

Henryk Ugowski

ON INTEGRO-DIFFERENTIAL EQUATIONS
OF PARABOLIC TYPE WITH FUNCTIONAL ARGUMENTS

In paper [6] some theorems were proved concerning the existence of solutions of the first Fourier problem in a bounded domain for a system of parabolic equations with a linear main part and with a non-linear operator depending on unknown functions.

In the present paper we obtain the same results under weaker assumptions concerning the non-linear parts of equations. These results involve a system of integro-differential equations with functional arguments as a particular case.

1. Differential equations containing operators

Let G be a bounded open domain of the Euclidean space E_{n+1} of the variables $(x, t) = (x_1, \dots, x_n, t)$ whose boundary consists of two open domains lying on the planes $t = T_0 = \text{const.} < 0$ and $t = T = \text{const.} > 0$, and of a side surface S situated in the strip $\{(x, t) : T_0 \leq t \leq T\}$. We define

$$G^\tau = G \cap \{(x, t) : 0 < t < \tau\}, \quad S^\tau = S \cap \{(x, t) : 0 < t < \tau\},$$

$$\Sigma^\tau = S^\tau \cup (\bar{G} \cap \{(x, t) : t \leq 0\}) \quad (0 < \tau \leq T),$$

where \bar{Q} denotes the closure of Q .

In this section we derive an a priori estimate for the norm $|u|_{1+\beta}^{G^T}$, where $u = (u^1, \dots, u^N)$ is a solution of the problem:

$$(1.1) \quad L^k u^k = \sum_{i,j=1}^n a_{ij}^k(x,t) u_{x_i x_j}^k - u_t^k = B^k u, \quad (x,t) \in \bar{G^T} \setminus \Sigma^T,$$

$$(1.2) \quad u^k(x,t) = \varphi^k(x,t), \quad (x,t) \in \Sigma^T \quad (k=1, \dots, N).$$

With the aid of the above-mentioned estimate we show the existence of solutions of the problem (1.1), (1.2). This result enables us to obtain a maximum solution and a minimum solution.

The following assumptions are introduced (see sec. 1 of [6]):

(1.I) For any $(x,t) \in \bar{G^T}$ and $\xi \in E_n$ we have

$$a_{ij}^k(x,t) = a_{ji}^k(x,t), \quad \sum_{i=1}^n a_{ij}^k(x,t) \xi_i \xi_j \geq A_0 |\xi|^2 \quad (A_0 = \text{const.} > 0).$$

(1.II) The coefficients a_{ij}^k satisfy the uniform Hölder condition with the exponent α ($0 < \alpha < 1$) in G^T and the uniform Lipschitz condition on the surface S^T .

Then for some constant $A_1 > 0$

$$\sum_{i,j=1}^n \left(|a_{ij}^k|_{\alpha}^{G^T} + |a_{ij}^k|_{1-\alpha}^{S^T} \right) \leq A_1.$$

(1.III) The surface S^T belongs both to $\bar{C}_{2+\alpha}$ and to $C_{2-\alpha}$.

(1.IV) B^k are operators defined on the set $C_{1,0}^N(\bar{G})$ with values belonging to the set $C(G^T)$.

(1.V) There are constants $A_i > 0$ ($i=2,3,4,5$) and $0 < \theta < 1$ such that for any τ ($0 < \tau \leq T$) and any $u \in C_{1,0}^N(\bar{G})$ we have

1) In this paper we shall use the norms $|v|_0^Q$, $|v|_{1-\alpha}^Q$, $|v|_{m+\alpha}^Q$ (for a scalar-function v) and $|u|_{m+\alpha}^Q$ (for a vector-function $u = (u^1, \dots, u^N)$) and symbols $C_{m+\alpha}^N(Q)$, $\bar{C}_{2+\alpha}$ and $C_{2-\alpha}$ which are defined in sec. 1 and 2 of [4]. Moreover, the symbols $C(Q)$, $C^N(Q)$ and $C_{p,p+1}^N(Q)$ of sec. 1 of [6] will be used.

$$(1.3) \quad |B^k u|_0^{G^T} \leq A_2 + A_3 |u|_{1,0}^{G^{T,\tau}} + A_4 \left(|u|_{1,0}^G \right)^\theta + A_5 |u|_{1,0}^G ,$$

where

$$G^{v,\tau} = G \cap \left\{ (x,t) : v < t < \tau \right\} \quad (T_0 \leq v < \tau \leq T) ,$$

$$|u|_{1,0}^Q = \sum_{k=1}^N |u^k|_0^Q + \sum_{i=1}^n \sum_{k=1}^N |u_{x_i}^k|_0^Q .$$

(1.VI) The vector-function $\varphi = (\varphi^1, \dots, \varphi^N)$, defined on Σ^T , belongs to $C_{1,0}^N(G^T, 0)$ and possesses an extension $\phi \in C_{1+\beta}^N(\bar{G}^T) \cap C_{2,1}^N(\bar{G}^T)$ ($0 < \beta < 1$).

(1.VII) If a function $\phi \in C_{2,1}^N(\bar{G}^T) \cap C_{1,0}^N(\bar{G})$ is an extension of φ , then

$$B^k \phi = L^k \phi^k, \quad (x,0) \in R_0 = S \cap \{t=0\} .$$

Theorem 1. If assumptions (1.I) - (1.IV), (1.VI), (1.VII) are satisfied and if $u \in C_{1,0}^N(\bar{G}) \cap C_{2,1}^N(\bar{G}^T)$ is a solution of the problem (1.1), (1.2), then $u \in C_{1+\beta}^N(\bar{G}^T)$. Moreover, if assumption (1.V) is satisfied with a sufficiently small constant A_5^2 , then the norm $|u|_{1+\beta}^{G^T}$ is bounded by a constant M depending only on A_i ($i=0,1,\dots,6$), θ , β and G^T , where

$$A_6 > |\varphi|_{1+\beta}^{G^T}, \quad A_6 > |\varphi|_{2,1}^{G^T} \quad 3) , \quad A_6 \geq |\varphi|_{1,0}^{G^T,0} .$$

Proof. We apply a method similar to that used in the proof of Theorem 1 of [6]. Let the function ϕ be an extension of φ such that

2) More precisely, the constant A_5 is bounded by a sufficiently small constant depending only on A_0, A_1, A_3, β and G^T .

3) For the definition of these norms see the footnote 3 of paper [6].

$$|\phi|_{1+\beta}^{G^T} \leq A_6, \quad |\phi|_{2,1}^{G^T} \leq A_6.$$

Then the function $v(x,t) = u(x,t) - \phi(x,t)$ is a solution of the problem

$$(1.4) \quad L^k v^k = B^k u - L^k \phi^k, \quad (x,t) \in \overline{G^T} \setminus \Sigma^T,$$

$$(1.5) \quad v^k(x,t) = 0, \quad (x,t) \in \Sigma^T \quad (k=1, \dots, N).$$

Since the functions $B^k u - L^k \phi^k$ are continuous in $\overline{G^T}$ and vanish on R_0 (by assumptions (1.IV), (1.VII)), therefore according to Lemma 2 of [4], $v^k \in C_{1+\beta}^N(G^T)$ and consequently $u \in C_{1+\beta}^N(G^T)$. Moreover

$$|v^k|_{1+\beta}^{G^T} \leq K(\beta) \tau^\gamma |B^k(v + \phi) - L^k \phi^k|_0^{G^T},$$

where $\gamma = (1-\beta)/2$, $0 < \tau \leq T$ and $K(\beta)$ is a constant depending only on β , A_0 , A_1 and G^T . Hence, by (1.3), we have

$$(1.6) \quad |v|_{1+\beta}^{G^T} \leq N K(\beta) \tau^\gamma [A_3 |v|_{1+\beta}^{G^T} + A_4 (|v|_{1+\beta}^{G^T})^\theta + A_5 |v|_{1+\beta}^{G^T}] + K_{11}.$$

If

$$N(A_3 + A_5)K(\beta)T^\gamma < 1,$$

then (1.6) implies the estimate

$$|v|_{1+\beta}^{G^T} \leq K_{12} (|v|_{1+\beta}^{G^T})^\theta + K_{13},$$

whence

$$|v|_{1+\beta}^{G^T} \leq K_{14} \quad \text{i.e.} \quad |u|_{1+\beta}^{G^T} \leq K.$$

Now we shall consider the case

$$N A_3 K(\beta) T^\gamma \geq 1.$$

We put

$$(1.7) \quad \tau = p^{-1} \left[4NA_3 K(\beta) \right]^{-1/2},$$

where $p \geq 1$ is a number such that T is an integer multiple of τ . Let $\xi(t)$ be a function (defined for real t) with continuous derivative $\xi'(t)$ such that $0 \leq \xi(t) \leq 1$, $\xi(t) = 0$ for $t \leq \tau/2$ and $\xi(t) = 1$ for $t \geq \tau$. We assume that the constant A_5 satisfies the following condition

$$(1.8) \quad A_5 \leq \left[NK(\beta) \tau^2 \lambda^{i_0+1} \right]^{-1},$$

where $i_0 = 2T\tau^{-1} - 2$ while $\lambda \geq \max(1, \sup|\xi'(t)|)$ is a sufficiently large constant which will be specified later.

It follows from (1.7) and (1.8) that

$$(1.9) \quad NA_3 K(\beta) \tau^2 \leq 1/4,$$

$$(1.10) \quad NA_5 K(\beta) \tau^2 \leq \lambda^{-i_0-1}$$

Assuming that $\lambda^{i_0+1} \geq 4$ and using (1.9), (1.10) we obtain from (1.6) the estimate

$$(1.11) \quad |v|_{1+\beta}^{6\tau} \leq 2\lambda^{-i_0-1} |v|_{1+\beta}^{6\tau, \tau} + K_1 (|v|_{1+\beta}^{6\tau})^\theta + K_1'.$$

Now we shall estimate the norm $|v|_{1+\beta}^{G^{3\gamma}}$, where $\gamma = \tau/2$. It is easy to see that the function $w(x, t) = \xi(t)v(x, t)$ is a solution of the problem.

$$L^k w^k = \xi(t) \left[B^k(v + \phi) - L^k \phi^k \right] - \xi'(t) v^k \equiv g^k(x, t), \quad (x, t) \in \overline{G^{3\gamma}} \setminus \sum_{\gamma}^{3\gamma},$$

$$w^k(x, t) = 0, \quad (x, t) \in \sum_{\gamma}^{3\gamma} = S^{3\gamma} \cup \overline{G^{3\gamma, \gamma}} \quad (k=1, \dots, N).$$

Since $g^k(x, \gamma) = 0$ for $(x, \gamma) \in S \cap \{t = \gamma\}$, therefore (as before) we have

$$|w^k|_{1+\beta}^{6^v, 3^v} \leq K(\beta) \tau^{\delta} |g^k|_0^{6^v, 3^v}$$

Hence, recalling that

$$w^k(x, t) = v^k(x, t) \text{ for } (x, t) \in \overline{G^{2^v, 3^v}},$$

we get

$$|v^k|_{1+\beta}^{G^{2^v, 3^v}} \leq NK(\beta) \tau^{\delta} |B^k(v+\phi)|_0^{G^{v, 3^v}} + \lambda K(\beta) \tau^{\delta} |v^k|_{1+\beta}^{G^{v, 2^v}} + K_{21},$$

which, by (1.3), implies

$$\begin{aligned} |v|_{1+\beta}^{G^{2^v, 3^v}} &\leq NK(\beta) \tau^{\delta} \left[A_3 |v|_{1+\beta}^{G^{3^v}} + A_5 |v|_{1+\beta}^{G^T} + A_4 (|v|_{1+\beta}^{G^T})^\theta \right] + \\ &+ \lambda K(\beta) \tau^{\delta} |v|_{1+\beta}^{G^{v, 2^v}} + K_{22}. \end{aligned}$$

The last inequality together with (1.11) yields

$$\begin{aligned} (1.12) \quad |v|_{1+\beta}^{G^{2^v, 3^v}} &\leq NK(\beta) \tau^{\delta} \left[(A_3 + A_5)(1 + 2\lambda^{-\ell_0-1}) + 2N^{-1}\lambda^{-\ell_0} \right] |v|_{1+\beta}^{G^{2^v, 3^v}} + \\ &+ NK(\beta) \tau^{\delta} \left[2A_3 \lambda^{-\ell_0-1} + A_5 (1 + 2\lambda^{-\ell_0-1}) + 2N^{-1}\lambda^{-\ell_0} \right] |v|_{1+\beta}^{G^{3^v, T}} + K_{23} (|v|_{1+\beta}^{G^T})^\theta + K_{24} \end{aligned}$$

Now let us take the constant λ so large that

$$2NK(\beta) \tau^{\delta} (A_3 \lambda^{-\ell_0-1} + N^{-1} \lambda^{-\ell_0}) + \lambda^{-\ell_0-1} (1 + 2\lambda^{-\ell_0-1}) \leq 1/4.$$

Then, by (1.9) and (1.10), the coefficient at $|v|_{1+\beta}^{G^{2^v, 3^v}}$ on the right hand side of inequality (1.12) is less than or equal to $1/2$. Thus, in virtue of (1.10), we get from (1.12) the inequality

$$(1.13) \quad |v|_{1+\beta}^{G^{2^v, 3^v}} \leq a_1 \lambda^{-\ell_0} |v|_{1+\beta}^{G^{3^v, T}} + K_{25} (|v|_{1+\beta}^{G^T})^\theta + K_{26},$$

where $a_1 \leq 2 + 2K(\beta) \tau^{\delta}$. It follows from (1.11), (1.13) that

$$|v|_{1+\beta}^{6^T} \leq 2(1+a_1)\lambda^{-i_0} |v|_{1+\beta}^{6^{3v,T}} + K_{27} (|v|_{1+\beta}^{6^T})^\theta + K_{28},$$

which together with (1.13) implies the estimate

$$|v|_{1+\beta}^{6^{3v}} \leq (2+3\zeta_1)\lambda^{-i_0} |v|_{1+\beta}^{6^{3v,T}} + K_2 (|v|_{1+\beta}^{6^T})^\theta + K'_2.$$

In the next step we estimate the norm $|v|_{1+\beta}^{G^{4v}}$. We apply the method used in the previous step with $G^{v,3v}$ and $\xi(t)$ replaced by $G^{2v,4v}$ and $\xi(t-v)$, respectively.

Proceeding further in the above manner, step by step, we finally obtain the estimate

$$|v|_{1+\beta}^{6^{T-v}} \leq a_{i_0-1} \lambda^{-2} |v|_{1+\beta}^{6^{T-v,T}} + K_{i_0} (|v|_{1+\beta}^{6^T})^\theta + K'_{i_0},$$

which in the next step implies

$$|v|_{1+\beta}^{6^T} \leq K' (|v|_{1+\beta}^{6^T})^\theta + K''.$$

Hence

$$|v|_{1+\beta}^{G^T} \leq \bar{K} \quad \text{i.e.} \quad |u|_{1+\beta}^{G^T} \leq M,$$

which completes the proof.

Let us note the following consequence from the proof of Theorem 1.

R e m a r k 1. Theorem 1 holds true for every solution $v \in C_{1,0}^N(\bar{G}) \cap C_{2,1}^N(G^T)$ of the problem

$$L^k v^k = \omega B^k(v+\phi) - \omega L^k \phi^k, \quad (x,t) \in \bar{G^T} \setminus \Sigma^T,$$

$$v^k(x,t) = 0, \quad (x,t) \in \Sigma^T \quad (k=1, \dots, N),$$

where ϕ is the extension of φ occurring in the proof of Theorem 1 and ω is an arbitrary constant. Moreover, for $0 \leq \omega \leq 1$, the constant M which bounds the norm $|v|_{1+\beta}^{G^T}$ is independent of ω .

Now we discuss the existence of solutions of the problem considered. The following additional assumptions will be needed:

(1.VIII) The vector-function φ , defined on Σ^T , belongs to $C_{1+\alpha}^N(\overline{G^{T_0,0}})$ and possesses an extension $\phi \in C_{1+\beta}^N(G^T) \cap C_{2+\alpha}^N(G^T)$, where $0 < \alpha < \beta < 1$.

(1.IX) The operators B^k map the space $C_{1+\alpha}^N(G)$ into the set $\bigcup_{0 < \varepsilon < 1} C_\varepsilon^N(G^T)$ and are continuous in the following sense: if

$$u, u_m \in C_{1+\alpha}^N(\bar{G}), \quad u_m(x, t) = u(x, t), \quad (x, t) \in \overline{G^{T_0,0}} \quad (m=1, 2, \dots)$$

and

$$\lim_{m \rightarrow \infty} \|u_m - u\|_{1+\alpha}^G = 0,$$

then

$$\lim_{m \rightarrow \infty} \|B^k u_m - B^k u\|_0^{G^T} = 0.$$

Theorem 2. If assumptions (1.I) - (1.V), (1.VII) - (1.IX) are satisfied and the constant A_5 is sufficiently small (see the footnote 2), then there exists a solution $u(x, t)$ of the problem (1.1), (1.2); moreover $u \in C_{1+\beta}^N(G^T) \cap C_{2+\varepsilon}^N(G^T)$ for some ε , $0 < \varepsilon < 1$.

We apply the method of Leray-Schauder. Let us denote by Ω the set of all functions $v \in C_{1+\alpha}^N(\bar{G})$ such that $v(x, t) = 0$ on Σ^T . Obviously Ω is a Banach space (as a subspace of $C_{1+\alpha}^N(\bar{G})$). For $v \in \Omega$ and $\omega \in [0, 1]$ let us consider the problem

$$L^k w^k = \omega B^k(v + \phi) - L^k \phi^k, \quad (x, t) \in \overline{G^T} \setminus \Sigma^T,$$

$$w^k(x, t) = 0, \quad (x, t) \in \Sigma^T \quad (k=1, \dots, N),$$

where $\phi \in C_{1+\beta}^N(G^T) \cap C_{2+\alpha}^N(G^T)$ is an extension of φ . In view of Lemmas 1 and 2 of [4] there exists a unique solution $w(x, t) = (w^1(x, t), \dots, w^N(x, t))$ of this problem and, moreover, $w \in C_{1+\beta}^N(G^T)$

$\cap C_{2+\varepsilon}^N(G^T)$ for some $0 < \varepsilon < 1$. This enables us to define a transformation Z by formula $Z(v, \omega) = w$. Proceeding further like in the proof of Theorem 4 of [6] and using Remark 1 one can show the existence of a solution $v(x, t)$ (which belongs to $C_{1+\beta}^N(G^T) \cap C_{2+\varepsilon}^N(G^T)$ for some $\beta, 0 < \beta < 1$) of the problem

$$L^k v^k = B^k(v + \phi) - L^k \phi^k, \quad (x, t) \in \overline{G^T} \setminus \Sigma^T,$$

$$v^k(x, t) = 0, \quad (x, t) \in \Sigma^T \quad (k=1, \dots, N).$$

Hence it immediately follows that the function $u(x, t) = v(x, t) + \phi(x, t)$ is a solution of the problem (1.1), (1.2) and $u \in C_{1+\beta}^N(G^T) \cap C_{2+\varepsilon}^N(G^T)$, which was to be proved.

Adding to assumptions of Theorem 2 the Lipschitz condition for operators B^k we obtain the existence and uniqueness of solutions of the problem in question.

(1.X) For any $u, v \in C_{1,0}^N(\bar{G}) \cap C_{1+\alpha}^N(G^T)$ such that $u=v$ in $\overline{G^T}$ and $|u|_{1+\alpha}^{G^T}, |v|_{1+\alpha}^{G^T} \leq M$ (M being the constant occurring in Theorem 1 in the case $\beta=\alpha$) we have for any τ ($0 < \tau \leq T$)

$$|B^k u - B^k v|_0^{\overline{G^T}} \leq A_7 |u-v|_{1+\alpha}^{G^T} + A_8 |u-v|_{1+\alpha}^{G^T},$$

where A_7, A_8 are certain positive constants independent of τ .

Theorem 3. If assumptions (1.I)-(1.V), (1.VII)-(1.X) are satisfied and the constants A_5, A_8 ⁴⁾ are sufficiently small, then the problem (1.1), (1.2) has a unique solution $u = \{u^k\}$ in the space $C_{1,0}^N(\bar{G}) \cap C_{2,1}^N(\overline{G^T})$. Moreover, $u \in C_{1+\beta}^N(G^T) \cap C_{2+\varepsilon}^N(G^T)$ for some $\beta, 0 < \beta < 1$.

P r o o f. We have to show only the uniqueness of solutions. So let $u, v \in C_{1,0}^N(\bar{G}) \cap C_{2,1}^N(\overline{G^T})$ be two solutions of the problem (1.1), (1.2). It means that

4) Concerning the constant A_5 see the footnote 2 whereas A_8 is bounded by a small constant depending only on A_0, A_1, α, A_7 and G^T .

$$L^k(u^k - v^k) = B^k u - B^k v, \quad (x, t) \in \overline{G^T} \setminus \Sigma^T,$$

$$u^k - v^k = 0 \quad \text{on} \quad \Sigma^T \quad (k=1, \dots, N).$$

Since, by Theorem 1,

$$u, v \in C_{1+\alpha}^N(G^T) \quad \text{and} \quad \|u\|_{1+\alpha}^{G^T}, \|v\|_{1+\alpha}^{G^T} \leq M,$$

therefore taking into considerations the last relation and using Lemma 2 of [4] and assumption (1.X) we obtain, for any $\tau (0 < \tau \leq T)$ the following inequality

$$(1.14) \quad \|u-v\|_{1+\alpha}^{G^T} \leq N A_7 K(\alpha) \tau^\gamma \|u-v\|_{1+\alpha}^{G^T} + N A_8 K(\alpha) \tau^\gamma \|u-v\|_{1+\alpha}^{G^T}$$

$$(\gamma = (1-\alpha)/2).$$

If

$$(1.15) \quad N(A_7 + A_8)K(\alpha)T^\gamma < 1,$$

then (1.14) implies the identity $u = v$ in $\overline{G^T}$ i.e. $u = v$ in \overline{G} .

In the case when (1.15) does not hold we proceed like in the proof of Theorem 1. Therefore we only outline the further argumentation.

Let us put

$$\tau = p^{-1} [4 N A_7 K(\alpha)]^{-1/\gamma} \quad (\gamma = (1-\alpha)/2)$$

and assume that

$$A_8 \leq [N K(\alpha) \tau^\gamma \lambda^{i_0+1}]^{-1},$$

where the symbols $p, \lambda, i_0, \xi(t)$ retain their previous meaning. Then it follows from (1.14) that

$$(1.16) \quad \|u-v\|_{1+\alpha}^{G^T} \leq 2 \lambda^{-i_0-1} \|u-v\|_{1+\alpha}^{G^T, \tau},$$

where $\lambda^{i_0+1} \geq 4$.

In order to estimate the norm $|u-v|_{1+\alpha}^{G^{3v}}$ ($v=\tau/2$) observe that the functions $\bar{u}(x,t)=\xi(t)u(x,t)$, $\bar{v}(x,t)=\xi(t)v(x,t)$ fulfil the following relations

$$L^k(\bar{u}^k - \bar{v}^k) = \xi(t)(B^k u - B^k v) - \xi'(t)(u^k - v^k), \quad (x,t) \in \overline{G^{v,3v}} \setminus \Sigma^{v,3v},$$

$$u^k - v^k = 0 \quad \text{on} \quad \Sigma^{v,3v} \quad (k=1, \dots, N).$$

Hence by (1.16) we get (taking a suitable enlarged λ)

$$(1.17) \quad |u-v|_{1+\alpha}^{G^{3v}} \leq b_1 \lambda^{-i_0} |u-v|_{1+\alpha}^{G^{3v,T}}.$$

Replacing in the above reasoning $\xi(t)$, $G^{v,3v}$ and $\Sigma^{v,3v}$ by $\xi(t-v)$, $G^{2v,4v}$ and $\Sigma^{2v,4v}$, respectively (and using (1.17) instead of (1.16)), one can show that

$$|u-v|_{1+\alpha}^{G^{4v}} \leq b_2 \lambda^{-i_0+1} |u-v|_{1+\alpha}^{G^{4v,T}}.$$

Finally, for sufficiently large λ , we obtain the estimate

$$|u-v|_{1+\alpha}^{G^{T-v}} \leq b_{i_0-1} \lambda^{-2} |u-v|_{1+\alpha}^{G^{T-v,T}},$$

which in the next step implies

$$|u-v|_{1+\alpha}^T \leq 0.$$

Thus $u = v$ in $\overline{G^T}$, and the proof is completed.

At present we shall consider the existence of a maximum solution and a minimum solution of the problem (1.1), (1.2)⁵⁾. For this purpose we state the following theorem.

5) The solution $u(x,t)$ of (1.1), (1.2) is called a maximum (minimum) solution if for every solution $w(x,t)$ of (1.1), (1.2) the inequalities $w^k(x,t) \leq u^k(x,t)$ ($w^k(x,t) \geq u^k(x,t)$) hold in $\overline{G^T}$ ($k=1, \dots, N$).

Theorem 4. Let assumptions (1.I)-(1.V) (with A_5 sufficiently small) and (1.IX) be satisfied and suppose that (1.XI) the vector-function φ , defined on Σ^T , belongs to $C_{1+\alpha}^N(\bar{G}^{T,0})$ and possesses an extension $\varphi \in C_{1+\beta}^N(\bar{G}^T) \cap C_{2,1}^N(\bar{G}^T)$.

Under these assumptions there exists a solution $u(x,t) \in C_{1+\beta}^N(\bar{G}^T) \cap W_{2+\varepsilon}^N(\bar{G}^T)$ ⁶⁾ of the problem (1.1), (1.2), where $\varepsilon (0 < \varepsilon < 1)$ is a certain constant.

Proof. Proceeding in the same manner as in the proof of Theorem 1 and using, instead of Lemma 2 of [4], Lemma 2 of [5], one can derive an a priori estimate of the norm $|u|_{1+\beta}^{G^T}$ for a solution u of problem (1.1), (1.2). The further argumentation is similar to that used in the proof of Theorem 2; namely we apply the method of Leray-Schauder, making use of the above estimate and of Lemmas 1 and 2 of [5].

Theorem 4 enables us to prove, by the same considerations as those for Theorem 2 of [5], the following theorem.

Theorem 5. Let the assumptions of Theorem 4 and the following one be satisfied:

(1.XII) If the functions $u = (u^1, \dots, u^N)$ and $v = (v^1, \dots, v^N)$ belong to $C_{1,0}^N(\bar{G}) \cap C_{2,1}^N(\bar{G}^T)$ and fulfil the inequalities

$$L^k u^k - B^k u > L^k v^k - B^k v, \quad (x,t) \in \bar{G}^T \setminus \Sigma^T \quad (k=1, \dots, N),$$

$$u(x,t) < v(x,t), \quad (x,t) \in \Sigma^T,$$

then $u(x,t) < v(x,t)$ in \bar{G}^T .

These being assumed the problem (1.1), (1.2) has a maximum solution $v = \{v^k\}$ and a minimum solution $u = \{u^k\}$; moreover, $v, u \in C_{1+\beta}^N(\bar{G}^T) \cap W_{2+\varepsilon}^N(\bar{G}^T)$ for some $\varepsilon, 0 < \varepsilon < 1$.

As in paper [5], one can obtain a theorem on weak inequalities which is a counterpart of Theorem 3 of [5].

⁶⁾ For the definition of $W_{2+\alpha}^N(Q)$ see sec. 1 of [5] and the footnote 4 of [5].

2. Differential equations with functional arguments

In this section we give examples of operators B^k for which theorems of the previous section hold true. For these examples we formulate the corollaries only from Theorems 2, 3 and 5. At first we will discuss the general case

$$(2.1) \quad B^k u = f^k(x, t, \psi_1^k(u), \psi_2^k(u), \psi_3^k(u)) \quad (k=1, \dots, N).$$

Next we shall consider the special case of operators ψ_i^k given by formulas

$$(2.2) \quad \psi_i^k(u) = (u(V_{3i-2}^k(x, t)), u_x(W_i^k(x, t))),$$

$$\int_{\delta_t}^t u(V_{3i-1}^k(y, t)) \mu_i^k(x, t; dy), \int_{\delta_t}^t u(V_{3i}^k(y, \tau)) v_i^k(x, t; dy, d\tau)),$$

where

$$u(V_1^k(x, t)) = \left\{ u^j(V_1^{kj}(x, t)) \right\} \quad (j=1, \dots, N),$$

$$\int_{\delta_t}^t u(V_{3i-1}^k(y, t)) \mu_i^k(x, t; dy) =$$

$$= \left\{ \int_{\delta_t}^t u^j(V_{3i-1}^{kj}(y, t)) \mu_i^{kj}(x, t; dy) \right\} \quad (j=1, \dots, N),$$

$$\int_{\delta_t}^t u(V_{3i}^k(y, \tau)) v_i^k(x, t; dy, d\tau) = \left\{ \int_{\delta_t}^t u^j(V_{3i}^{kj}(y, \tau)) v_i^{kj}(x, t; dy, d\tau) \right\}$$

$$(j = 1, \dots, N),$$

$$u_x(W_i^k(x, t)) = \left\{ u_{x_1}^j(W_{il}^{kj}(x, t)) \right\} \quad (j=1, \dots, N; \quad l=1, \dots, n),$$

$$G_t = \{x: (x, t) \in \overline{G^T} \setminus S^T\}.$$

The following assumptions will be introduced:

(2.I) The functions $f^k(x, t, p_1^1, \dots, p_1^{N_0}, p_2^1, \dots, p_2^{N_0}, p_3^1, \dots, p_3^{N_0})$ ($k=1, \dots, N$), defined on $G^T \times E_{3N_0}$, satisfy a uniform Hölder condition in every bounded domain $G^T \times H$ ($H \subset E_{3N_0}$). Moreover, there are constants $M_i > 0$ ($i=1, 2, 3, 4$), $0 < \theta_1 < 1$ such that

$$|f^k(x, t, p_1, p_2, p_3)| \leq M_1 + M_2 |p_1| + M_3 |p_2| + M_4 |p_3|,$$

where

$$|p_i| = \sum_{j=1}^{N_0} |p_i^j|.$$

(2.II) ψ_i^k ($k=1, \dots, N$; $i=1, 2, 3$) are operators defined on $C_{1,0}^N(\bar{G})$ with values belonging to $C_{1,0}^N(\overline{G^T})$. There exist constants $M_i > 0$ ($i=5, \dots, 10$) and $0 < \theta_2 < 1$ such that for any τ ($0 < \tau \leq T$) and any $u \in C_{1,0}^N(\bar{G})$ we have

$$|\psi_1^k(u)|_0^{\bar{G}^\tau} \leq M_5 + M_6 |u|_{1,0}^{G^{\tau, \tau}} \quad ?),$$

$$|\psi_2^k(u)|_0^{\bar{G}^\tau} \leq M_7 + M_8 (|u|_{1,0}^G)^{\theta_2},$$

$$|\psi_3^k(u)|_0^{\bar{G}^\tau} \leq M_9 + M_{10} |u|_{1,0}^G.$$

?) For a vector-function $v = (v^1, \dots, v^{N_0})$ the norm $|v|_0^Q$ is defined by the formula

$$|v|_0^Q = \sum_{k=1}^{N_0} |v^k|_0^Q$$

Moreover, operators ψ_i^k map the space $C_{1+\alpha}^N(G)$ into the set $\bigcup_{0 < \epsilon < 1} C_\epsilon^0(G^T)$ and are continuous in the same sense as operators B^k (see assumption (1.IX)).

It is easy to see that assumptions (2.I), (2.II) imply (1.IV), (1.V), (1.IX). Therefore we obtain, as a corollary from Theorem 2, the following theorem.

Theorem 6. Let assumptions (1.I) - (1.III), (2.I), (2.II), (1.VIII) and (1.VII) (in the case (2.1)) be satisfied and let the product $M_4 M_{10}$ be sufficiently small. Then Theorem 2 is true in the case (2.1).

In order to formulate a corollary from Theorem 3 for the case (2.1) we make the following assumptions:

(2.III) For any $(x,t) \in G^T$ and p_i, \bar{p}_i ($i=1,2,3$) such that

$$|p_1|, |\bar{p}_1| \leq M_6 M, |p_2|, |\bar{p}_2| \leq M_8 M, |p_3|, |\bar{p}_3| \leq M_{10} M,$$

where M is the bound or the norm $|u|_{1+\alpha}^{G^T}$ of the solution u of the problem (1.1), (1.2) in the case (2.1), we have

$$(2.3) \quad |f^k(x,t,p_1,p_2,p_3) - f^k(x,t,\bar{p}_1,\bar{p}_2,\bar{p}_3)| \leq \\ \leq M_{11} |p_1 - \bar{p}_1| + M_{12} (|p_2 - \bar{p}_2| + |p_3 - \bar{p}_3|),$$

M_{11}, M_{12} being positive constants.

(2.IV) For any $u, v \in C_{1,0}^N(\bar{G}) \in C_{1+\alpha}^N(G^T)$ such that

$$u=v \quad \text{in } G^{T,0} \quad \text{and} \quad |u|_{1+\alpha}^{G^T}, |v|_{1+\alpha}^{G^T} \leq M$$

(M being the same as in (2.III)) and for any τ ($0 < \tau \leq T$) there hold the inequalities:

$$\begin{aligned} |\psi_1^k(u) - \psi_1^k(v)|_0^{G^\tau} &\leq M_{13} |u - v|_{1+\alpha}^{G^\tau}, \\ |\psi_i^k(u) - \psi_i^k(v)|_0^{G^\tau} &\leq M_{14} |u - v|_{1+\alpha}^{G^\tau} \quad (i=2,3). \end{aligned}$$

Since assumptions (2.III), (2.IV) imply (1.X), therefore from Theorem 3 we immediately obtain the following theorem.

Theorem 7. Let the assumptions of Theorem 6 and (2.III), (2.IV) with a sufficiently small product $M_9 M_{10}$ be satisfied. Then the conclusion of Theorem 3 holds true in the case (2.1).

Now we shall consider the existence of a maximum solution and a minimum solution of the problem (1.1), (1.2) for operators B^k given by formulas:

$$(2.4) \quad B^k u = f^k(x, t, u(x, t), u_x^k(x, t), \psi^k(u)),$$

where $u_x^k = (u_{x_1}^k, \dots, u_{x_n}^k)$.

The following assumptions will be used:

(2.V) The functions $f^k(x, t, p_1, \dots, p_N, q_1, \dots, q_n, r_1, \dots, r_{N_1})$ ($k=1, \dots, N$), defined on $G^T \times E_{N+n+N_1}$, are non-increasing with respect to the variables $p_1, \dots, p_{k-1}, p_{k+1}, \dots, p_N, r_1, \dots, r_{N_1}$.

(2.VI) The functions $f^k(x, t, p, q, r)$ satisfy a uniform Hölder condition in every bounded domain $G^T \times H$ ($H \subset E_{N+n+N_1}$). Moreover, there are constants $M_{15}, M_{16} > 0$ such that for any $(x, t, p, q, r) \in G^T \times E_{N+n+N_1}$ we have

$$|f^k(x, t, p, q, r)| \leq M_{15} + M_{16} \left(\sum_{i=1}^N |p_i| + \sum_{i=1}^n |q_i| + \sum_{i=1}^{N_1} |r_i| \right).$$

(2.VII) ψ^k ($k=1, \dots, N$) are operators defined on $C_{1,0}^N(\bar{G})$ with values belonging to $C^1(G^T)$ which are non-decreasing in the following sense: if $u \leq v$ in $G^{\tau, \tau}$ ($0 < \tau \leq T$), then $\psi^k(u) \leq \psi^k(v)$ in G^τ .

(2.VIII) There exist constants $M_{17}, M_{18} > 0$ such that for any τ ($0 < \tau \leq T$) and any $u \in C_{1,0}^N(\bar{G})$ we have

$$|\psi^k(u)|_0^{\bar{G}^\tau} \leq M_{17} + M_{18} |u|_{1,0}^{\bar{G}^{\tau, \tau}}.$$

Moreover, the operators ψ^k map $C_{1+\alpha}^N(G)$ into the set $\bigcup_{0 < \epsilon < 1} C_\epsilon^N(G^T)$ and are continuous in the same sense as the operators B^k (assumption (1.IX)).

Theorem 8. If assumptions (1.I) - (1.III), (2.V) - (2.VIII) are satisfied, then the assertion of Theorem 5 is true in the case (2.4).

This theorem is a consequence of Theorem 5 and of the following lemma.

Lemma 1. Let assumptions (1.I), (1.III), (2.V) and (2.VII) be satisfied. Suppose that functions $u, v \in C_{1,0}^N(\bar{G}) \cap C_{2,1}^N(G^T)$ fulfil the inequalities

$$L^k u^k - f^k(x, t, u, u_x^k, \psi^k(u)) > L^k v^k - f^k(x, t, v, v_x^k, \psi^k(v))$$

$$(x, t) \in \bar{G}^T \setminus \Sigma^T \quad (k=1, \dots, N), \quad u(x, t) < v(x, t), \quad (x, t) \in \Sigma^T.$$

Under these assumptions we have $u(x, t) < v(x, t)$ in \bar{G} .

The method of proving this lemma is the same as that used to prove the theorem on strong differential inequalities (see [3], p.191).

At present we shall treat the case (2.1) with operators ψ_i^k given by (2.2) (shortly the case (2.1), (2.2)). The following assumptions will be needed:

(2.IX) Operators v_i^{kj}, w_{lm}^{kj} ($i=1, \dots, 9$; $k, j=1, \dots, N$; $l=1, 2, 3$; $m=1, \dots, n$) map \bar{G}^T into \bar{G} and satisfy the uniform Hölder condition:

$$\begin{aligned} d(v_i^{kj}(P), v_i^{kj}(P')) &\leq M_{19} [d(P, P')] \\ &\quad (0 < \alpha_0 \leq 1) \\ d(w_{lm}^{kj}(P), w_{lm}^{kj}(P')) &\leq M_{19} [d(P, P')]^{\alpha_0}, \end{aligned}$$

where

$$P=(x,t), \quad P'=(x',t'), \quad d(P,P') = \left(|x-x'|^2 + |t-t'| \right)^{1/2},$$

$$|x-x'| = \left[\sum_{i=1}^n (x_i - x'_i)^2 \right]^{1/2}.$$

Moreover, for every $\tau (0 < \tau \leq T)$ the operators v_i^{kj} , w_{1m}^{kj} ($i = 1, 2, 3$; $k, j = 1, \dots, N$; $m = 1, \dots, n$) map the domain $\overline{G^T}$ into $\overline{G^{T+\tau}}$.

(2.X) Let \mathcal{M} (resp. \mathcal{N}) denote the σ -field of all Lebesgue measurable subsets of $\overline{G^T}$ (resp. $D_0 = \overline{\bigcup_{0 \leq t \leq T} G_t}$). By $v_i^{kj}(x,t); D$ and $\mu_i^{kj}(x,t; D)$ ($i=1,2,3$; $k, j = 1, \dots, N$) we will denote finite non-negative measures (depending on $(x,t) \in \overline{G^T}$) defined on \mathcal{M} and \mathcal{N} , respectively. The following conditions are imposed:

1° There is a constant $M_{20} > 0$ such that for any $(x,t) \in \overline{G^T}$

$$v_i^{kj}(x,t; \overline{G^T}), \quad \mu_i^{kj}(x,t; D_0) \leq M_{20}.$$

2° There exists a finite non-negative measure \bar{v} (resp. $\bar{\mu}$) defined on \mathcal{M} (resp. \mathcal{N}) such that for any $D \in \mathcal{M}$ (resp. $D \in \mathcal{N}$) and for any points $P(x,t)$, $P'(x',t')$ of the domain $\overline{G^T}$ we have

$$|v_i^{kj}(x,t; D) - v_i^{kj}(x',t'; D)| \leq M_{21} \bar{v}(D) [d(P,P')]^{\alpha_1}$$

$$\left(\text{resp. } |\mu_i^{kj}(x,t; D) - \mu_i^{kj}(x',t'; D)| \leq M_{21} \bar{\mu}(D) [d(P,P')]^{\alpha_1} \right),$$

where $M_{21} > 0$ and $0 < \alpha_1 < 1$ are certain constants.

3° There is a constant $M_{22} > 0$ such that for any $D \in \mathcal{M}$ (resp. $D \in \mathcal{N}$) we have

$$v_i^{kj}(x,t; D) \leq M_{22} m_1(D) \quad (\text{resp. } \mu_i^{kj}(x,t; D) \leq M_{22} m_2(D)),$$

$m_1(D)$ ($m_2(D)$) being the $(n+1)$ -dimensional (n -dimensional) Lebesgue measure of D .

Lemma 2. Let $v(x, t; D)$ be a measure satisfying all the conditions imposed on the measures $v_i^{kj}(x, t; D)$ in assumption (2.X). Suppose that V is a continuous operator mapping the domain G^T into \bar{G} . Under these assumptions if $w(x, t) \in C(\bar{G})$, then the function

$$\bar{w}(x, t) = \int_{G^t} w(V(y, \tau)) v(x, t; dy, d\tau)$$

belongs to $C_{\alpha_1}(G^T)$.

Proof. Let $P(x, t)$, $P'(x, t') \in G^T$. Without loss of generality we may assume that $t \geq t'$. Then

$$(2.5) \quad \bar{w}(x, t) - \bar{w}(x', t') = I_1 + I_2 - I_3,$$

where

$$I_1 = \int_{G^{t'}}^{G^t} w(V(y, \tau)) v(x, t; dy, d\tau),$$

$$I_2 = \int_{G^{t'}} w(V(y, \tau)) v(x, t; dy, d\tau),$$

$$I_3 = \int_{G^{t'}} w(V(y, \tau)) v(x, t'; dy, d\tau).$$

With the aid of conditions 1^0 and 3^0 of assumption (2.X) it follows that

$$(2.6) \quad |I_1| \leq M_{20} M_{22} |w|_0^G |t - t'|.$$

A direct application of the definition of integral and condition 2^0 of (2.X) yields the estimate

$$(2.7) \quad |I_2 - I_3| \leq M_{21} |w|_0^G \bar{v}(G^{t'}) [d(P, P')]^{\alpha_1}.$$

Relations (2.5) - (2.7) imply the inequality

$$|\bar{w}(x,t) - \bar{w}(x',t')| \leq \text{const.} [d(P,P')]^{\alpha_1},$$

which completes the proof.

Theorem 9. Let assumptions (1.I)-(1.III), (2.I) with $N_0 = 3N + nN$, (2.IX), (2.X), (1.VIII) and (1.VII) (in the case (2.1), (2.2)) be satisfied and let the constant M_4 (in (2.I)) be sufficiently small. Then the assertion of Theorem 2 is true in the case (2.1), (2.2).

For the proof it suffices to observe that assumptions (2.IX), (2.X) imply, by Lemma 2 and Lemma 4 of [4], the assumptions (2.VII), (2.VIII) and then to apply Theorem 6.

Theorem 10. Let the assumptions of Theorem 9 be satisfied. Denote by M the bound of the norm $|u|_{1+\alpha}^{G^T}$ of solution u of the problem (1.1), (1.2) in the case (2.1), (2.2). We assume that for any $(x,t) \in G^T$ and p_i, \bar{p}_i ($i=1,2,3$) such that

$$|p_i|, |\bar{p}_i| \leq (1+2M_{20})M$$

there are fulfilled inequalities (2.3) with a sufficiently small constant M_{12} . Under these assumptions the conclusion of Theorem 3 is true in the case (2.1), (2.2).

This theorem is a consequence of Theorem 7.

Finally, in the case (2.4) with ψ^k defined by the formula

$$(2.8) \quad \psi^k(u) = \left(\left\{ u^i(V_1^{ki}(x,t)) \right\}, \left\{ \int_{\delta}^t u^i(V_2^{ki}(y,t)) \mu^{ki}(x,t;dy) \right\}, \right. \\ \left. \left\{ \int_{\delta}^t u^i(V_3^{ki}(y,\tau)) \nu^{ki}(x,t;dy, d\tau) \right\} \right) \quad (i=1, \dots, N),$$

we easily obtain, as a corollary from Theorem 8, the following theorem.

Theorem 11. If assumptions (1.I)-(1.III), (2.V), (2.VI) with $N_1 = 3N$, (2.IX) for V_i^{kj} and (2.X) (with μ_i^{kj} and ν_i^{kj} replaced by μ^{kj} and ν^{kj} , respectively) are satisfied, then the assertion of Theorem 5 remains valid in the case (2.4), (2.8).

Remark 2. According to the Radon-Nikodym theorem (see for example [2], p.299) condition β^0 of assumption (2.X) implies the existence of non-negative functions $\varphi_i^{kj}(x, t, y)$, $\delta_i^{kj}(x, t, y, \tau)$ such that

$$\mu_i^{kj}(x, t; D) = \int_D \varphi_i^{kj}(x, t, y) dy,$$

$$\nu_i^{kj}(x, t; D) = \int_D \delta_i^{kj}(x, t, y, \tau) dy d\tau$$

(see also Remark 4 of [6]). However, if G^T is a cylindrical domain, then the above-mentioned condition with regard to the measures μ_i^{kj} is superfluous in Theorems 9-11. Moreover, if in this case we replace the integrals over G^T with respect to the measures ν_i^{kj} ($i=2, 3$; $k, j=1, \dots, N$) (appearing in functions f^k) by integrals over G^T , then condition β^0 with respect to these measures may also be omitted.

We conclude this section by giving an example of operators v_i^{kj} , w_{lm}^{kj} which fulfil assumption (2.IX) in the case when G is a cylindrical domain i.e. $G = D_0 \times (T_0, T)$. Namely, let v_i^{kj} , w_{lm}^{kj} ($i=1, \dots, 9$; $k, j=1, \dots, N$; $l=1, 2, 3$; $m=1, \dots, n$) be operators mapping the domain D_0 into itself and satisfying the uniform Hölder condition

$$|v_i^{kj}(x) - v_i^{kj}(x')| \leq M_{23} |x - x'|^{\alpha_0},$$

$$|w_{lm}^{kj}(x) - w_{lm}^{kj}(x')| \leq M_{23} |x - x'|^{\alpha_0}.$$

Moreover, take into considerations functions $g_i^{kj}(t)$, $h_{lm}^{kj}(t)$ ($i=1, \dots, 9$; $k, j=1, \dots, N$; $l=1, 2, 3$; $m=1, \dots, n$) mapping the interval $[0, T]$ into $[T_0, T]$, satisfying the uniform Hölder condition with exponent $\alpha_0/2$ and such that

$$g_i^{kj}(t) \leq t, \quad h_{lm}^{kj}(t) \leq t \quad \text{for } i=1, 2, 3; \quad k, j=1, \dots, N; \quad m=1, \dots, n.$$

Obviously the operators v_i^{kj} , w_{lm}^{kj} defined by the formulas

$$v_i^{kj}(x,t) = (v_i^{kj}(x), g_i^{kj}(t)), \quad w_{lm}^{kj}(x,t) = (w_{lm}^{kj}(x), h_{lm}^{kj}(t))$$

fulfil assumption (2.IX).

REFERENCES

- [1] A. Friedman: Partial differential equations of parabolic type. Englewood Cliffs 1964.
- [2] R. Sikorski: Funkcje rzeczywiste, t.I. Warszawa 1958.
- [3] J. Szarski: Differential inequalities. Warszawa 1965.
- [4] H. Ugowski: On integro-differential equations of parabolic and elliptic type. Ann. Polon. Math. 22(1970), 255-275.
- [5] H. Ugowski: On integro-differential equations of parabolic type. Ann. Polon. Math. 25(1971), 9-22.
- [6] H. Ugowski: Some theorems on the estimate and existence of solutions of integro-differential equations of parabolic type. Ann. Polon. Math. 25(1972), 311-323.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY, GDAŃSK

Received May 4th, 1972.