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ON THE LATTICE OF IDEALS IN THE RING
OF STRUCTURAL NUMBERS

Throughout this paper S<{X> denotes the ring of struc-
tural numbers on a set X. By [5] it may be represented as
the residue class ring of the polynomial ring ZE[X] modulo
the ideal generated by squares of all elements of X. In the
sequdl we use the notations and terminology from,[S]; .

The aim of this paper is to show the following equality
I = Ann(Ann I)

for any finitely generated ideal I in S<X>. Here Ann T de-

notes the annihilator in S<X> of & subset T od S<D.
Moreover we show that the annihilator of +the ideal ge-

nerated by linearly independent eiements t1,...,tm of S1 is

equal to the ideal generated by the product t1’~--:tm-

1. At first we assume that X is a finite set, e.g.

X = {xq,...,xn}. By~[5] Lemma 1.2 it~follows that .the ele-

ments < x,%... xf>, where €; are equal O or 1, form a
standart basis of 8S<X> over Z2. These elements are called
monomials. The degree of the monomial <x15... n??is Eqtene
cee+€ . As in [5] S, = S KX> denotes the vector subspace
over Z, in S<¢X> generated by all monomials of degree m.
Observe that dim S = (g) for OgKm<n, S_=0 for m>n,

and dim S<X> = 20,

m
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2 R, Kielpifiski, D, Simson

The element <x; cee X > is the unity of S<X> and hen-

ceforth will be also denoted by 1.
By [5] any element s of S{(X> has a unique expression

S = S_ 4+ S, + ese + 8
(o] 1 n

where sié Si' If Sg = 84 = ees = 8 4 = 0, Sp 4 0, then
the number m is denoted by d (s). The function 4 is de-
fined only for.non-zero elements of S<X>., It is clear that
if ss’ #0 then 9 (ss’')»d(s) +9(s’).

Lemma 1. If s 1is a non-zero element of S<X) and
d(s) < n, then there exists an elemeut x € X such that

<x>s £ 0.
Proof. Suppose that <xi>s =0 for i = T,ee.,n4
Then s = <xi>dx (s). Hence we successively obtain
i

<x,‘> dx,; (s)

<x1 x2> dx,I dx2 (s)

=}

X Xs .. x.)d_d. ... 4. (s)
<12 n) X4 Xo X,

and therefore'd (s)> n, a contradiction.

Corollary 2. For any non-zero element s  of
S{X) +there exists an element s'¢ of S<X) such that ss =
= <X1 PP xll)‘

Prooft. In view of the previous lemma, the corollary
follows from the fact that the only one :non-zero element in
S, is <x,I cer X ).

Similarly we obtain

Corollary 3. If I is a non-zero ideal in S<X),

then the element "<x,| cee n> belongs to I.
We define a function & :S<X>—>Z, - in the following way.

= _ € &
If s = Ze(e1___en)<x1’... "% then we put

$(s) =) otn)"
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On the lattice of ideals 3

Lemma 4. (a) & is a Z, - linear function,
(b) If I is an ideal in S{X) and ¥ (s) =
= 0 for all elements of I, then I = O,
Proof (a) 4is obvious. (b) follows from Corollary
3 because P (<x,1 aee xn>) =1,
Let V be a subspace (over Z,) of S X . We put

v’ ={se S(X>: P (sv) = 0O for any veV}.

By Lemma 4 (a) the set V’ 1is a subspace of S<X)>., Obsexrve
that, if VCW then WCV',
In the sequel we need the following facts from linear al-

gebra.
Proposition 5. Let V be a finite dimensio-

nal vector space over a field K and let Vq, V, be two
subspaces of V. Then the following statements hold:
(a) dim V = dim V, + dim V/V,l.

(b) The set V¥ = Hom(V,K) of all K-linear maps from V

to K 1is a vector space over K and
dim V¥ = dim V.

(¢) dim V,' + dim V2 = dim (V’I + V2) + dim (V,l n V2)°

(a) If V1 CIV2 and dim vy = dim V2, then Vo= Vs

For proofs of the above facts see for instance [1].

Now we prove the fundamental results of this paper.

Theorem 6., Let V and W be subspaces of S<{X).

Then
(a) dim V + dim V' = 2%,

(b) V = (V/)/,
() VN W = (V).
(@) VvV + W vnw).

fi

Proof. (a) By Proposition 5 (a) and the fact that
dim S<X) = 2%, it is sufficient to prove that dim V =
= dim SOV,
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For any element veV we define a linear map

fv: S(X)/V’———>22

by the formula
f,(s + V') =@(vs),

where s + V'e S<X>/V'. Thus we may define a map

£V — (Syv)¥

by the formula f(v) = f,
8 € S5¢X> +then we obtain

[f(v1 4 vz)](s + V) = fv1+v2 (s + V)

for any v eV, If VysVp € V and

=:<p((v,l + v2)s)

¢ (v,]s) + ¢ (v2s)

f (s +V')+f_(s+V")
v, v,

(fv,‘ + fvz)(s + V)

™

[£vg) + £v)] (s + V).

This shows that f 1is a ‘Z2-linear map. Observe that f 1is
a monomorphism. In fdct, if v e Ker f and I ig the prin-
cipal ideal in S{X) generated by v, then & (I) = O and
therefore I = 0 by Lemma 4 (b). Henee v =0 and f is a
monomorphism.

Then by Proposition 5 (b) we have

dim V < dim (SCXO/V)* = dim (SCO/V ).

To prove the opposite inequality, for any s & S(X) we
consider the linear map

gs:V——> 22
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On the lattice of ideals 5

defined by gs(v) =p(sv) for v e V. Similarly as in the

case of the maps £ we check that

g =85 + 8
81+85 8, S5

for any s,,s, in 8<X)>. Hence we may define a linear map

g SKX) —> V¥

by the formula g(s) = g; for s S<X>. It is clear that
the kernel of g is equal to the subspace V', Hence, by
Proposition 5 (b) we obtain

dim (S<X)/V’) = dim Im g < dim V* = @im V
which completes the proof of the statement (a).

(b) It is clear that V C (V’')’. By the statement (a) we
have

dim (V’)’ = 2% - dim V/

(]

2 - (2% - qim V)

]

dim V.

Hence V = (V’)’ by Proposition 5 (d).
We omit the simple proof of the statement (c).

(d) Since VN WCV,W then V', WC (VN W) and there-
fore Vi + W C (VNAW)Y. Since

dim (VN W) =2 - aim (VAN W)

2% - [dim V + din W - dim (V + W)]
(2P -daim.V)+ (2"~ dim W) - (2% -aim(V+W))
dim V' + dim W' - dim (V + W)’

dim V/ + dim W - dim (V'N W)

dim (V' + W'_)

n

i

then V' + W = (VN W) by Proposition 5 (d).
This completes the proof of the theorem,
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Let T be a non-empty subset of S<(X). Then Ann T (or
Anny T, if it 1s necessary to mark the set X) denotes the
set

{sesX :8t=0 forall teT}

and it is called the annihilator of T. It is clear that
Ann T 1s an ideal of S<X). Moreover

Ann T = Ann(m},

where (T) denotes the ldeal generated by T in 8({X). For a
finite set {t reert } we write (tgye..st, ) instead of

({tqreeerty})e

Lemma 7. If I ‘is an ideal, them Ann I = I’.

Proof., If seAnn I, then of course s I =0 and
#(s I) = 0. Hence s e I'. Conversely, if s e I, then
$¢(s I) = 0. Since s-I is an ideal in S{X), we have s.I=0
by Lemma 4 (b). Hence s e Ann I, and the lemma is proved.

As a simple consequence of the above lemma and Theorem 6
we obtain the following,

Theorem 8., Let Iand J be ideals of S(X). Then

(a) dim I + dim Ann I = 2"

(b) I = Ann(Ann I) ,

(c) Ann I N Ann J = Ann(I + J)

(d) Ann I + Ann J = Ann(I N J).

Remark., The above theorém shows that S<X) (X - fi-
nite) is a Frobenius algebra (see [ 4], § 61).

2. In this seotion we extend a part of the previous re-
sults to the general case. Henceforth we drop the assumption
that the set X 1is finite,

If Y is a subset of X then S(Y) may be considered as
a subring of S<X). It is obvious that for any finite sub
set T of S{X) there exists a finite subset Y of X such
that T ¢ S<Y). Hence we obtain.

Lemma 9. The ring S(X) is the directed union of
all subrings S<Y>, where Y is a finite subset of X.

- 50 -



On the lattice of ideals ?

Lemma 10. Let X be a finite set and X=YU Kypeas
cees xk}, x; ¢ Y (i=12,...,k). If I is an ideal in S<¥)
then

k

dim I 8¢{X) = 27.dim I,

Proof. It is sufficient to prbve the lemma for k=1.
In such a case, if Sqseses8y are elements of a basis of I,
then it 1s easy to see that the elements

sq,...,sd,sq<x1>,...,sd<x1>

form a basis of I 8<X>, and the lemma is proved.

Proposition 11. Let I be an ideal in S<{X)
generated by a finite set of elements SqresesSye Let Y ne a
finite subset of X such that Sqreses8y belong to S(Y; and
let J denotes the ideal generated by 84,...,8;5 in SY).
Then

Anny I = (Anng, J) 8<X).

roof, At first we prove the proposition  assuming
that X 1is a finite set.

If X=Y U {xq,...,xk}, x; ¢ Y, and Y has n elements,
then

2k dim AnnY J

£

dim (Anny J) (X

2%(2" -~ aim J)

n

2n+k - dim I

dim Annx I,

where the first and third equalities follow from Lemma 10 and
two remaining equalities follow from Theorem 8 (a)..Hence the
statement follows by Proposition 5 (d) since (AnnY J) s<x»
c:Annx I.
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In the general case we have

Ann, I = J Annz{sq,...,sd}

U (Anng J) 8¢2Z)

n

(Anny J)(U 842))
(AnnY J) s<x),

where all sums run over all finite subsets Z of X such that
YCZ. Hence the proof is completed.

PTheorem 2., If I and J are finitely generated
ideals in S<X), then the following statements hold:

(a) Ann I is finitely generated ideal,

(b) I = Ann(Ann I),

(c) Ann IN Ann J = Aon(I + J),

(d) Ann I + Ann J = Ann(IN J).

Proof. (a) follows immediately from Propos1tlon 1.
(b) If s ¢ Ann{Ann I), B4ye..y8y are generators of I, and
Y is a finite subset of X such that s,84,...,85 € <Y,
then s € AnnY(AnnY{sq,...,sd}) By Theorem 8 (b) the last
jdeal coincides with the ideal J generated by 51,...,sd in
S(Y>. Since J ¢ I, we have proved that Ann{Ann I)CI, The
opposite inclusion is obvious. (c) is easy and may ‘be omit-
ted. (d) follows simply from (b) and (c) as is shown below

ann(IN 3) = Aon[Ann(Ana I) N Ann(Ann J)]
A.nn[Ann(Ann I + Ann J)]
Ann I + Ann J.

H

Remar k. Observe that by the above facts it is easy
to show that the ring of structural numbers is a coherent ring

(see [2] and [3]).

’2, In the final section of this' paper we compute the an-
nihilator of the ideal generated by finite number of linearly
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independent elements of Sﬂ. Suppose that t1,...,t are such
elements of Sl‘ I tl ty + 2: ei-ti, e; € Zz, then it is

clear that t{,tg,...,t are linearly independent elements
too and

t1 coe tn = t,]ta e tm

By repeatlng this argument we obtain.

Lemma 13. If elements t1,...,t & S are linearly
independent and elements t4,...,tm € 51 span the same vec-
tor subspace as tq,...,tm then

4 7
t1 s tm = t,l LI ) tm

Corollary 4. Elements t,y...yt; € S, are 1li-
nearly independent if and only if %; ... t # 0.

Proof. If tiseeesty are linearly dependent ele-
ments, +then it 1is clear that Ty ees tm = 0. Assume that
t41+0esty are linearly independent. Let Y = {y1,..f,yn:}be
a finite subset of X such that t ,e.eyt € s<1>. Let
tpeqreeert, be such elements of 8,{Y) that the elements
t1,...,t form a basis of the vector subspace q(Y>. Since
the elements <y1>,...,<yn> also form a basis of Sq(Y), by
Lemma 13

ty eee By =<y1> (yn‘>¥ o:

Hence, in particular, we obtain that &, ... t # O.

Corollary 15. If t y...y%; are linearly in-
dependent elements of sq<x), then the Z, - subalgebra A of
S(X) generated by t1,...,tm is isomorphic to +the ring of
structural numbers S<Y) for any finite set Y with m ele-
ments.

Proof. Let Y= {74""’7m}' Consider the homomor-
phism

fzzz[y1,..,,ym]——> s
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10 | R, Kielpifiski, D, Simson

defined by £(yy) = %45 1 = 1,...,n. Since t5 = O the ideal
generated by squares Ty is contained in Ker f. Hence f in-
duces an epimorphism

£:18(Y) —— A.

Since ,f(<y1ﬁ... ym>) =ty eoo t, #0, we have Ker f = O by
Corollary 3. Hence f is an isomorphism and the lemma is
‘proved. .

Lemma 16, Let X'{xw}wsw and {t }wew be a ba-
sis of S (X) Then +there ex18ts +the unique automorphism
£18¢X) L8 such that f(<xw> t, for weW.

Proof. Similarly as in the proof of Corollary 15
we prove that there exists an endomorphism f of S<X)> such
that f((lxwﬂ) t, for all weW. Since the set {t }..y
is a basis of 8<X), all elements <x w € W, Dbelong to
Im £f. Hence f is an epimorphism. By Corollary 15 it is
easy to prove that f is a monomorphism. Hence f is an au-
‘tomorphism.

Theorem 17. If t1,3...tm are linearly indepen~-
dent elements of s1<x>, then

(a) Ann(t,,,...,t ) = (%q «o0 tg)s

(b) Ann(t, S tp) = (Lqreeerty).

Proof. (a) By Lemma 16 we may suppose that elements
tyreeesty belong to X. The inclusion (b, ... ty) CAnn(t,...
...,tm) is.obvious. If t48 = t,8 = ... = t € = O, then as
in the proof of Lemma 1 we obtain that s = tq e t dt

ee.d. (s) e (t, «.. ;). Hence the statement (a) is proved.

(b) follows from (a) and Theorem 12 (b).
Corollary 18. Suppose that

. . 1
t1 se e tm = t,] ee e tn¥ 0,

Where ti,t eS/‘o Then m=n and (t,l,ooo,t ) = (t//l’o.-,t’)
Proof. The corollary follows immediately from Corol-
lary 14 -and Theorem 17 (D).
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