

Roman Kielpiński, Daniel Simson

DECOMPOSABILITY OF ELEMENTS IN THE RING
OF STRUCTURAL NUMBERS

If $X = \{x_t\}_{t \in T}$ is an arbitrary non-empty set, we define a ring $S(X)$ as the factor ring $Z_2[X]/(X^2)$ where $Z_2[X]$ is the polynomial ring over the field $Z_2 = \{0,1\}$ and (X^2) is the ideal in $Z_2[X]$ generated by all elements x^2 where $x \in X$. In [3], it is shown that the ring $S(X)$ is isomorphic to the ring of structural numbers $S\{X\}$ defined in [1]. Throughout this paper we shall identify the ring $S(X)$ and $S\{X\}$, and elements of $S(X)$ will be called structural numbers.

It follows from [3] that any structural number s can be uniquely expressed in the form

$$(1) \quad s = e + \sum e_{t_1, \dots, t_n} \langle x_{t_1} x_{t_2} \dots x_{t_n} \rangle$$

where the sum is taken over all finite subsets $\{t_1, \dots, t_n\}$ of T , $\langle x_{t_1} x_{t_2} \dots x_{t_n} \rangle$ is the coset represented by the polynomial $x_{t_1} x_{t_2} \dots x_{t_n}$, e and e_{t_1, \dots, t_n} are elements of Z_2 and only a finite number of them are unequal to zero. Hence the Abelian group $S(X)$ has the following direct sum decomposition

$$S(X) = S_0 \oplus S_1 \oplus \dots \oplus S_n \oplus \dots$$

such that $S_i S_j \subseteq S_{i+j}$, where S_n denotes the Abelian subgroup of $S(X)$ consisting of all homogenous structural numbers of degree n (see [3]); it means that any structural number s can be uniquely expressed in the form

$$(2) \quad s = s_0 + s_1 + \dots + s_n$$

where $s_i \in S_i$. Finally, by [3] Theorem 3.3, every non-invertible structural number can be expressed as a product of irreducible structural numbers.

The aim of this paper is to study conditions which reflect the decomposability of a given structural number. In particular, we obtain some criteria of irreducibility. We describe an algorithm allowing one to decide in a finite number of steps whether a given homogenous structural can be expressed as a product of homogenous numbers of degree one. Using this algorithm one can find such expression if it exists of course.

Throughout this paper we use the notations and terminology from [3].

We start with the following general result.

Proposition 1. Let R and S be arbitrary rings with identity elements and let $f:R \rightarrow S$ be a ring homomorphism ($f(1) = 1$). Moreover, suppose that any non-zero-divisor in R is invertible and any zero-divisor d in R is nilpotent, i.e. $d^i = 0$ for some $i \geq 1$. Then an element p in R is irreducible if $f(p)$ is irreducible in S .

Proof. Suppose $p = rt$, $r, t \in R$. Then $f(p) = f(r)f(t)$ and by our assumptions either $f(r)$ or $f(t)$ is invertible. Assume, for example, $f(t)$ is invertible. Then, by the assumptions, t is a non-zero-divisor. Hence t is invertible and the proposition is proved.

For any $x \in X$ we define a ring homomorphism

$$(3) \quad p_x: S\langle X \rangle \longrightarrow S\langle X \rangle$$

by formula $p_x(s) = s + d_x(s)\langle x \rangle$, where d_x is the derivation from [3] Theorem 2.2. Then in view of Proposition 1 we obtain.

Corollary 2. A structural number s is irreducible if $p_x(s)$ is irreducible for some $x \in X$.

E x a m p l e 1. If x_1, \dots, x_n are distinct elements of X then the structural number

$$s = \langle x_1 x_2 \rangle + \langle x_3 x_4 \rangle + \dots + \langle x_{n-1} x_n \rangle$$

is irreducible for $n \geq 4$. In fact, since $\langle x_1 x_2 \rangle + \langle x_3 x_4 \rangle$ is irreducible of course, then so does s by induction using the previous Corollary.

R e m a r k 3. Fix an element x of X . Then any structural number s can be uniquely expressed in the form

$$(4) \quad s = p_x(s) + \langle x \rangle d_x(s).$$

By Corollary 2, if $p_x(s)$ is irreducible then so does s . Now suppose that $p_x(s) = v'v''$, where $d_x(v') = d_x(v'') = 0$. If there exist u' and u'' such that $d_x(s) = v'u'' + v''u'$ and $d_x(u') = d_x(u'') = 0$, then

$$s = (v' + \langle x \rangle u')(v'' + \langle x \rangle u'').$$

Following [1] Definition 2-4, we call a decomposition

$$s = t_1 t_2 \cdots t_n$$

canonical if any element t_i has the form

$$(5) \quad t_i = t_{i1} + t_{i2} + \dots + t_{in}, \quad t_{ij} \in S_j,$$

with $t_{i1} \neq 0$. A divisor of s of the type (5) will be called a canonical divisor.

For the next Proposition we shall need the following.

L e m m a 4. If $0 \neq t \in S_1$, then $\text{Ann}(t) = (t)$ where $\text{Ann}(t)$ denotes the annihilator of t (see [2]).

P r o o f. Immediately follows from [2] Theorem 17.

P r o p o s i t i o n 5. Suppose that $s = s's''$ where $s = s_1 + \dots + s_q$, $s' = s'_1 + \dots + s'_q$, $s'_1 \neq 0$, $s'' = s''_p + \dots + s''_q$, $s''_p \neq 0$. If $s_1 = \dots = s_{p+n} = 0$ for some $n \geq 1$, then there exist elements $d_i \in S_{p+i-2}$, $i = 1, 2, \dots, n$, such that

$$(6) \quad \left\{ \begin{array}{l} s''_p = s'_1 d_1 \\ s''_{p+1} = s'_2 d_1 + s'_1 d_2 \\ \dots \dots \dots \dots \\ s''_{p+n-1} = s'_n d_1 + s'_{n-1} d_2 + \dots + s'_1 d_n \end{array} \right.$$

$$s_{p+n+1} = s'_1 (s''_{p+n} + s'_{n+1} d_1 + \dots + s'_3 d_{n-1} + s'_2 d_n).$$

P r o o f. We shall prove the Proposition by induction on n . If $n = 1$ then the equality $s = s's''$ yields

$$s'_1 s''_p = s'_{p+1} = 0$$

$$s_{p+2} = s'_1 s''_{p+1} + s'_2 s''_p.$$

Then, in virtue of the previous Lemma, we have

$$s''_p \in \text{Ann}(s'_1) = (s'_1),$$

or equivalently, there exists an element $t = t_0 + t_1 + \dots + t_1$, $t_i \in S_i$, $1 \geq p-1$, such that $s''_p = s'_1 t$. Hence $s''_p = s'_1 t_{p-1}$. Then, setting $d_1 = t_{p-1}$ we get

$$s_{p+2} = s'_1 (s''_{p+1} + s'_2 d_1),$$

which proves the Proposition for $n = 1$.

Suppose that it has been proved for n . We shall prove that it is also true for $n+1$. Since $s_{p+n+1} = 0$ then as in the first part of the proof we find an element $d_{n+1} \in S_{p+n-1}$ such that

$$(7) \quad s''_{p+n} + s'_{n+1} d_1 + \dots + s'_2 d_n = s'_1 d_{n+1}.$$

Further, from the equality $s = s's''$ we derive

$$s_{p+n+2} = s'_1 s''_{p+n+1} + s'_2 s''_{p+n} + \dots + s'_{n+2} s''_p.$$

Then, in view of (6) we have

$$\begin{aligned}
 s_{p+n+2} &= s'_1 s''_{p+n+1} + \\
 &s'_2 (s'_{n+1} d_1 + s'_n d_2 + \dots + s'_3 d_{n-1} + s'_2 d_n + s'_1 d_{n+1}) + \\
 &s'_3 (s'_n d_1 + s'_{n-1} d_2 + \dots + s'_2 d_{n-1} + s'_1 d_n) + \\
 &\dots \dots \dots \dots \dots \dots \dots \\
 &\dots \dots \dots \dots \dots \dots \dots \\
 &s'_{n+1} (s'_2 d_1 + s'_1 d_2) + \\
 &s'_{n+2} s'_1 d_1 \\
 &= s'_1 (s''_{p+n+1} + s'_{n+2} d_1 + \dots + s'_4 d_{n-1} + s'_3 d_n + s'_2 d_{n+1}) + \\
 &\left\{ \begin{array}{l} s'_2 (s'_{n+1} d_1 + s'_n d_2 + \dots + s'_3 d_{n-1} + s'_2 d_n) + \\
 \dots \dots \dots \dots \dots \dots \dots \\
 \dots \dots \dots \dots \dots \dots \dots \\
 s'_{n+1} s'_2 d_1. \end{array} \right.
 \end{aligned} \tag{8}$$

It is easy to check by induction that the sum (8) is zero. Then, together with (6) and (7), this shows that the Proposition holds for $n+1$. The proof is completed.

Corollary 6. Let $s = s_n + \dots + s_q$, $s_i \in S_i$, be a structural number with $s_n \neq 0$. Then

- (a) if s_n admits no canonical divisors, then so does s ,
- (b) if $n \leq 4$ and s_n is irreducible, then so does s .

P r o o f. (a) immediately follows from Proposition 5. To prove (b), assume that $s = s \cdot s''$ where $s'_0 = s''_0 = 0$. If $s'_1 = s''_1 = 0$, then $s_1 = s_2 = s_3 = 0$ and $s'_4 = s'_2 s''_2$, so we obtain a contradiction. Consequently, the statement (b) follows from Proposition 5.

Now we consider the following question: "When does a given homogenous structural number admit a canonical decomposition?" For this purpose we need the following two results

Lemma 7. Let t_1, \dots, t_n be a non-zero elements of S_1 . Then $t \in S_1 \cap (t_1, \dots, t_n)$ if and only if $t = e_1 t_1 + \dots + e_n t_n$ for some $e_i \in Z_2$.

Proof. Easy.

Lemma 8. Suppose that $s = t_1 t_2 \dots t_n = t'_1 t'_2 \dots t'_m \neq 0$ where $t_i, t'_i \in S_1$. Then $n = m$ and $(t_1, \dots, t_n) = (t'_1, \dots, t'_n)$.

Proof. See [2] Corollary 18.

A basic tool for our considerations are the following two propositions:

Proposition 9. Let x be a fixed element of X and let

$$s = p_x(s) + \langle x \rangle d_x(s)$$

be a homogenous structural number of degree n (i.e., $s \in S_n$). Then

(a) when $p_x(s) \neq 0$ admits no canonical decompositions, then so does s ,

(b) when $p_x(s) = 0$ $n \geq 3$ and $d_x(s) \neq 0$ admits no canonical decompositions, then so does s .

Proof. Assume that s admits a canonical decomposition. Then there exist $e_1, \dots, e_n \in Z_2$ and $u_1, \dots, u_n \in S_1$ with $d_x(u_i) = 0$ for $i=1, \dots, n$, such that

$$\begin{aligned} s &= (u_1 + e_1 \langle x \rangle)(u_2 + e_2 \langle x \rangle) \dots (u_n + e_n \langle x \rangle) \\ &= u_1 u_2 \dots u_n + \left(\sum_{i=1}^n e_i u_1 \dots \hat{u}_i \dots u_n \right) \langle x \rangle \end{aligned}$$

where \hat{u}_i means delete u_i . Hence we get

$$p_x(s) = u_1 u_2 \dots u_n$$

$$(9) \quad d_x(s) = \sum_{i=1}^n e_i u_1 \dots \hat{u}_i \dots u_n$$

and therefore the statement (a) of the Proposition follows. Now suppose that $p_x(s) = 0$ and $d_x(s) \neq 0$. Then $e_i u_1 \dots \hat{u}_i \dots u_n \neq 0$ for some i . Without loss of generality we may assume $i=1$. It follows that the elements u_2, \dots, u_n are linearly independent over the field \mathbb{Z}_2 . Thus, in virtue of [2] Theorem 17, we have

$$u_1 \in \text{Ann}(u_2 u_3 \dots u_n) = (u_2, u_3, \dots, u_n).$$

By Lemma 7, u_1 has the form

$$u_1 = k_2 u_2 + \dots + k_n u_n, \quad k_i \in \mathbb{Z}_2.$$

Hence $u_1 \dots \hat{u}_i \dots u_n = k_1 u_2 \dots u_n$ and therefore

$$d_x(s) = \left(\sum_{i=1}^n e_i k_i \right) u_2 u_3 \dots u_n \text{ with } k_1 = 1,$$

which proves the second statement of the Proposition.

Proposition 10. Let x be a fixed element of X and let

$$s = p_x(s) + \langle x \rangle d_x(s)$$

be a non-zero homogenous structural number of degree n . Suppose that

$$0 \neq p_x(s) = u_1 u_2 \dots u_n, \quad u_i \in S_1, \quad d_x(u_i) = 0.$$

Then s admits a canonical decomposition if and only if the equality (9) holds for some $e_1, \dots, e_n \in \mathbb{Z}_2$. Moreover, if $e_1, \dots, e_n \in \mathbb{Z}_2$ are such that (9) holds then we have a composition

$$s = (u_1 + e_1 \langle x \rangle)(u_2 + e_2 \langle x \rangle) \dots (u_n + e_n \langle x \rangle).$$

Proof. The "only if" part and the last statement of the Proposition are obvious. To prove the "if" part suppose that s has the following canonical decomposition

$$s = (u'_1 + e'_1 \langle x \rangle)(u'_2 + e'_2 \langle x \rangle) \dots (u'_n + e'_n \langle x \rangle)$$

where $e'_i \in Z_2$, $u'_i \in S_1$ and $d_x(u'_i) = 0$ for $i = 1, \dots, n$.
Then we have

$$p_x(s) = u_1 u_2 \dots u_n = u'_1 u'_2 \dots u'_n$$

$$d_x(s) = \sum_{i=1}^n e'_i u'_1 \dots \hat{u}'_i \dots u'_n.$$

By Lemmas 7 and 8, there exist elements $e_{ij} \in Z_2$, $i, j = 1, 2, \dots, n$, such that

$$u_i = \sum_{j=1}^n e_{ij} u_j, \quad i=1, 2, \dots, n.$$

Using this equality it is not difficult to check that

$$d_x(s) = \sum_{i=1}^n e_i u_1 \dots \hat{u}_i \dots u_n$$

for some $e_i \in Z_2$, which completes the proof.

Now we describe an algorithm allowing one to decide in a finite number of steps whether a given homogenous structural number admits a canonical decomposition.

Let $s \in S_n$, $n \geq 1$, be a fixed homogenous structural number of degree n and let x_1, x_2, \dots, x_m be all such elements of X that $d_{x_i}(s) \neq 0$.

Clearly $n \leq m$. We inductively define a sequence of structural numbers

$$a_1(s), a_2(s), \dots, a_{m-n}(s), b_1(s), b_2(s), \dots, b_{m-n}(s)$$

setting $a_1(s) = p_{x_m}(s)$, $b_1(s) = d_{x_m}(s)$, $a_{i+1}(s) = p_{x_{m-i}}(a_i)$, $b_{i+1}(s) = d_{x_{m-i}}(a_i)$. Then we have

$$\begin{aligned}
 s &= a_1(s) + \langle x_m \rangle b_1(s) \\
 a_1(s) &= a_2(s) + \langle x_{m-1} \rangle b_2(s) \\
 &\dots \\
 &\dots \\
 &\dots \\
 a_{m-n-1}(s) &= a_{m-n}(s) + \langle x_{n+1} \rangle b_{m-n}(s) \\
 a_{m-n}(s) &= e \langle x_1 x_2 \dots x_n \rangle
 \end{aligned}$$

where e is either 0 or 1. Observe also that

$$a_i(s), b_i(s) \in S \langle x_1, x_2, \dots, x_{m-i} \rangle \subseteq S \langle x \rangle$$

and that the degree of any $b_i(s)$ is less than the degree of s .

First suppose $e \neq 0$ and consider the following equation

$$b_{m-n}(s) = \sum_{i=1}^n Y_i \langle x_1 \rangle \dots \langle \hat{x}_i \rangle \dots \langle x_n \rangle.$$

If this equation has no solution in Z_2 then it follows from Proposition 10 that $a_{m-n-1}(s)$ admits no canonical decompositions. Hence, applying Proposition 9a we infer that $a_{m-n-2}(s), \dots, a_1(s)$ and s admit no canonical decompositions. If the equation has a solution $Y_1 = e_1, \dots, Y_n = e_n \in Z_2$, then we have

$$a_{m-n-1}(s) = t_1 t_2 \dots t_n$$

where $t_i = \langle x_i \rangle + e_i \langle x_{n+1} \rangle$, by Proposition 10, and we consider a new equation

$$b_{m-n-1}(s) = \sum_{i=1}^n z_i t_1 \dots \hat{t}_i \dots t_n.$$

Continuing in this manner we either prove that s admits no canonical decompositions or we find a canonical decomposition of s .

Next suppose $e = 0$. Let $q \leq m-n$ be such that $b_q(s) \neq 0$ and $b_j(s) = 0$ for all $j > q$. If $b_q(s)$ admits no canonical decompositions then, by Proposition 9 (b), so does $a_{q-1}(s) = \langle x_{m-q+1} \rangle b_q(s)$. Then by Proposition 9 (a), $a_{q-2}(s), \dots, a_1(s)$ and s admit no canonical decompositions. Finally, if $b_q(s)$ admits a canonical decomposition, then so does $a_{q-1}(s)$ of course and we may apply the procedure from the case $e \neq 0$.

Observe that in the case $e = 0$ we reduce the canonical decomposability of the structural number s to the canonical decomposability of an structural number $b_q(s)$ with the degree less then the degree of s . If the degree of s is 2 then $b_q(s) \in S_1$ and therefore s trivially admits a canonical decomposition.

Consequently, to find a canonical decomposition of a given homogenous structural number it is sufficient to solve a finite number of systems of linear equations over the field Z_2 .

Example 2. Choose $x_1, \dots, x_n \in X$ and fix elements $e_{ij} \in Z_2$ for all $1 \leq i < j \leq n$. Consider the following structural number

$$s(x_1, \dots, x_n) = \sum_{i < j} e_{ij} \langle x_i x_j \rangle.$$

It is clear that

$$a_i = a_i(s(x_1, \dots, x_n)) = s(x_1, \dots, x_{n-1})$$

$$b_i = b_i(s(x_1, \dots, x_n)) = \sum_{k=1}^{n-1} e_{k(n-i+1)} \langle x_k \rangle$$

Now assume that $e_{ij} = 1$ for all $i < j \leq 4$. Then we have

$$a_{n-3} = (\langle x_1 \rangle + \langle x_3 \rangle)(\langle x_2 \rangle + \langle x_3 \rangle)$$

$$b_{n-3} = \langle x_1 \rangle + \langle x_2 \rangle + \langle x_3 \rangle$$

$$a_{n-4} = a_{n-3} + b_{n-3} \langle x_4 \rangle.$$

Since the equation $Y_1(\langle x_1 \rangle + \langle x_3 \rangle) + Y_2(\langle x_2 \rangle + \langle x_3 \rangle) = b_{n-3}$ has no solution in Z_2 of course, then a_{n-4} admits no canonical decompositions and hence so does $s(x_1, \dots, x_n)$ for any elements e_{ij} , $4 \leq i < j \leq n$.

Example 3. We find a canonical decomposition of the following structural number

$$s = \langle x_1 x_2 x_3 \rangle + \langle x_1 x_3 x_4 \rangle + \langle x_2 x_3 x_4 \rangle + \langle x_2 x_3 x_5 \rangle + \langle x_3 x_4 x_5 \rangle.$$

Observe that $a_1 = \langle x_1 x_2 x_3 \rangle + \langle x_1 x_3 x_4 \rangle + \langle x_2 x_3 x_4 \rangle$, $a_2 = \langle x_1 x_2 x_3 \rangle$, $b_1 = \langle x_2 x_3 \rangle + \langle x_3 x_4 \rangle$, $b_2 = \langle x_1 x_3 \rangle + \langle x_2 x_3 \rangle$. Since the equation

$$Y_1 \langle x_2 x_3 \rangle + Y_2 \langle x_1 x_3 \rangle + Y_3 \langle x_1 x_2 \rangle = b_2$$

holds for $Y_1 = Y_2 = 1$, $Y_3 = 0$, then

$$a_1 = (\langle x_1 \rangle + \langle x_4 \rangle)(\langle x_2 \rangle + \langle x_4 \rangle) \langle x_3 \rangle.$$

Subsequently, we consider the following equation

$$\begin{aligned} b_1 = z_1(\langle x_2 \rangle + \langle x_4 \rangle) \langle x_3 \rangle + z_2(\langle x_1 \rangle + \langle x_4 \rangle) \langle x_3 \rangle + \\ + z_3(\langle x_1 \rangle + \langle x_4 \rangle)(\langle x_2 \rangle + \langle x_4 \rangle). \end{aligned}$$

Since this equation holds for $z_1 = 1$, $z_2 = z_3 = 0$, then we obtain the following canonical decomposition of s

$$s = (\langle x_1 \rangle + \langle x_4 \rangle + \langle x_5 \rangle)(\langle x_2 \rangle + \langle x_4 \rangle) \langle x_3 \rangle.$$

REFERENCES

- [1] S. Beller, H. Woźniacki: Analiza i synteza układów elektrycznych metodą liczb strukturalnych, Warszawa 1968.
- [2] R. Kiepiński, D. Simsion: On the lattice of ideals in the ring of structural numbers. Demonstratio Math. 5(1973)45-55.

[3] D. Simson: Some remarks on the ring of structural numbers, *Demonstratio Math.* 4 (1972) 215-222.

INSTITUTE OF MATHEMATICS, NICHOLAS COPERNICUS UNIVERSITY OF
TORUŃ

Received September 5th, 1972.

Addresses of the Authors: Roman Kiełpiński, ul. Rusa 17/25,
87-100 Toruń
and Daniel Simson, ul. Chrobrego 11/20, 87-100 Toruń.