

Roman Kiełpiński, Daniel Simson

ON THE LATTICE OF IDEALS IN THE RING
OF STRUCTURAL NUMBERS

Throughout this paper $S\langle X \rangle$ denotes the ring of structural numbers on a set X . By [5] it may be represented as the residue class ring of the polynomial ring $Z_2[X]$ modulo the ideal generated by squares of all elements of X . In the sequel we use the notations and terminology from [5].

The aim of this paper is to show the following equality

$$I = \text{Ann}(\text{Ann } I)$$

for any finitely generated ideal I in $S\langle X \rangle$. Here $\text{Ann } T$ denotes the annihilator in $S\langle X \rangle$ of a subset T of $S\langle X \rangle$.

Moreover we show that the annihilator of the ideal generated by linearly independent elements t_1, \dots, t_m of S_1 is equal to the ideal generated by the product t_1, \dots, t_m .

1. At first we assume that X is a finite set, e.g. $X = \{x_1, \dots, x_n\}$. By [5] Lemma 1.2 it follows that the elements $\langle x_1^{\epsilon_1} \dots x_n^{\epsilon_n} \rangle$, where ϵ_i are equal 0 or 1, form a standard basis of $S\langle X \rangle$ over Z_2 . These elements are called monomials. The degree of the monomial $\langle x_1^{\epsilon_1} \dots x_n^{\epsilon_n} \rangle$ is $\epsilon_1 + \dots + \epsilon_n$. As in [5] $S_m = S_m\langle X \rangle$ denotes the vector subspace over Z_2 in $S\langle X \rangle$ generated by all monomials of degree m . Observe that $\dim S_m = \binom{n}{m}$ for $0 \leq m \leq n$, $S_m = 0$ for $m > n$, and $\dim S\langle X \rangle = 2^n$.

The element $\langle x_1^e \dots x_n^e \rangle$ is the unity of $S\langle X \rangle$ and henceforth will be also denoted by 1.

By [5] any element s of $S\langle X \rangle$ has a unique expression

$$s = s_0 + s_1 + \dots + s_n$$

where $s_i \in S_i$. If $s_0 = s_1 = \dots = s_{m-1} = 0$, $s_m \neq 0$, then the number m is denoted by $\delta(s)$. The function δ is defined only for non-zero elements of $S\langle X \rangle$. It is clear that if $ss' \neq 0$ then $\delta(ss') \geq \delta(s) + \delta(s')$.

Lemma 1. If s is a non-zero element of $S\langle X \rangle$ and $\delta(s) < n$, then there exists an element $x \in X$ such that $\langle x \rangle s \neq 0$.

Proof. Suppose that $\langle x_i \rangle s = 0$ for $i = 1, \dots, n$. Then $s = \langle x_i \rangle d_{x_i}(s)$. Hence we successively obtain

$$\begin{aligned} s &= \langle x_1 \rangle d_{x_1}(s) \\ &= \langle x_1 x_2 \rangle d_{x_1} d_{x_2}(s) \\ &\dots \\ &= \langle x_1 x_2 \dots x_n \rangle d_{x_1} d_{x_2} \dots d_{x_n}(s) \end{aligned}$$

and therefore $\delta(s) \geq n$, a contradiction.

Corollary 2. For any non-zero element s of $S\langle X \rangle$ there exists an element $s' \in S\langle X \rangle$ such that $ss' = \langle x_1 \dots x_n \rangle$.

Proof. In view of the previous lemma, the corollary follows from the fact that the only one non-zero element in S_n is $\langle x_1 \dots x_n \rangle$.

Similarly we obtain

Corollary 3. If I is a non-zero ideal in $S\langle X \rangle$, then the element $\langle x_1 \dots x_n \rangle$ belongs to I .

We define a function $\Phi : S\langle X \rangle \rightarrow \mathbb{Z}_2$ in the following way.

If $s = \sum e_{(\epsilon_1, \dots, \epsilon_n)} \langle x_1^{\epsilon_1} \dots x_n^{\epsilon_n} \rangle$, then we put

$$\Phi(s) = \sum e_{(\epsilon_1, \dots, \epsilon_n)}.$$

Lemma 4. (a) Φ is a \mathbb{Z}_2 - linear function,
 (b) If I is an ideal in $S(X)$ and $\Phi(s) = 0$ for all elements of I , then $I = 0$.

Proof (a) is obvious. (b) follows from Corollary 3 because $\Phi(\langle x_1 \dots x_n \rangle) = 1$.

Let V be a subspace (over \mathbb{Z}_2) of $S(X)$. We put

$$V' = \{s \in S(X) : \Phi(sv) = 0 \text{ for any } v \in V\}.$$

By Lemma 4 (a) the set V' is a subspace of $S(X)$. Observe that, if $V \subset W$ then $W' \subset V'$.

In the sequel we need the following facts from linear algebra.

Proposition 5. Let V be a finite dimensional vector space over a field K and let V_1, V_2 be two subspaces of V . Then the following statements hold:

- (a) $\dim V = \dim V_1 + \dim V/V_1$.
- (b) The set $V^* = \text{Hom}(V, K)$ of all K -linear maps from V to K is a vector space over K and

$$\dim V^* = \dim V.$$

- (c) $\dim V_1 + \dim V_2 = \dim (V_1 + V_2) + \dim (V_1 \cap V_2)$.
- (d) If $V_1 \subset V_2$ and $\dim V_1 = \dim V_2$, then $V_1 = V_2$.

For proofs of the above facts see for instance [1].

Now we prove the fundamental results of this paper.

Theorem 6. Let V and W be subspaces of $S(X)$.

Then

- (a) $\dim V + \dim V' = 2^n$.
- (b) $V = (V')'$.
- (c) $V' \cap W' = (V + W)'$.
- (d) $V' + W' = (V \cap W)'$.

Proof. (a) By Proposition 5 (a) and the fact that $\dim S(X) = 2^n$, it is sufficient to prove that $\dim V = \dim S(X)/V'$.

For any element $v \in V$ we define a linear map

$$f_v: S\langle X \rangle / V' \longrightarrow \mathbb{Z}_2$$

by the formula

$$f_v(s + V') = \phi(v s),$$

where $s + V' \in S\langle X \rangle / V'$. Thus we may define a map

$$f: V \longrightarrow (S\langle X \rangle / V')^*$$

by the formula $f(v) = f_v$ for any $v \in V$. If $v_1, v_2 \in V$ and $s \in S\langle X \rangle$ then we obtain

$$\begin{aligned} [f(v_1 + v_2)](s + V') &= f_{v_1 + v_2}(s + V') \\ &= \phi((v_1 + v_2)s) \\ &= \phi(v_1 s) + \phi(v_2 s) \\ &= f_{v_1}(s + V') + f_{v_2}(s + V') \\ &= (f_{v_1} + f_{v_2})(s + V') \\ &\doteq [f(v_1) + f(v_2)](s + V'). \end{aligned}$$

This shows that f is a \mathbb{Z}_2 -linear map. Observe that f is a monomorphism. In fact, if $v \in \text{Ker } f$ and I is the principal ideal in $S\langle X \rangle$ generated by v , then $\phi(I) = 0$ and therefore $I = 0$ by Lemma 4 (b). Hence $v = 0$ and f is a monomorphism.

Then by Proposition 5 (b) we have

$$\dim V \leq \dim (S\langle X \rangle / V')^* = \dim (S\langle X \rangle / V').$$

To prove the opposite inequality, for any $s \in S\langle X \rangle$ we consider the linear map

$$g_s: V \longrightarrow \mathbb{Z}_2$$

defined by $g_s(v) = \emptyset(sv)$ for $v \in V$. Similarly, as in the case of the maps f_v we check that

$$g_{s_1+s_2} = g_{s_1} + g_{s_2}$$

for any s_1, s_2 in $S\langle X \rangle$. Hence we may define a linear map

$$g : S\langle X \rangle \longrightarrow V^*$$

by the formula $g(s) = g_s$ for $s \in S\langle X \rangle$. It is clear that the kernel of g is equal to the subspace V' . Hence, by Proposition 5 (b) we obtain

$$\dim (S\langle X \rangle / V') = \dim \text{Im } g \leq \dim V^* = \dim V$$

which completes the proof of the statement (a).

(b) It is clear that $V \subset (V')'$. By the statement (a) we have

$$\begin{aligned} \dim (V')' &= 2^n - \dim V' \\ &= 2^n - (2^n - \dim V) \\ &= \dim V. \end{aligned}$$

Hence $V = (V')'$ by Proposition 5 (d).

We omit the simple proof of the statement (c).

(d) Since $V \cap W \subset V, W$ then $V', W' \subset (V \cap W)'$ and therefore $V' + W' \subset (V \cap W)'$. Since

$$\begin{aligned} \dim (V \cap W)' &= 2^n - \dim (V \cap W) \\ &= 2^n - [\dim V + \dim W - \dim (V + W)] \\ &= (2^n - \dim V) + (2^n - \dim W) - (2^n - \dim (V + W)) \\ &= \dim V' + \dim W' - \dim (V + W)' \\ &= \dim V' + \dim W' - \dim (V' \cap W') \\ &= \dim (V' + W') \end{aligned}$$

then $V' + W' = (V \cap W)'$ by Proposition 5 (d).

This completes the proof of the theorem.

Let T be a non-empty subset of $S(X)$. Then $\text{Ann } T$ (or $\text{Ann}_X T$, if it is necessary to mark the set X) denotes the set

$$\{s \in S(X) : st = 0 \text{ for all } t \in T\}$$

and it is called the annihilator of T . It is clear that $\text{Ann } T$ is an ideal of $S(X)$. Moreover

$$\text{Ann } T = \text{Ann}(T),$$

where (T) denotes the ideal generated by T in $S(X)$. For a finite set $\{t_1, \dots, t_n\}$ we write (t_1, \dots, t_n) instead of $(\{t_1, \dots, t_n\})$.

Lemma 7. If I is an ideal, then $\text{Ann } I = I'$.

Proof. If $s \in \text{Ann } I$, then of course $s \cdot I = 0$ and $\Phi(s \cdot I) = 0$. Hence $s \in I'$. Conversely, if $s \in I'$, then $\Phi(s \cdot I) = 0$. Since $s \cdot I$ is an ideal in $S(X)$, we have $s \cdot I = 0$ by Lemma 4 (b). Hence $s \in \text{Ann } I$, and the lemma is proved.

As a simple consequence of the above lemma and Theorem 6 we obtain the following.

Theorem 8. Let I and J be ideals of $S(X)$. Then

- (a) $\dim I + \dim \text{Ann } I = 2^n$
- (b) $I = \text{Ann}(\text{Ann } I)$
- (c) $\text{Ann } I \cap \text{Ann } J = \text{Ann}(I + J)$
- (d) $\text{Ann } I + \text{Ann } J = \text{Ann}(I \cap J)$.

Remark. The above theorem shows that $S(X)$ (X - finite) is a Frobenius algebra (see [4], § 61).

2. In this section we extend a part of the previous results to the general case. Henceforth we drop the assumption that the set X is finite.

If Y is a subset of X then $S(Y)$ may be considered as a subring of $S(X)$. It is obvious that for any finite subset T of $S(X)$ there exists a finite subset Y of X such that $T \subseteq S(Y)$. Hence we obtain.

Lemma 9. The ring $S(X)$ is the directed union of all subrings $S(Y)$, where Y is a finite subset of X .

L e m m a 10. Let X be a finite set and $X = Y \cup \{x_1, \dots, x_k\}$, $x_i \notin Y$ ($i = 1, 2, \dots, k$). If I is an ideal in $S\langle Y \rangle$ then

$$\dim I S\langle X \rangle = 2^k \cdot \dim I.$$

P r o o f. It is sufficient to prove the lemma for $k=1$. In such a case, if s_1, \dots, s_d are elements of a basis of I , then it is easy to see that the elements

$$s_1, \dots, s_d, s_1\langle x_1 \rangle, \dots, s_d\langle x_1 \rangle$$

form a basis of $I S\langle X \rangle$, and the lemma is proved.

P r o p o s i t i o n 11. Let I be an ideal in $S\langle X \rangle$ generated by a finite set of elements s_1, \dots, s_d . Let Y be a finite subset of X such that s_1, \dots, s_d belong to $S\langle Y \rangle$ and let J denotes the ideal generated by s_1, \dots, s_d in $S\langle Y \rangle$. Then

$$\text{Ann}_X I = (\text{Ann}_Y J) S\langle X \rangle.$$

P r o o f. At first we prove the proposition assuming that X is a finite set.

If $X = Y \cup \{x_1, \dots, x_k\}$, $x_i \notin Y$, and Y has n elements, then

$$\begin{aligned} \dim (\text{Ann}_Y J) S\langle X \rangle &= 2^k \dim \text{Ann}_Y J \\ &= 2^k (2^n - \dim J) \\ &= 2^{n+k} - \dim I \\ &= \dim \text{Ann}_X I, \end{aligned}$$

where the first and third equalities follow from Lemma 10 and two remaining equalities follow from Theorem 8 (a). Hence the statement follows by Proposition 5 (d) since $(\text{Ann}_Y J) S\langle X \rangle \subset \text{Ann}_X I$.

In the general case we have

$$\begin{aligned}
 \text{Ann}_X I &= \bigcup \text{Ann}_Z \{s_1, \dots, s_d\} \\
 &= \bigcup (\text{Ann}_Y J) S\langle Z \rangle \\
 &= (\text{Ann}_Y J) (\bigcup S\langle Z \rangle) \\
 &= (\text{Ann}_Y J) S\langle X \rangle,
 \end{aligned}$$

where all sums run over all finite subsets Z of X such that $Y \subset Z$. Hence the proof is completed.

Theorem 2. If I and J are finitely generated ideals in $S\langle X \rangle$, then the following statements hold:

- (a) $\text{Ann } I$ is finitely generated ideal,
- (b) $I = \text{Ann}(\text{Ann } I)$,
- (c) $\text{Ann } I \cap \text{Ann } J = \text{Ann}(I + J)$,
- (d) $\text{Ann } I + \text{Ann } J = \text{Ann}(I \cap J)$.

Proof. (a) follows immediately from Proposition 11. (b) If $s \in \text{Ann}(\text{Ann } I)$, s_1, \dots, s_d are generators of I , and Y is a finite subset of X such that $s, s_1, \dots, s_d \in S\langle Y \rangle$, then $s \in \text{Ann}_Y(\text{Ann}_Y \{s_1, \dots, s_d\})$. By Theorem 8 (b) the last ideal coincides with the ideal J generated by s_1, \dots, s_d in $S\langle Y \rangle$. Since $J \subset I$, we have proved that $\text{Ann}(\text{Ann } I) \subset I$. The opposite inclusion is obvious. (c) is easy and may be omitted. (d) follows simply from (b) and (c) as is shown below

$$\begin{aligned}
 \text{Ann}(I \cap J) &= \text{Ann} [\text{Ann}(\text{Ann } I) \cap \text{Ann}(\text{Ann } J)] \\
 &= \text{Ann} [\text{Ann}(\text{Ann } I + \text{Ann } J)] \\
 &= \text{Ann } I + \text{Ann } J.
 \end{aligned}$$

Remark. Observe that by the above facts it is easy to show that the ring of structural numbers is a coherent ring (see [2] and [3]).

3. In the final section of this paper we compute the annihilator of the ideal generated by finite number of linearly

independent elements of S_1 . Suppose that t_1, \dots, t_m are such elements of S_1 . If $t'_1 = t_1 + \sum_{i=2}^m e_i \cdot t_i$, $e_i \in Z_2$, then it is clear that t'_1, t_2, \dots, t_m are linearly independent elements too and

$$t_1 \dots t_m = t'_1 t_2 \dots t_m.$$

By repeating this argument we obtain.

Lemma 13. If elements $t_1, \dots, t_m \in S_1$ are linearly independent and elements $t'_1, \dots, t'_m \in S_1$ span the same vector subspace as t_1, \dots, t_m then

$$t_1 \dots t_m = t'_1 \dots t'_m.$$

Corollary 14. Elements $t_1, \dots, t_m \in S_1$ are linearly independent if and only if $t_1 \dots t_m \neq 0$.

Proof. If t_1, \dots, t_m are linearly dependent elements, then it is clear that $t_1 \dots t_m = 0$. Assume that t_1, \dots, t_m are linearly independent. Let $Y = \{y_1, \dots, y_n\}$ be a finite subset of X such that $t_1, \dots, t_m \in S\langle Y \rangle$. Let t_{m+1}, \dots, t_n be such elements of $S_1\langle Y \rangle$ that the elements t_1, \dots, t_n form a basis of the vector subspace $S_1\langle Y \rangle$. Since the elements $\langle y_1 \rangle, \dots, \langle y_n \rangle$ also form a basis of $S_1\langle Y \rangle$, by Lemma 13

$$t_1 \dots t_n = \langle y_1 \rangle \dots \langle y_n \rangle \neq 0.$$

Hence, in particular, we obtain that $t_1 \dots t_m \neq 0$.

Corollary 15. If t_1, \dots, t_m are linearly independent elements of $S_1\langle X \rangle$, then the Z_2 - subalgebra A of $S\langle X \rangle$ generated by t_1, \dots, t_m is isomorphic to the ring of structural numbers $S\langle Y \rangle$ for any finite set Y with m elements.

Proof. Let $Y = \{y_1, \dots, y_m\}$. Consider the homomorphism

$$f: Z_2[y_1, \dots, y_m] \longrightarrow S\langle X \rangle$$

defined by $f(y_i) = t_i$, $i = 1, \dots, m$. Since $t_i^2 = 0$ the ideal generated by squares y_i^2 is contained in $\text{Ker } f$. Hence f induces an epimorphism

$$\bar{f}: S\langle Y \rangle \longrightarrow A.$$

Since $\bar{f}(\langle y_1 \dots y_m \rangle) = t_1 \dots t_m \neq 0$, we have $\text{Ker } f = 0$ by Corollary 3. Hence f is an isomorphism and the lemma is proved.

L e m m a 16. Let $X = \{x_w\}_{w \in W}$ and $\{t_w\}_{w \in W}$ be a basis of $S_1\langle X \rangle$. Then there exists the unique automorphism $f: S\langle X \rangle \longrightarrow S\langle X \rangle$ such that $f(\langle x_w \rangle) = t_w$ for $w \in W$.

P r o o f. Similarly as in the proof of Corollary 15 we prove that there exists an endomorphism f of $S\langle X \rangle$ such that $f(\langle x_w \rangle) = t_w$ for all $w \in W$. Since the set $\{t_w\}_{w \in W}$ is a basis of $S\langle X \rangle$, all elements $\langle x_w \rangle$, $w \in W$, belong to $\text{Im } f$. Hence f is an epimorphism. By Corollary 15 it is easy to prove that f is a monomorphism. Hence f is an automorphism.

T h e o r e m 17. If t_1, \dots, t_m are linearly independent elements of $S_1\langle X \rangle$, then

- (a) $\text{Ann}(t_1, \dots, t_m) = (t_1 \dots t_m)$,
- (b) $\text{Ann}(t_1 \dots t_m) = (t_1, \dots, t_m)$.

P r o o f. (a) By Lemma 16 we may suppose that elements t_1, \dots, t_m belong to X . The inclusion $(t_1 \dots t_m) \subset \text{Ann}(t_1, \dots, t_m)$ is obvious. If $t_1s = t_2s = \dots = t_ms = 0$, then as in the proof of Lemma 1 we obtain that $s = t_1 \dots t_m d_{t_1} \dots d_{t_m}(s) \in (t_1 \dots t_m)$. Hence the statement (a) is proved. (b) follows from (a) and Theorem 12 (b).

C o r o l l a r y 18. Suppose that

$$t_1 \dots t_m = t_1' \dots t_n' \neq 0,$$

where $t_i, t_j' \in S_1$. Then $m=n$ and $(t_1, \dots, t_m) = (t_1', \dots, t_n')$.

P r o o f. The corollary follows immediately from Corollary 14 and Theorem 17 (b).

REFERENCES

- [1] G. Birkhoff, S. MacLane: A survey of modern algebra. New York 1954.
- [2] N. Bourbaki: Algebre commutative. Chap. 1-2. Act. Sci. Ind. 1290, Paris 1961.
- [3] S.U. Chase: Direct product of modules. Trans. Amer. Math. Soc. 97 (1960) 457-473.
- [4] Ch. W. Curtis, I. Reiner: Representation theory of finite groups and associative algebras. New York 1962.
- [5] D. Simson: Some remarks on the ring of structural numbers. Demonstratio Math. 4 (1972) 215-222.

INSTITUTE OF MATHEMATICS, NICHOLAS COPERNICUS UNIVERSITY OF TORUŃ

Received: September 5th, 1972.

Addresses of the Authors: Roman Kiełpiński, ul. Rusa 17/25, 87-100 Toruń
and Daniel Simson, ul. Chrobrego 11/20, 87-100 Toruń.

