

K. D. Singh, A. Nigam

ON ALMOST DECOMPOSABLE VECTOR FIELDS

In a previous paper [2], we introduced the concept of almost product pseudo-Riemannian space and studied particular cases of such a space, viz almost hyperbolic Kähler space, almost semi-hyperbolic Kähler space, almost nearly-hyperbolic Kähler space, and almost quasi-hyperbolic Kähler space.

The purpose of the present paper is to define almost decomposable vector fields and to investigate their properties in such special spaces.

1. Introduction

We consider an n -dimensional almost product pseudo-Riemannian space [2] with an almost product structure F_i^h and pseudo-Riemannian metric $g_{ji} d\xi^j d\xi^i$ such that

$$F_j^h F_i^j = A_i^h; \quad F_j^t F_i^s g_{ts} = -\delta_{ji};$$

$$F_{ji} = -F_{ij}; \quad F_{ji} = F_j^t g_{ti},$$

where A_j^h denotes the so called unit tensor, and indices h, i, j, \dots run over the range $1, 2, \dots, n$. An almost product pseudo-Riemannian space is said to be an almost hyperbolic Kähler space [2] iff,

$$F_{jih} \equiv \nabla_j F_{ih} + \nabla_i F_{hj} + \nabla_h F_{ji} = 0;$$

an almost semi-hyperbolic Kähler space [2] iff,

$$F_i \equiv -\nabla_j F_i^j = 0;$$

an almost nearly-hyperbolic Kähler space [2] iff,

$$G_{ji}^h \equiv \nabla_j F_i^h + \nabla_i F_j^h = 0,$$

and an almost quasi-hyperbolic Kähler space [2] iff $\nabla_j F_i^h$ is pure in j and i , where ∇_j denotes the covariant differentiation with respect to g_{ji} .

A tensor T_{ji} is said to be pure in j and i if

$${}^*O_{ji}^{ts} T_{ts} = 0,$$

where

$${}^*O_{ji}^{ts} = \frac{1}{2} (A_j^t A_i^s - F_j^t F_i^s),$$

while T_{ji} is called hybrid in j and i if

$$O_{ji}^{ts} T_{ts} = 0,$$

where

$$O_{ji}^{ts} = \frac{1}{2} (A_j^t A_i^s + F_j^t F_i^s).$$

We recall a lemma from [2], which shall be subsequently used.

L e m m a (1.1). A space which is an almost hyperbolic Kähler space or an almost nearly-hyperbolic Kähler space or an almost quasi-hyperbolic Kähler space is necessarily an almost semi-hyperbolic Kähler space.

2. Contravariant almost decomposable vector fields

Consider a contravariant vector field $x^h = (x^a, x^b)$ in a locally product space. The vector field x^h is called contravariant decomposable if [3]

$$\partial_\lambda x^a = 0 \quad \text{and} \quad \partial_b x^x = 0; \quad a, b, \dots = 1, 2, \dots, p \\ x, \lambda, \dots = p+1, \dots, p+q = n$$

or equivalently

$${}^*0_{ir}^{sh} \partial_s x^r = 0,$$

i.e.,

$$(2.1) \quad {}^{\mathcal{L}}_x F_i^h = x^t \partial_t F_i^h - F_i^t \partial_t x^h + F_t^h \partial_i x^t = 0,$$

where ${}^{\mathcal{L}}_x$ denotes the Lie derivative with respect to the vector field x^h .

We define a contravariant almost decomposable vector field in an almost product pseudo-Riemannian space to be contravariant vector field x^h which satisfies (2.1).

In an almost product pseudo-Riemannian space, the equation (2.1) may be written as

$${}^{\mathcal{L}}_x F_i^h = x^t \nabla_t F_i^h - F_i^t \nabla_t x^h + F_t^h \nabla_i x^t = 0,$$

or

$$(2.2) \quad x^t \nabla_t F_{ih} - F_i^t \nabla_t x_h + F_{th} \nabla_i x^t = 0.$$

Taking the symmetric part of the above equation with respect to i and h , we obtain

$$0_{ji}^{ts} (\nabla_t x_s + \nabla_s x_t) = 0 \quad \text{or} \quad 0_{ji}^{ts} ({}^{\mathcal{L}}_x g_{ts}) = 0$$

and as a consequence

$$0_{ts}^{ji} (\nabla^t x^s + \nabla^s x^t) = 0 \quad \text{or} \quad 0_{ts}^{ji} ({}^{\mathcal{L}}_x g^{ts}) = 0,$$

which provides the proof of the following:

Theorem (2.1). For a contravariant almost decomposable vector field x^h , in an almost product pseudo-Riemannian space, the Lie derivatives ${}^{\mathcal{L}}_x g^{ji}$ and ${}^{\mathcal{L}}_x g_{ji}$ are both hybrid tensor fields.

Now by a straightforward calculation, we can prove

$$\begin{aligned} & \frac{1}{2} (F_j^r F_{ri}^h + F_i^r F_{rj}^h) - G_{ji}^r F_r^h - \\ & - F_j^t F_i^s \left[\frac{1}{2} (F_t^r F_{rs}^h + F_s^r F_{rt}^h) - G_{ts}^r F_r^h \right] = 0. \end{aligned}$$

Consequently the symmetric tensor $\frac{1}{2} (F_j^r F_{ri}^h + F_i^r F_{rj}^h) - G_{ji}^r F_r^h$ is pure in j and i . Thus $\mathcal{L}_x g^{ji}$ being hybrid in j and i , we have

$$\frac{1}{2} (F_j^r F_{ri}^h + F_i^r F_{rj}^h) (\mathcal{L}_x g^{ji}) - G_{ji}^r F_r^h (\mathcal{L}_x g^{ji}) = 0.$$

Since x^h is a contravariant almost decomposable vector field, $\mathcal{L}_x F_i^h = 0$, and the above result reduces to

$$(2.3) \quad \frac{1}{2} F_{ji}^h (\mathcal{L}_x F^{ji}) = G_{ji}^t F_t^h (\nabla^j x^i).$$

Now applying ∇^i to (2.1), we obtain

$$F_t^h \left[g^{ji} \nabla_j \nabla_i x^t + K_i^t x^i + F_i^t \mathcal{L}_x F^i + G_{ji}^s F_s^t (\nabla^j x^i) \right] = 0,$$

which on contraction with F_h^1 gives

$$(2.4) \quad g^{ji} \nabla_j \nabla_i x^h + K_i^h x^i + F_i^h \mathcal{L}_x F^i + G_{ji}^t F_t^h (\nabla^j x^i) = 0,$$

or

$$(2.5) \quad g^{ji} \nabla_j \nabla_i x^h + K_i^h x^i + F_i^h \mathcal{L}_x F^i + \frac{1}{2} F_{ji}^h \mathcal{L}_x F^{ji} = 0.$$

The above discussion is the proof of the following:

Theorem (2.2). Equations (2.4) and (2.5) give necessary conditions for a vector field x^h in an almost product pseudo-Riemannian space to be contravariant almost decomposable.

Particular Cases:

Case 1: The case when the almost product pseudo-Riemannian space is an almost quasi-hyperbolic Kähler space.

In this case $\nabla_j F_i^h$ is pure in j and i and consequently G_{ji}^h is also pure in j and i . On the other hand, for a contravariant almost decomposable vector field x^h , $\mathcal{L}_x g^{ji}$ is hybrid in j and i and as a consequence

$$G_{ji}^h (\nabla_j x^i) = -\frac{1}{2} G_{ji}^h (\mathcal{L}_x g^{ji}) = 0.$$

Making use of this in the equation (2.3), we get

$$F_{jih} (\mathcal{L}_x F^{ji}) = 0,$$

which together with the lemma (1.1), reduces (2.5) to

$$g^{ji} \nabla_j \nabla_i x^h + k_i^h x^i = 0.$$

These last two equations complete the proof of the following:

Theorem (2.3). In order that a vector field x^h in an almost quasi-hyperbolic Kähler space be contravariant almost decomposable it is necessary that

$$F_{jih} (\mathcal{L}_x F^{ji}) = 0$$

and

$$g^{ji} \nabla_j \nabla_i x^h + k_i^h x^i = 0.$$

Case 2: The case when the almost product pseudo-Riemannian space is an almost hyperbolic Kähler space.

In this case, the equation (2.2) reduces to

$$x_t (-\nabla_i F_h^t + \nabla_h F_i^t) - F_i^t \nabla_t x_h + F_{th} \nabla_i x^t = 0.$$

Putting $\bar{x}_i \equiv -F_i^t x_t$ in the above equation, we get

$$\nabla_j \bar{x}_i - \nabla_i \bar{x}_j = F_j^t (\nabla_t x_i + \nabla_i x_t),$$

which yields:

Theorem (2.4). A necessary and sufficient condition that a contravariant almost decomposable vector field x^h in an almost hyperbolic Kähler space be a Killing vector field is that \bar{x}_i be closed.

Again in this case, the equation (2.5) reduces to

$$g^{ji} \nabla_j \nabla_i x^h + K_i^h x^i = 0, \quad (\text{in view of Lemma (1.1)}).$$

The same result may be obtained in the following way. Since

$$\mathcal{L}_x (\nabla_j F_i^h) - \nabla_j \mathcal{L}_x F_i^h = (\mathcal{L}_x \{ \begin{smallmatrix} h \\ j \ t \end{smallmatrix} \}) F_i^t - (\mathcal{L}_x \{ \begin{smallmatrix} t \\ j \ i \end{smallmatrix} \}) F_t^h$$

and for a contravariant almost decomposable vector field x^h , $\mathcal{L}_x F_i^h = 0$, therefore

$$(2.6) \quad \mathcal{L}_x (\nabla_j F_i^h) = (\mathcal{L}_x \{ \begin{smallmatrix} h \\ j \ t \end{smallmatrix} \}) F_i^t - (\mathcal{L}_x \{ \begin{smallmatrix} t \\ j \ i \end{smallmatrix} \}) F_t^h.$$

On the other hand, in an almost hyperbolic Kähler space [2]

$$N_{jih} = 2 F_j^t \nabla_h F_{it},$$

or

$$N_{jih} = 2 F_j^t (\nabla_t F_i^h - \nabla_i F_t^h),$$

which upon taking Lie derivative with respect to the vector field x^h gives

$$\mathcal{L}_x N_{jih} = 2 F_j^t \left\{ \mathcal{L}_x (\nabla_t F_i^h) - \mathcal{L}_x (\nabla_i F_t^h) \right\},$$

or

$$(2.7) \quad \mathcal{L}_x N_{jih} = -4 * O_{ji}^{ts} \mathcal{L}_x \{ \begin{smallmatrix} h \\ t \ s \end{smallmatrix} \}$$

by virtue of the equation (2.6).

Since the left hand side of the equation (2.7) is skew-symmetric in j and i while the right hand side is symmetric in j and i , therefore each side must be separately zero, that is,

$$(2.8) \quad \mathcal{L}_x N_{ji}^h = 0$$

and

$$(2.9) \quad *_{0_{ji}}^{ts} \mathcal{L}_x \begin{Bmatrix} h \\ t s \end{Bmatrix} = 0.$$

Transvecting (2.9) with g^{ji} and remembering that $g^{ji} *_{0_{ji}}^{ts} = g^{ts}$, we have

$$(2.10) \quad g^{ji} \mathcal{L}_x \begin{Bmatrix} h \\ j i \end{Bmatrix} = g^{ji} \nabla_j \nabla_i x^h + K_i^h x^i = 0$$

for a contravariant almost decomposable vector field x^h . From the equations (2.8) and (2.10) we deduce the following:

Theorem (2.5). The Lie derivative of the Nijenhuis tensor with respect to a contravariant almost decomposable vector field in an almost hyperbolic Kähler space vanishes.

Theorem (2.6). A necessary condition for a vector field x^h in an almost hyperbolic Kähler space to be contravariant almost decomposable is that

$$g^{ji} \nabla_j \nabla_i x^h + K_i^h x^i = 0.$$

Case 3: The case when the almost product pseudo-Riemannian space is an almost nearly-hyperbolic Kähler space.

In this case, the equation (2.3) reduces to

$$(2.11) \quad F_{jik} (\mathcal{L}_x F^{ji}) = 0,$$

or equivalently

$$(\nabla_k F_{ji}) (\mathcal{L}_x F^{ji}) = 0,$$

i.e.,

$$(2.12) \quad (\nabla_k F_{ji}) (x^h \nabla_h F^{ji} - F^{jt} \nabla_t x^i - F^{ti} \nabla_t x^j) = 0.$$

In an almost nearly-hyperbolic Kähler space, the following relations are satisfied [2]

$$(2.13) \quad (\nabla_k F_{ji}) (\nabla_h F^{ji}) x^h = (K_{kh}^* - K_{kh}) x^h$$

and

$$(2.14) \quad \frac{1}{4} N_{jih} = F_{ht} (\nabla_j F_i^t),$$

where K_{kh} is the Ricci tensor, $K_{kh}^* = H_{kt} F_h^t$, and $H_{kj} \equiv \frac{1}{2} K_{kjh} F^{ih}$. Solving the equation (2.12) with the help of (2.13) and (2.14), we get

$$(2.15) \quad (K_{kh}^* - K_{kh}) x^h + \frac{1}{2} N_{kji} (\nabla^j x^i) = 0.$$

On the other hand, the equation (2.5) in this case reduces to

$$(2.16) \quad g^{ji} \nabla_j \nabla_i x^h + K_i^h x^i = 0.$$

Equations (2.11), (2.15), and (2.16) provide the proof of the following:

Theorem (2.7). In order that x^h be contravariant almost decomposable vector field in an almost nearly-hyperbolic Kähler space, it is necessary that

$$F_{ji}^h \not\propto F^{ji} = 0,$$

or equivalently,

$$(K_{kh}^* - K_{kh}) x^h + \frac{1}{2} N_{kji} (\nabla^j x^i) = 0,$$

and

$$g^{ji} \nabla_j \nabla_i x^h + K_i^h x^i = 0.$$

C a s e 4: The case when the almost product pseudo-Riemannian space is an almost semi-hyperbolic Kähler space.

In this case $F_i = 0$ and consequently the equation (2.5) gives:

T h e o r e m (2.8). A necessary condition for a contravariant vector field x^h in an almost semi-hyperbolic Kähler space to be contravariant almost decomposable is

$$g^{ji} \nabla_j \nabla_i x^h + K_i^h x^i + \frac{1}{2} F_{ji}^h \mathcal{L} F^{ji} = 0.$$

3. Covariant almost decomposable vector fields

Let us consider a covariant vector field $x_i = (x_b, x_\lambda)$ in a locally product space. The vector field x_i is said to be covariant decomposable if [3]

$$\partial_\mu x_b = 0 \quad \text{and} \quad \partial_c x_\lambda = 0,$$

or equivalently

$${}^* \partial_{ji}^{\text{ts}} \partial_t x_s = 0,$$

i.e.,

$$(3.1) \quad x_h (\partial_j F_i^h - \partial_i F_j^h) - F_j^t \partial_t x_i + F_i^t \partial_j x_t = 0.$$

In an almost product pseudo-Riemannian space, we define a covariant almost decomposable vector field as a covariant vector field which satisfies (3.1).

In an almost product pseudo-Riemannian space, the equation (3.1) may be written as

$$(3.2) \quad x_h (\nabla_j F_i^h - \nabla_i F_j^h) - F_j^t \nabla_t x_i + F_i^t \nabla_j x_t = 0,$$

which on taking the symmetric part with respect to j and i gives

$${}^* \partial_{ji}^{\text{ts}} (\nabla_t x_s - \nabla_s x_t) = 0.$$

Hence we can state:

Theorem (3.1). If x_i is a covariant almost decomposable vector field in an almost product pseudo-Riemannian space, then $(\nabla_j x_i - \nabla_i x_j)$ is pure in j and i .

Since in this space F^{ji} is hybrid in j and i [2], therefore

$$F^{ji}(\nabla_j x_i - \nabla_i x_j) = 0,$$

or

$$F^{ji} \nabla_j x_i = 0,$$

which implies the following:

Theorem (3.2). If x_i is a covariant almost decomposable vector field in an almost product pseudo-Riemannian space, then $F^{ji} \nabla_j x_i$ vanishes.

Putting $\bar{x}_i \equiv -F_i^t x_t$,

the equation (3.2) can be written as

$$(3.3) \quad \nabla_j \bar{x}_i - \nabla_i \bar{x}_j + F_j^t (\nabla_t x_i - \nabla_i x_t) = 0,$$

which completes the proof of the following:

Theorem (3.3). If x_i and \bar{x}_i are both closed in an almost product pseudo-Riemannian space, then x_i is covariant almost decomposable.

Transvection by the equation (3.3) with F_1^j , we get

$$(3.4) \quad \nabla_j x_i - \nabla_i x_j + F_j^t (\nabla_t x_i - \nabla_i x_t) = 0.$$

From equations (3.3) and (3.4) we deduce:

Theorem (3.4). In an almost product pseudo-Riemannian space, x_i is covariant almost decomposable iff \bar{x}_i is covariant almost decomposable.

Again from equation (3.3) we readily verify:

Theorem (3.5). In an almost product pseudo-Riemannian space, a necessary and sufficient condition that a

covariant almost decomposable vector field x_i be closed is that \bar{x}_i be closed.

For a covariant almost decomposable vector field x_i , we have

$$N_{ji}^h x_h = [F_j^t (\nabla_t F_i^h - \nabla_i F_t^h) - F_i^t (\nabla_t F_j^h - \nabla_j F_t^h)] x_h,$$

$$= F_j^t \left\{ F_t^1 \nabla_1 x_i - (\nabla_t x_1) F_i^1 \right\} - F_i^t (F_t^1 \nabla_1 x_j - F_j^1 \nabla_t x_1),$$

(from the equation (3.2))

$$= {}^* \Omega_{ji}^{ts} (\nabla_t x_s - \nabla_s x_t)$$

$$= 0, \quad \text{(from Theorem (3.1))}$$

hence we can state:

Theorem (3.6). For a covariant almost decomposable vector field x_i in an almost product pseudo-Riemannian space, we have

$$N_{ji}^h x_h = 0.$$

In particular, if the space is almost hyperbolic Kähler, then we have

$$\nabla_j F_i^R - \nabla_i F_j^R = -\nabla^R F_{ji}$$

and then the equation (3.2) reduces to

$$(\nabla^t F_{ji}) x_t + F_j^t (\nabla_t x_i) + F_{ti} \nabla_j x^t = 0,$$

or

$$\mathcal{L}_x F_{ji} + F_j^t (\nabla_t x_i - \nabla_i x_t) = 0,$$

which leads to the following:

Theorem (3.7). If a covariant almost decomposable vector field x_i in an almost hyperbolic Kähler space is closed, then we have

$$\mathcal{L}_x F_{ji} = 0.$$

Suppose that a vector field x^h is contravariant as well as covariant almost decomposable in an almost hyperbolic Kähler space, that is,

$$(3.5) \quad x^t \nabla_t F_{ih} - F_i^t (\nabla_t x_h) - F_h^t (\nabla_i x_t) = 0$$

and

$$(3.6) \quad x^t \nabla_t F_{ih} + F_i^t (\nabla_t x_h) - F_h^t (\nabla_i x_t) = 0.$$

Subtracting the equation (3.5) from the equation (3.6), we get

$$\nabla_j x_h = 0.$$

Thus we can state:

Theorem (3.8). If a vector field x^h is contravariant as well as covariant almost decomposable in an almost hyperbolic Kähler space, then it is covariantly constant.

From Lemma (1.1), for almost hyperbolic Kähler space, almost semi-hyperbolic Kähler space, almost nearly-hyperbolic Kähler space, and almost quasi-hyperbolic Kähler space, we have $F_i = 0$.

Now for the divergence of \bar{x}_j , we have

$$\nabla^j \bar{x}_j = -\nabla^j (F_j^i x_i) = -F^{ji} \nabla_j x_i = 0$$

by virtue of the Theorem (3.2).

This combined with the equation (3.3), provides the proof of the following:

Theorem (3.9). In each of the almost hyperbolic Kähler, almost semi-hyperbolic Kähler, almost nearly-hyperbolic Kähler, and almost quasi-hyperbolic Kähler spaces, if a

covariant almost decomposable vector field x_i is closed, then \bar{x}_i is harmonic.

On the other hand, under the assumptions of the Theorem (3.9) the divergence of x_i can be written as

$$\begin{aligned}\nabla^j x_j &= \nabla^j (F_j^i F_i^t x_t) = -\nabla^j (F_j^i \bar{x}_i) = F^{ji} (\nabla_j \bar{x}_i) \\ &= \frac{1}{2} F^{ji} (\nabla_i \bar{x}_j - \nabla_j \bar{x}_i) = 0,\end{aligned}$$

which together the equation (3.4) provides the proof of the following:

Theorem (3.10). In each of the almost hyperbolic Kähler, almost semi-hyperbolic Kähler, almost nearly-hyperbolic Kähler, and almost quasi-hyperbolic Kähler spaces, if a covariant almost decomposable vector field x_i is closed, then it is harmonic.

REFERENCES

- [1] M. Prvanović: Holomorphically projective transformations in a locally product space. *Math. Balkanica* 1 (1971) 195-213.
- [2] A. Nigam: On almost product spaces (under publication).
- [3] K. Yano: *Differential geometry on complex and almost complex spaces*. London 1965.

DEPARTMENT OF MATHEMATICS & ASTRONOMY, LUCKNOW UNIVERSITY,
LUCKNOW, INDIA

Received December 13th, 1972.

