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DECOMPOSABILITY OF ELEMENTS IN THE RING 
OF STRUCTURAL NUMBERS 

I f X = { x t } t £ q, i s an a r b i t r a r y non-empty s e t , we de-

f i n e a r i n g S<X> as the f a c t o r r i n g Z 2 [ x ] / ( x 2 ) where Z2[x] 
i s the polynomial r i n g over the f i e l d = { o , l l and (X2) i s 

the i d e a l in ^ [ x j generated by a l l elements x where x e X . 

In [ j ] , i t i s shown t h a t the r i n g S<X> i s isomorphic to 

the r i n g of s t r u c t u r a l numbers s { x } def ined in. [ 1 ] . Throug-

hout t h i s paper we s h a l l i d e n t i f y the r ing S<X> and S { x j , 

and elements of S<X> w i l l be c a l l e d s t r u c t u r a l numbers. 

I t f o l l o w s from [2] t h a t any s t r u c t u r a l number s can be 

uniquely expressed in the form 

( 1 ) • s b •+ x t n > 

where the sum i s taken > over a-11 f i n i t e subsets i t . , . . . , t n l 
/ \ of T, ( x. x. . . . x, > i s the eoset represented by the po-
X t 1 2 n 

lynomial x. x. . . . x. , e and e . are elements 

of Zg and only a f i n i t e number of them are unequal to zero . 

Hence the A b e l i a n group S<X> has the f o l l o w i n g d i r e c t sum 

decomposition 

S<X> = S @ s 1 @ . . , @ s n © . . . 

such t h a t S^S .̂ ^ ^i+j» where S n denotes the A b e l i a n sub-

group of S<X> c o n s i s t i n g of a l l homogenous s t r u c t u r a l num-

bers of degree n (see [ ? ] ) } i t means t h a t any s t r u c t u r a l 

number s can be uniquely expressed in the form 
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(2) s = sQ + s1 + ... + sn 

where s^ e S^. Finally, by [3] Theorem 3.3f every non-in-
vertible structural number can be expressed as a product of 
irreducible structural numbers. 

The aim of this paper is to study conditions which re-
flect the decomposability of a given structural number. In 
particular, we obtain some criteria of irreducibility. We des-
cribe an algorithm allowing one to decide in a finite number 
of steps whether a given homogenous structural can be expres-
sed as a product of homogenous numbers of degree one. Using 
this algorithm one caii find such expression if it exists of 
course. 

Throughout this paper we use 'che notations arid termino-
logy from [3]. 

We start with the following general result. 
P r o p o s i t i o n 1. Let R and S be arbitrary 

rings with identity elements and let f:R—>S be a ring ho-
momorphism (f(l) = 1 ). Moreover, suppose that any non-zero-
-divisor in R is invertible and any zero-divisor d in R 
is nilpotent, i.e. d1 = 0 for some i ̂ 1 . Then an element 
p in R is irreducible if f(p) is irreducible in S. 

P. r 0 0 f. Suppose p = rt, r,t e R. The f (p) = f (r)f (t) 
and by our assumptions either f(r) or f(t) is invertible. 
Assume, for example, f(t) is invertible. Then, by the as-
sumptions, t is a non-zero-divisor. Hence t is invertible 
and the proposition is proved. 

For any x e X we define a ring homomorphism 

(3) Px:S<X> >S<X> 

by formula Px(s) = s + dx(s)<x>, where d̂ . is the deriva-
tion from [3] Theorem 2.2. Then in view of Proposition 1 we 
obtain. 

C o r o l l a r y 2. A structural number s is irre-
ducible if Px(s) is irreducible for some x e X. 
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E x a m p l e 1. If x^,...,xn are distinct elements 
of X then the structural number 

s = ( X 1X 2) + (x3x4) + ... + <xn_lXn) 

is irreducible for n ^ 4 . In fact, since ^x^x^) + ^x^x^ is 
irreducible of course, then so does s by induction using the 
previous Corollary. 

R e m a r k Fix an element x of X. Then any struc-
tural number s can be uniquely expressed in the form 
(4) s = px(s) + <x>dx(s) . 

By Corollary 2, if Px(s) is irreducible then so does s. Now 
suppose that Px(s) = v'v", where dx(v') = dx(v") = 0. If 
there exist u' and u" such that ¿x(s) = v'u" + v"u' and 
dx(u') = dx(u") = 0, then 

s = (v' + <x>u/)(v" + <x>u"). 
Following [l] Definition 2-4, we call a decomposition 

s — tyj t2 *. • • * t^ 

canonical if any element t^ has the form 

(5) t± = t±1 + t.2 + ... + t ^ , t.d e S j t 

with t ^ ^ 0. A divisor of s of the type (5) will be cal-
led a canonical divisor. 

For the next Proposition we shall need the following. 
L e m m a 4. If O ^ t e S ^ , then Axrn(t) = (t) where 

Ann(t) denotes the annihilator of t (see [2]). 
P r o o f . Immediately follows from [2] Theorem 17. 
P r o p o s i t i o n 5. Suppose that s = s's" where 

s = ŝ  + ... + s^, s' = sj| + ... + s^, s^ £ 0, s" = s^ + 
+ ... + >s*, Sp £ 0. If s^ = ... = s = 0 for some 
then there exist elements d^ e Sp+^_2» i = 1»2»..-,n, such 
that 
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(6) 

= s ^ 

= sidy, + s'd, 2 1 T 1 2 

p+n-1 = s'd. + s' „d0 + ... + s„d. "n~1 n-1 2 1 n 

s p+n+1 - S1^ sp+n + s^.^d,, + ... + sid„„ + Sgd^). n+1 1 

P r o o f. We shall prove the Proposition by induction 

on n. If n = 1 then the equality s = s's*' yields 

sis " = s „ = 0 1 p p+1 

sp+2 = s1sp+1 + s2 sp ' 

Then, in virtue of the previous Lemma, we have 

s* e Ann(s^) = (s^) , 

or equivalently, there exists an element t = t 0 + t ^ + ...+ t-̂ , 

^ € S i t l > p - 1 , suoh that = s^t. Hence s^'= s ^ t ^ . 

Then, setting d^ = t ^ we get 

3p+2 = S1(SP+1 + S2 d1> » 

which proves the Proposition for n = 1. 
Suppose that it has been proved for n. We shall prove 

that it is also true for n+1. Since s p + n + / ] = 0 then as in 
the first part of the proof we find an element d n + 1 e S ^ ^ 
such that 

(7) sp+n + sA+ldi + + s2 dn = s1dn+1 ' 

Further, from the equality .s = s's" we derive 

a o = s's'' „ + s's" „+...+ s'0a" . p+n+2 1 p+n+1 2 p+n n+2 p 
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Then, in view of (6) we have 

sp+n+2 ~ s1sp+n+1 + 

s2 ( sn+1 d1 + sn d2 + ••• + s3dn-1 + s2 dn + s1 dn+1 } + 

s3 ( sn d1 + Sn-1 d2 + ••• + s2dn-1 + s 1 d n } + 

sn+1 ( s2 d1 + s 1 d 2 ) + 

sn+2 sl d1 

= si ( sp +n +1 + sn+2d1 + + S4dn-1 + sJ dn + S 2 d n + 1 } + 

s2 ( sn +1 di + sn d2 + ••• + s3 d
n-1 + s 2 d n } + 

(8) 

sn+1 s2 d1 

It is easy to*check by induction that the sum (8) is zero. 
Then, together with (6) and (7), this shows that the Proposi-
tion holds for n+1. The proof is completed. 

C o r o l l a r y 6. Let s = s n + ... + s^e S^, 
be a structural number with s jé 0. Then 

(a) if s admits no canonical divisors, the so does s, n 
(b) if n ^ 4 and s^ is irreducible, then so does s. 

P r o o f . (a) immediately follows from Proposition 5« 
To prove (b), assume that s = s-s" where s^ = s^ = 0. If 
sjj = - 0, then s^ = s 2 = s^ = 0 and s^ = s^s^, so we 
obtain a contradiction. Consequently, the statement (b) fol-
lows from Proposition 5» 
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Now we consider the fo l lowing questions "When does a 
given homogenous structural number admit a canonical decompo-
s i t ion?" For this purpose wè need the fo l lowing two results 

L e m m a 7« Let t ^ , . . . , t n be a non-zero elements of 
S^. Then t 6 S^ D ( t ^ , . . . , t n ) i f and only i f t = e 1 t 1 + . . . 
. . . + e t „ f o r some e. e Z0 . n n x 2 

P r o o f . Easy. 
L e m m a 8. Suppose that s = t ^ t 2 ' . . . ' t n = t^t^ 

. . . • t m £ 0 where t^, t i e S^. Then n= m and ( t ^ , . . . , ^ ) = 
= (t^ 

P r o o f . See [ 2 ] Corollary 18. 
A basic too l f o r our considerations are the fo l lowing two 

propositions : 
P r o p o s i t i o n 9« Let x be a fixed element 

of X and let 

s = p x ( s ) + <x>dx (s) 

be a homogenous structural number of degree n ( i . e . j s e S n ) . 
Then 

(a ) when P x ( s ) £ 0 admits no canonical decompositions, 
then so does s, 

(b ) when P x ( s ) = 0 n ^ 3 and ^ ( s ) ^ 0 admits no ca-
nonical decompositions, then so does s. 

P r o o f . Assume that s admits a canonical decomposi-
t ion. Then there exist e ^ . ^ e ^ 6 Z^ and u^,. . , ,un e S^ 
with d^-Cu )̂ = 0 f o r i = 1 , . . . , n , such that 

s = (u^ + e1<x>)(u2 + e2<x>) . . . (un + en<x>) 

= unu2 . . . un + e . U l . . . u. . . . un j <x> 

where u^ means delete u^. Hence we get 

p x ( s ) = U1U2 . . . un 

n 
(9 ) d^Cs) = ^ e ^ . . . ^ . . . un 
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and therefore the statement (a) of the Proposition follows. 
Now suppose that Px(s) = 0 a n d ^ Then e^u^ ... 
... u^ ... un ^ 0 for some i. Without loss of generality 
we may assume i=1. If follows that the elements u2 , ...,un 
are linearly independent over the field Z2 . Thus, in virtue 
of [2] Theorem 17, we have 

ûj e Ann(u2u^ ... u^) = (u2,u^,... ,un). 

By Lemma 7, û  has the form 

U1 = k2u2 + ••• + k n V ki e Z2 ' 

Hence u„ ... u. ... u = k.u„ ... u and therefore 1 1 n 1 2 n 

dx ( s ) = ( £ eiki)u2u3 % w i t h kl = 

which proves the second statement of the Proposition. 
P r o p o s i t i o n 10. Let x be a fixed element 

of X and let 

s = Px(s) + <x>dx(s) 

be a çion-zero homogenous structural number of degree n. Sup-
pose that 

0 t px(s) = ^ u 2 ... un, e S1f dx(ui) = 0. 

Then s admits a canonical decomposition- if and only if the 
equality (9) holds for some e^,...,ene Z2> Moreover, if 
e 1'"*' en e Z 2 a r e s u c i l 'that (9) holds then we have a compo-
sition 

s = (û  + ¿1<x>)(u2 + e2<x>) ... (un + en<x>). 

P r o o f . The "only if" part and the last statement of 
the Proposition are obvious. To prove the "if" part suppose 
that s has the following canonical decomposition 
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a = ( iq + ej ,<x>)(u^ + ©2<x>) . . . (u^ + e^<x>) 

where e^ e Z.,, u^'e S^ and d x ( u i ) = 0 f o r 1 = 1 » • . . >xi« 
Then we have 

P X ( S ) = u^ug . . . u n = ujjug ••• 

n 

d ( s ) = ) e'. u ' . . . iu . . . u ' . x l 1 i B-
i=i 

By Lemmas 7 and 8, there e x i s t elements e. e Z ? t i , j = X J C. 
= 1 , 2 , . . . , n , such t h a t 

n 

U i = H e i D u d ' 
i'1 

Using t h i s e q u a l i t y i t i s not d i f f i c u l t to check t h a t 

n 
d ^ s ) = £ e i u i ••• % ••• u n 

1=4 

f o r some e^ e Z 2 , which completes the p r o o f . 
Now we descr ibe an a lgor i thm a l low ing one to decide i n a 

f i n i t e number of steps whether a g i v e n homogenous s t r u c t u r a l 
number admits a canonica l decomposit ion. 

Le t s £ S n , n ^ 1, be a f i x e d homogenous s t r u c t u r a l 
number of degree n and l e t x ^ , x 2 > . . . , x m be a l l such e l e -
ments of X t h a t d ( s ) / 0. • 

x i 
C l e a r l y n < m. We i n d u c t i v e l y def ine a sequence of s t r u c -
t u r a l numbers 

a 1 ( B ) , a 2 ( s ) , . . . , a m _ n ( s ) , b ^ s ) , b 2 ( s ) , . . . , b m _ n ( s ) 

s e t t i n g . a^Cs) = P ^ s ) . ^ i 0 ) = d x m ( s ) ' a i + 1 ( s ) ~ ^ ¿ ^ i ^ ' 

b . . ( s ) = & ( a . ) . Then we have 
1 + 1 *m-± 1 
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s = a^Cs) + < * m > V s ) 

a ^ s ) = a2(s) + ( x m ^ > 2 ( s ) 

am-n-1 ( s ) = am-n< s ) + ( xn +l) bi-n ( s) 

a ^ C s ) = e< x ix 2 ... x n ) 

where e is either 0 or 1. Observe also that 

a^s), b ^ s j e S(x1,x2,...txnr_ij) QS<X> 

and that the degree of any b^(s) is less then the degree 
of a. 

First suppose e ^ 0 and consider the following equation 

V n ( s > t , Ti( xl) <*i> — <*n> 

If this equation has no solution in Z 2 then it -follows from 
Proposition 10 that admits no canonical decom-
positions. Hence, applying Pj-opbsition 9a we infer that 
a m _ n _ 2 ( s ) , . . . ( s ) and s admit no canonical decomposi-
tions. If the equation has a solution Y^ = e^,... »Yn= e

n
e Ze» 

then we have" 

am-n-1 ( s ) = V 2 tn 

where t^ = ^ x ^ + • by Proposition 10, and we con-
sider a new equation 

n 

i-n-1(s) Zi t1 t i m-

Continuing in this manner we either prove that s admits no 
canonical decompositions or we find a canonical decomposition 
of s. 
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Next suppose e = 0. Let q <m-n be such that ¿0 
and b j i s ) = 0 f o r a l l j > q. I f admits no canoni-
cal decompositions then, by Proposition 9 (b ) , so does a (^y](s)= 
= ^ m - q + l / ^ q ^ ' Then by Proposition 9 (a ) , a 2 (s ) , . . . , a ^ s ) 
and s admit no canonical decompositions. Final ly , i f 
admits a canonical decomposition, then so does of 
course and we may apply the procedure from the case e ^ 0. 

Observe that in the case e = 0 we reduce the canonical 
decomposability of the structural number s to the canonical 
decomposability of an structural number b Q ( s ) with the de-iL 
gree less then the degree of s. I f the degree of s is 2 
then e Ŝ  and therefore s t r i v i a l l y admits a cano-
nical decomposition. 

Consequently, to f ind a canonical decomposition of a g i -
ven homogenous structural number i t is su f f i c i ent to solve a 
f i n i t e number of systems of linear equations over the f i e l d 
z 2 . 

E x a m p l e 2. Choose x 1 , . . . , x n e X and f i x e l e -
ments e^j e Z2 f o r a l l 1 < i < j ^ n, Consider the fo l low-
ing structural number 

s ( x 1 x n ) » ^ e i i<bix ; j } l -

I t is clear that 

a ± = a i ( s ( x 1 , . . . , x n ) ) = s ( x 1 , . . . , x n _ 1 ) 

n -4 

b i = b i ( s ( x 1 x n ) } = L e k (n - i + D< x k> 

Now assume that e ^ = 1 f o r a l l i < j < 4. Then we have 

an-3 = C ( x l ) + <XJ> ) ( (X2> + < x 3 ) ) 

bn-3 = (x1> + <x2> + < x j ) 

an-4 = an-3 + bn-3<x4>' 
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Since the equation Y 1 ((x,^ + (x^)) + Y2^( x2) + ( x$) ̂  = bn-3 

has no solution in Z 2 of course, then a n admits no ca-

nonical decompositions and hence so does s(x^,...,xa) for any 

elements ei;., 4 < i < j ^ n. 

E x a m p l e 3. We find a canonical decomposition of 

the following structural number 

s = <Jx 1x 2x 3V+ ( x ^ x ^ + ( x2 x3 x4> + ( X 2 X 3 X 5 ) + ( X3 X4 X5>* 

Observe that a^ = + (x^x^x^) + (x2x^x^), a ^ ^ x ^ x ^ ) , 

b^ = (y.^-^ + (x^x^ , b 2 = (x^x.^ + (x^x^ . Since the equa-

tion 

Yl( x2 x3> + Y 2 ( x 1 x 3 > + Y3< x1 x2> = b 2 

holds for T 1 = Y 2 = 1, Y j » Q, then 

a1 = (( x1> + < x4> ) (< x2> + < x 4 > K x 3 > ' 

Subsequently, we consider the following equation 

b1 = Z 1 ( < x 2 > + < x4> K x 3 > + Z 2 ( < x 1 > + < x4) K x 3 > + 

+ Z 3 ( { X l ) + <x 4))((x 2) + (x 4>). 

Since this equation holds for Z^ = 1, Z 2 = Z^ = 0, then we 

obtain the following canonical decomposition of- s 

s = ( < x 1 ) + ( x 4 > + (x 5))((x 2> + <x4>)<x3). 
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