cl,\{_m (G) into the
set o<y<1 Ce (G ) and are c¢ontinuous in the following sense:
if

(™) and possesses an extension ge cl’\II+/5

Uyu € Cl,\lr+°( (@), um(x,t) = u(x,t), (x,%) e G’ (m=1,2,...)

and

lim | um—ujg]’_'_o‘ = 0,

M ~e-00

then
lim|B¥ u -B u|G = 0.

m —=oo

Theorem 2, If assumptions (1.I) - (1.V), (1.VII)-
(M1.IX) are satisfied'and the constant A5 is sufficiently small
(see the footnote 2), then there exists a solution u(x,t) of
the problem (1.1), (1.2); moreover u ¢ CN (G )/\Czﬂ(GT) for
some ¢, O<g<.

We apply the method of Leray-Schauder. Let us denote by @
the set of all functions v« C,H (G) such that v(x, t)_O on
L', Obviously @ is a Banach space (as a subspace of C’I+ (G
For veo and we [O,’I] let us consider the problem

s = ka(v+qS) - 1¥ ék, (x48) ¢ ET\Z.T ’

aF(x,5) = 0, (x,8)eLT (k=1,...,N),

where §¢ C1+B(G n 02 ,](G is an extemsion of 9. In view
of Lemmas 1 and 2 of [4] there exists a unique solution w(x,t)

= (w (x,t),...,wN(x,t)) of this problem and, moreover, weC,]_w(G )
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On integro~differential equations 9

nCI;L_C(GT) for some O <¢ <1, This enables us to define a
transformation Z by formula Z(v,w) = w. Proceeding further
like in the proof of Theorem 4 of [6] and using Remark 1 one

can show the existence of a solubtion v(x,t) (which belongs to

c’l+/3(GT)n Cg_'_E(GT) for some ¢ ,0<e<1) of the problem
Lkvk = Bk(v + 55) - Lk ¢k » (X,'b) € GT\Z-T

vE(x,b) = 0, (x,8)e LT (k=1,...,N).

Hence it immediately follows that the function u(x,t)= v{(x,%)
+ ¢ (x,5) is a solution of +the problem (1.1), (1.2) and
u e CE\]I_'_B (GT) n Cg+£(GT), which was to be proved.

Adding t6 assumptions of Theorem 2 the Lipschitz condi-
tion for operators Bk we obtain the existence and uniqueness
of solutions of the problem in question.

(1.X) For any u,v eC,],O(G)ﬂ C,]_HX(G ) such that u=v in G™°

T T
Iul(j"l_’_a ’ Ivlc,"]r_'_q <M (M being the constant occurring in
Theorem 1 in the case B =«) we have for any 7 (0 <r<T)

and

T

|Bu—Bv| <A7'u-v|G +A Iu-v|1+o‘ ,

where A7 A are certain pos:.tive constants independent of r.

Theo r em 3, If assumptlons (1.1)~(1.V), (1. VII)-0.X)
are satisfied and the constants A5, A8 4 are sufficiently
small, then the problem (1.1), (1.2) has a unique solution

u = {uk} in +the space CI,\]T O(C_})/\CléI ,I(GT). Moreover,ueCN (G )
A L

ncy

2~H(GT) for some ¢ ,0<¢ <1,

Pr oo f, We have to show o the uniqueness of solu-
tions. So let u,ve CN O(G)f\CN 'I(G ) be two solutions of the
problem (1.1), (1.2). it means that

&) Concerning the constant A5 see the footnote 2 whereas A8 is
bounded by a small constant depending only on Ao, A,l,cx s A7 and GT.

- 113 -



10 H, Ugowski

Lk(uk - vk) = Bku - Bkv, (x,t)eGT\):T,
W -vE=0 on T (k=1,0,.,8),

Since, by Theorem 1,

T T
wvedh, (6*)  ama wi§, , w§, <u

T4a ? 14+ !

therefore taking into comnsdiderations the last relation and
using Lemma 2 of [4] and assumption (1.X) we obtain,for any
t(0<71<T) the following inequality

T

G G’ o
(1.14) |u=v] 7, o <VAK(x) ¥ |u-v| g+ NAGK(«)? |u=vq,

(3‘:(1—0()/2).
It

(1.15) N(A, + Ag)K(o)17< 1,

then (1.14) implies the identity u=v in aT i.e. u=v in G.

In the case when (1.15) does not hold we proceed like in
the proof of Theorem 1. Therefore we only outline the further
argumentation.

Let us put

v = 571 (4 WAECO)] TV (r=(1-9)/2)

and assume that

b

Ag< [NK(cx )rT2‘°f1]—1

where the symbols p, A, 1., §(t) retaln their previous mea~-
ning. Then it follows from (1.14) that "

T T, T

G (o1 G’
(1.16) Iu-vl,l+°(<2% lu~vlg, s
where 2°*' >4,
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On integro-differential equations 11
. G2V
In order to estimate the norm |u—v|,1+o( G =t/2) observe
that the functions u(x,t)=:i(t)ulx,t), V(x,t)=8(t) v(x,t) ful-
fil the following relations

L) = £ (6) (FumBEY) - £(6) (l5vS), (x,8) ¢ @\ 24P

wFav¥=0 on = » (k=1y000,N).

Hence by (1.16) we get (taking a suitable enlarged A )

Gsv -0y Gsv,f
(1017) |u-V|,l+0( éb/l A Iu-V‘v]_*_o( .
Replacing in the above reasoning t (t), G”°” and ):.v’sv by
E(t=v), G**" and Z.ZV'W, respectively (and using (1.17) in~
stead of (1.16)), one can show that

3v

S —ty+1
Iu—v[,“o(s b, " ju~v]

G4v,r

T+«

Finally, for sufficiently large A , we obtain the estima-

te
r_v T‘V A

u=v|§, . <b10-1 ? Ju- V| Qo

which in the next step implies

T
G < 0.

Thus u=v 1n GT, and the proof is complgted.

At present we shall consider the existence of a maximum
solution 'and a minimum solution of the problem (’1.1),(’1.2)5).
For this purpose we state the following theorem.

5) The solution u(x,t) of (1.1), {1.2) is called a maximum (mi-
nimum) solution if for every solutlon w(x t) of (1.1), (1. 2) the ine-

qualities w (x,t) <u (x,t) (w (x,t) > u (x t)) hold in G (k-1,...,N).
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12 H., Ugowski

Theorem 4, Let assumptions (1.I)-(1.V) (with A
sufficiently small) and (1.IX) be satisfied and suppose that
(1.XI) the vector-function ¢ , defined on ZLT, belongs to

C§+d(Gn’o) and possesses an extension.¢e0§+B(GT)flCg,q(GT).

Under these assumptions there exists a solution u(x,t)
ecﬂ‘%(GT)nwg“(GT) 6) of the problem (1.1), (1.2), where
£(0 <¢ <1) is a certain constant.

Pr oo f. Procceding in the same manner as in the proof
of Theorem 1 and using, instead of Lemma 2 of (4], Lemma 2 of

[5], one can derive an a priori estimate of the norm [u.lE];’-._/3

for a solution u of problem (1.1), (1.2). The further argu-~
mentation is similar to that used in the proof of Theorem 2;
namely we apply the method of Leray-Schauder, making use of
the above estimate and of Lemmas 1 and 2 of [5].

Theorem 4 enables us to prove, by the same considerations
as those for Theorem 2 of [5], the following theorem.

Theorem 5. Let the assumptions of Theorem 4 and
the following one be satisfied:

(1.XII) If the functions u=(u1,...,uN) and v=(v1,...,vN)
belong to Cg’o(é)flcg’q(GT) and fulfil the inequalities

K BR s TEBEy,  (x,8) e GN\ET  (k=1,...,N),

w(x,5) <v(x,t), (x,6)e L7,

then u(x,t) < v(x,t) in GI.

These being assumed the problem (1.1), (1.2) has a maxi-
mum solution v={vk} and a minimum solution u = {ukJ; mo=
reover, v,u eCEI\T_'_/3 (GT)n Wg+€(GT) for some ¢ ,0 <¢ < 1.

As in paper [5], one can obtain a theorem on weak inequa-
lities which is a counterpart of Theorem 3 of [5].

6) For the definition of w§+ (R) see sec, 1 of [5] and the fo-
otnote 4 of [5], «
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On integro~differential equations 13

2. Differential equations with functional arguments

In this section we give examples of operators Bk for which
theorems of the previous section hold true.For these examples
we formulate the corollaries only from Theorems 2, 3 and 5.
At first we will discuss the general case

k

(2.1 B = 250k, t,vE (W), vEW), v (=t,...,00) .

Next we shall consider the special case of operators W]jf gi-
ven by formulas

(2.2) VW = (Vs 5 058)),  w (W (x,5)),

éfu(vgi-1 (y,8) )#?(X,tidy),/u(v?i(Y|f)vl-f(x,t;dy,d T)),
t 6

where

u(vllc (x,6)) = {uj(vllfd(x,t)}J (3=15...,N),

[T Gy e bsay) =

6

fu3<v§g'_1(y,w)ﬁi‘?i(x,t;dy)} (3=150 00500,
Gt

Z[u(vlgi(y, T))V}L{(x,t;dy,dr) = {g[uj(vé?(y, '[)vik'j(x,’c;dy,dt)

(3 2 Tyeee ),

1

u, (W (x,5)) = {uil(wikij(x,t))} (320,003 1=1,0ee,n),
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14 H, Ugowski

Gy = {x: (x,t)eG—T\ST].

The following assumptions will be introduced:

N N N
(2.I) The functions fﬂx,‘b,pj{,...,p,‘o,p;,..,pzo,pg,..pBO)

(k=1,+.4,N), defined on G x E,y , satisfy a uniform Hélder
Ny :

condition in every bounded domain- G xH (H c EBN ). Moreover,

there are constants Mi>0 (i=1,2,3,4), 0 < G,l°< 1 such that

6
| £, 5404995105 )| < My My [ Dy | 410 |y | T e lps),

where
No

EARMEHE

Jj=1
(2.1I) \;/}Lc (k=14...,N3 i=1,2,3) are operators defined on

Cg 0 (G) with values belonging to C °(GT). There exist con-
?

stants M;> O (1=5,..,10) and 0 <6,<1 such that for any
(0<7 < T) and any ueC,Nl O(@) we have
’

g™ 7)

T
lw%(u)]§$M5 + M6|U‘|'l,o ,

T S
v Ew|E<m, + w501l )2,

T
|v§<u>l§ < Mg + Mqo"l'(n},o .

7) N

R . s 1 o
For a vector-function v=(v',see,v ~) the norm |v

]Q is defined
by the formula °©

N, )
1v|¢ = LIS
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On integro-differential equations 15

Moreover, operators vy? map the space C§+a(G) into the set

OEUCCO(GT) and are contlnuous in the same sense as operators

B¥ (see assumption (1.IX)).

It is easy to see that assumptions (2.I), (2.II) @dmply
(1.IV), (1.Vv), (1.IX). Therefore we obtain, &as a corollary
from Theorem 2, the following theorem.

Theorem 6. Let assumptions (1.I) - (1.III), (2.I),
(2.II), (1.VIII) and (1.VII) (in the case (2.1))be satisfied
and let the product M4M40 be sufficiently small. Then Theo-~
rem 2 1s true in the case (2.1).

In order to formulate a corollary from Theorem 3 for the
case (2.1) we make the following assumptions:

(2.ITI) For any (x,5) ¢G' and py, B; (1=1,2,3) such that

[Pl |Bq] < Mgy |po|s [Bp| < Mgy D3|y [Bs| < Myl ,

T
where M is the bound or the norm |u|$+a of the solution u

of the problem (1.1), (1.2) in the case (2.1), we have

(2.3) Ifk(x,t,p1 .p2,p3)-—fk(x,t,f>,l,52,53)‘<

<M11|P1"P1|+ (|P2'P2|+IP5 PBI) ’
M11, Mﬂz beling positive constants.
= T
(2.IV) For any u,ve Cﬁ’O(G)e C§+(X(G ) such that

T
u=v in G°° and Iul1+a ’ IvlG <N

(M being the same as in (2.III)) and for any r (O<r<T) the-
re hold the ingqualities:

v “M(V)l <3 o -vlS,.

TR ‘V’i(")'G 4"“’|1+u (1=2,3).
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16 H, Ugowski

Since assumptions (2.III), (2.IV) imply (1.X), therefore
from Theorem 3 we immediately obtain the following theorem.

Theorem 7. Let the assumptions of Theorem 6 and
(2.1III), (2.1IV) with a sufficiently small product Mquo'masa—
tisfied. Then the conclusion of Theorem 3 holds true in the
case (2.1).

Now we shall consider the existence of a maximum solution
and a minimum solution of the problem (1.1), (1.2) for opera-
tors Bk given by formulas:

k

(2.4) B u = £5(x,b,ulx, %), W%, 5), (),

k k k
WheI‘e U}c= ('.5( ,cco’u.}c).
1 n
The following assumptions will be used:
(2.V) The functions f%ﬁx,t,p1,..,pN,q1,..,qn,r1,..,qu)

(k=144..,N), defined on ot x EyynsN,® @&re non-increasing
with respect to the variables DqseesDPp 1P g2 1 PaT 0 T+
1

(2.VI) The functions f£5(x,t,p,q,r) sabisfy a uniform HEl-
der condition in every bounded domain G~ x H (HC'EN+n+N1)‘M°"
reover, there are constants M15,M16 > 0 such that for any

T
(X,b,psq,r) € G X EN+n+N1 we have

N n Ny
fk(x,t,p,q,r)l<< NH5+Mﬁ6<Z;IPiI + Z;Iqi\+ Z:|rib.
(=1 (=1 =1

(2.VII) wk'(k:1,...,N) are operators defined on C§ O(@)
1

with values belonging to C 1(GTI') which are non-decreasing in
the following senses if u<v in G°'° (0<7r<T), then

wk(u) < wk(v) in G°.
(2.VIII) There exist constants NH7,NH8 > 0 such that for
any 7 (Q<r< T) and any Uu e C§ O(G) we have
’
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r

0

G
o+ M18|u11’o.

T

T
k, 4G
ly S (W] 5 =M,

K N (@)

Moreover, the operators vy map Cﬂ+a into the set

og<70§1(GT)k and are continuous in the same sense as the o-
perators BY (assumption (1.IX)).

Theorem 8. If assumptions (1.I) - (1.III), (2.V)-
(2.VIII) are satisfied, then the assertion of Theorem 5 is
true in the case (2.4).

This theorem is a consequence of Theorem 5 and of the
following lemma.

Lemmna 1. Let assumptions (1.I), (1.III), (2.V) and
(2.VII) be satisfied. Suppose that functions wu,ve CE O(G) n
Cg’q(GT) fulfil the inequalities ’

Lkuk-fk(x,t,u,ug, wk(u)):>Lkﬁk;fk(x,t,v,v§,wk(v))

(x,5) ¢ éﬁ\\ZT (k=T1,.00,N), u(x,t)<v(x,t),(x,t)eZZT.

Under these assumptions we have u(x,t)<v(x,t) in G.

The method of proving this lemma is the same as that u-
sed to prove the theorem on strong differential inequalities
(see [3], p.191).

At present we shall treat the case (2.1) with operators
Vi given by (2.2) (shortly the case (2.1),(2.2)). The fol-
lowing assumptions will be needed:

(2.IX) Operators Vid, Wid (i=1,..,9; k,d=1,..,N; 1=1,2,3

m=T,..,0) map GT into G and satisfy the uniform Hélder
conditiont

avEd @), v @) <iyglae,p)
(0 <0(0$’|)

(), W p*)) <mgface,p)]”,
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18 H, Ugowski

where

7
2 4 It-t'D ‘

P=(x,t), P =(x)t"), d(P,P") =<l

< %
| x~x] =[Z(xi—xi )2} 4
=1

Moreover, for every r(0<t<T) the operators V?J, W],i‘i

= 1,2,34 ky3=TyeeesN} m=1,...,n) map the domain G—T into G™7

(2.X) Let M(resp.n) deno‘be the 6 -field of 211 ILebesgue

measurable subsets of G (resp. Do U G ). By \,kJ(x t)4-D)
O0gtg

and uiJ(x,t;D) (1=1,2,3; k,j = 'l,...,N) we will denote fi-

nite non-negatives measures (depending on (x,t)e GT) defi-
ned on M and N , respectively. The following conditions
are imposed:

— 1° There is a constant M, > O such that for any (x,t)
eG

Ogj(x,t;GT), ,ulfa(x,t;bo) <MWy,

2° There exists a finite non-negative measure v (resp.x)
defined on M (resp. N ) such that for any Dem (resp.Dem)
and for any points P(x,%t), P (x,t ) of the domain 6T we ha-
ve

l\’ikj(x.t;D) - vfj(xl’tl ’D)I < My, v (D) [d(P’P')T1

(resp. ,u]:.fj(x,t;D) - ,uikj(x’ IS D)k’$M21,E(D)[d(~P,P')]Q1> ,

where M21 > 0 and 0 < %9 < 1 are certain constants.

3° There is a constant M,, > O such that for any DeMm
(resp. DeM) we have

v 53(,51D) < My, my(D)  (resp. 4 (x,55D) <My, m,y (D)),
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m;(D) (m,(B)) being the (n+1)-dimensional (n-dimensional) Le-
besgue measure of D,

Lemma 2. Let v(x,t;D) be a measure satisfying all
the conditions imposed on the measures v?a(x,t;D) in assum-
ption (2.X). Suppose that V is a continuous operator map-
ping the domain GT into G. Under these assumptions if w(x,t)
€C(G), then the function

wix,t) =‘/‘W(V(y,r))v(x,t;dy,dt)
6!
belongs to Ca1(GT)

Proo f. Let P(x,t), P (x,t") ¢ T, Without loss of ge-
nerality we may assume that +t > t’. Then

(2.5) W(x,t)—v_v(x',t')=11+12—

3
where
I, = w(V(y, r))v(x,t3dy,d7),
6\6*
I, = w(V(y,r))v(x,65dy,4d7),
&
I = / w(V(y, 1))»(x;t;dy,d ).

gt
With the aid of conditions 1° and 50 of assumption (2.X) it
follows that

G g
(2.6) |T,] < Mg, (W] 3 657 .

A direct application of the definition of Integral and con~-
dition 2° of (2.X) yields the estimate

4 X
(2.7) |12 - '5\<M21 wl & V(6" )[d(P,P')] 1.
Relations (2.5) - (2.7) imply the inequality
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20 H. Ugowskl

|W(x,t)-W(x',t')|s;const.[d(P,P')}qq,

which completes the proof,

Theorem 9. Let assumptions (1.I)-(1.III),(2.,I)with
N, =3N+nN, (2.IX),(2.X),(1.VIII) and (1.VII) (in the case 2.1),
(2.2)) be satisfied and let the constant M, (in (2.I))be suf-
ficiently small. Then the assertion of Theorem 2 is true in
the case (2.1), (2.2).

For the proof it suffices to observe that assumptions
(2.IX), (2.X) imply, by Lemma 2 and Lemma 4 of |4], the as-
sumptions (2.,VII), (2.VIII) and then to apply Theorem 6.

Theoremn 10. Let the assumptions of Theorem 9 be
satisfied. Denote by M the bound of the norm lul,cl}+ of solu-
tion w of the problem (1.1), (1.2) in the case (2.1),(2.2).
We assume that for any (x,t)e G and Py Pi (i=1,2,3) such
that

|pi| ) |By | = (1420,

there are fulfilled inequalities (2.3) with a sufficiently
small constant MﬁZ‘ Under these assumptions the conclusion of
Theorem 3 is true in the case (2.1), (2.2).

This theorem is a consequence of Theorem 7a

Finally, in the case (2.4) with \y defined by the formu-
la

(2.8)  v*(w) =<{u i Geye) | [t 8 G800 e sa0]

6;

[/ui(v];i(y,f))uﬁ(x,t;dy,dr)D (121,000 ,8),
6!

we easlly obtain, as a corollary from Theorem 8,the following
theorem.

Theorem 11. If assumptions (1.I)-(1.III), (2.V),
(2.VI) with N,=3N, (2.IX) for VkJ and (2.X) (with /zf and
vka replaced by ,ukJ and v J, respectlvely) are satisfied,
the1 the assertion of Theorem 5 remains valid in the case
(2.4), (2.8).
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Remar k 2. According to the Radon-Nikodym theorem
(see for example [2], p.299) condition 3° of assumption
(2.X) implles the existence of non-negative functions
qfa(x,t,y), (x t,¥,7) such that

ﬂ];j(x,tiD) '—'f??a (x,t,y)dy,
0

ng(x,t;D) =J[6fa(x,t,y,r)dy dr
D

(see also Remark 4 of [6]). However, 1if GT is a cylindrical
domain, then the above-mentioned condition with regard to the
measures /1?3 is superfluous in Theorems 2—11.Moreover, if in
this case we replace the integrals over G with respect to
the measures V: J(i =2,33 Kyj=Tyeee,N) (appearlng in functions
f ) by 1ntegrals over GT, then condition 5 with respect %o
these measures may also be omitted.

We conclude this section by giving an example of operators
i , Wka which fulfil assumption (2.IX) in the case when G

is a cylindrical domain i.e. G = D° X (TO,T). Namely,let vi ’

w%ﬂ (i=1,44,93 kyd=1504,N; 1=1,2,33 m=1,..,n) be operators
mappling the domain D0 into itself and satisfying the uni-
form Hélder condition

|v J (% )=vt J(x)| <,M23|x—x1qﬂ

A

|w (x)-w] '(x’)| <M25|x-x,

Moreover, take into considerations functions g?j(t), h%g(t)

{i=14.0,95 k,J=1,..,N; 1=1,2,3; m=1,..,n) mapping the inter-
val [0,T] into [TO,T], satisfying the uniform Hélder condi-
tion with exponent « /2 and such that

gy (b)<t, 5d(6)<t for i=1,2,3; kyg=1,.+,N; m=1,..,n.
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22 H, Ugowski

Obviously the operators V?a, W§J

o defined by the formulas

VI (x,6)=(v 9 (), X9 (6)), WD (x,8) = (wpa(x),bEd(6))

fulfil assumption (2,IX).
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