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ON THE LATTICE OP IDEALS IN THE RING 
OF STRUCTURAL NUMBERS 

Throughout this paper S<X> denotes the ring of struc-
tural numbers on a set X. By [5] i t may be represented as 

the residue class ring of the polynomial ring Z£[x] modulo 
the ideal generated by squares of a l l elements of X. In the 

sequell we use the notations and terminology from, [ 5 ] « 

The aim of this paper is to show the following equality 

I = Ann(Ann I ) 

f o r any f i n i t e l y generated ideal I in S<X>. Here Ann T do-

notes the annihilator in S<X> of a subset T od S<X>. 
Moreover we show that the annihilator of the ideal ge-

nerated by l inear ly independent elements t ^ , . . . , t m of S^ is 
equal to the ideal generated by the product . 

At f i r s t we assume that X is a f i n i t e set , e . g . 
X = j x , j , . . . , x n j . B y [ f j ] Lemma 1.2 it-vfollows that .the e l e -
ments < x ^ . . . , where £/ are equal 0 or 1, form a 
standart basis of S<X> over Z2' These elements are cal led 
monomials. The degree of the monomial ^ x ^ . . . x ^ ^ i s + 
. . . + £ n . As in [ 5 ] Sm - Sm<X > denotes the vector subspace 
over Z2 in S<X> generated by a l l monomials of degree m. 
Observe that dim Sm = f o r 0 < m ̂  n, S m =0 f o r m> n, 

and dim S<X> = 2n . 
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The element ... x^ ) is the unity of S<X> and hen-
ceforth will be also denoted by 1. 

By [5] any element s of S<X> has a unique expression 

s = s„+ s. + ... + s 0 1 n 
where s.̂  e S^. If sQ = ŝ  = ... = s^^ = 0, sm ^ 0, then 
the number m is denoted by d (s). The function d is de-
fined only for.non-zero elements of S<X>. It is clear that 
if ss' £ 0 then d (as' ) > 3 (s) + d ( 3 ' ) . 

L e m m a 1. If s is a non-zero element of S<X> and 
3(s) < n, then there exists an element x £ X such that 
<x>s £ 0. 

P r o o f . Suppose that (x^s = 0 for i = 1,...,n. 
Then s = (s). Hence we successively obtain 

s = <Xl)d^(s) 

= (x1x2)d
xi

dx2
(s) 

= (X1X2 xn> dx dx? l ¿. n 
and therefore d (s)> n, a contradiction. 

C o r o l l a r y 2. For any non-zero element s of 
S(X) there exists an element s' e of S<X> such that ss = 
= ( X1 

P r o o f . In view of the previous lemma, the corollary 
follows from the fact that the only one iion-zero element in 
S n is <X1 ... Xn). 

Similarly we obtain 
C o r o l l a r y 3. If I is a non-zero ideal in S(X), 

then the element (x^ ... xn) belongs to I. 
We define a function $ :S<X>—»Z2 in the following way. 

If s = Yle(e1... en)(xie' '' • xn")» then w e put 

" " • E V ^ 
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L e m m a (a) $ is a Z2 - linear function, 
(b) I f I is an ideal in S<X> and$ (s ) = 

= 0 f o r a l l elements of I , then 1 = 0 . 
P r o o f (a ) is obvious. (b) follows from Corollary 

3 because . . . ) = 1. 
Let V be a subspace (over Z 2 ) of S X . We put 

V' = | se S<X>: $ (sv) = 0 f o r any v e V } . 

By Lemma 4- (a) the set V' is a subspace of S<X>. Observe 
that, i f VCW then I ' C T ' . 

In the sequel we need the fol lowing facts from linear a l -
gebra. 

P r o p o s i t i o n 5. Let V be a f i n i t e dimensio-
nal vector space over a f i e l d K and le t V^, V2 be two 
subspacers of V. Then the. following statements hold: 

(a ) dim V = dim V1 + dim V/V1. 

(b) The set V* = Hom(V,K) of a l l K-linear maps from V 
to K is a vector space over K and 

dim V* = dim V. 

(c ) dim V1 + dim V2 = dim (V,, + V2 ) + dim (V^ n V 2 ) . 

(d) I f V̂  C V2 and dim V̂  = dim V2, then V<1 = V2. 

For proofs of the above facts see f o r instance [ l ] . 
Now we prove the fundamental results of this paper. 
T h e o r e m 6. Let V and W be subspaces of S<X>. 

Then 
(a) dim V + dim V' = 2n. 

(b) V = ( V ' ) ' . 

( c ) v n w = (v + v;)'. 

(dj v + w = (v n v«)'. 

P r o o f . (a ) By Proposition 5 (a ) and the fac t that 
dim S<X) = 2n, i t is suf f ic ient to prove that dim V = 
= dim S<X>/V'. 
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For any element v e V we define a linear map 

f v : S<X>/V'—>Z2 

by the formula 

f v ( s + V ' ) = i>(v s ) , 

where s + V 'e S<X>/V'. Thus we may define a map 
f :v —*-(s<xyv' ) * 

by the formula f ( v ) = f y f o r any v e V. I f e V and 
8 6 S<X> then we obtain 

[ f ( Y 1 + v 2 ) ] ( s + V ' ) = f V i + V 2 (a + V') 

a $ ( (V1 + V2 )S ) 

= $ ( v 1 s ) + $ (v 2s) 

= f _ (S + V ' ) + f (S + V ' ) 
V1 2 

= ( S + f v 2 ) ( S + V ' } 

± [ f ty ) .+ f ( v 2 ) ] ( s + V ' ) . 

This shows that f is a Z2-l inear map. Observe that f is 
a monomorphism. In f a c t , i f v e Ker f and I the prin-
cipal ideal in S<X) generated by v, then $ ( I ) = 0 and 
therefore 1 = 0 by Iiemma 4 (b ) . Hence v = 0 and f is a 
monomorphism. 

Then by Proposition 5 (b) we have 

dim V ^ dim (S<X>/V')* = dim (S<X>/V'). 

To prove the opposite inequality, f o r any s e 3<X> we 
consider the linear map 

g s . v > z 2 
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define«} by S s(v) = 0 (sv) for v e V. Similarly as in the 
case of the maps f we check that 

for any si» s2 ^ • Hence we may define a linear map 

g î S < X > — > V * 

by the formula g(s) = g for s e S<X>. It is clear that 
the kernel of g is equal to the subspace V'. Hence, by 
Proposition 5 (b) we obtain 

dim (S<X>/V') = dim Im g ^ dim V* = dim V 

which completes the proof of the statement (a). 

(b) It is clear that V C (V')'. By the statement (a) we 

have 

dim (V')' = 2 n - dim V' 

= 2 n - (2n - dim V) 

= dim V. 

Hence V .= (V')' by Proposition 5 (d). We omit the simple proof of the statement (c). 

(d) Since V(1 W C V,W then V', W'C (V f) W)' and there-
fore V' + W' C (V D W)' . Since 

dim (V H W)' = 2 n - dim (V (1 W) 
= 2 n - [dim V + dim W - dim (V + W)] 
= (2 n-dim/V)+ (2n - dim W) - (2n - dim(V + W) ) 
= dim V + dim W' - dim- (V + W)' 
= dim V' + dim V - dim (Vf) W') 
= dim (V + W') 

then V' + W' = (Vf) W •)' by Proposition 5 (d). 
This completes the proof of the theorem. 
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Let T be a non-empty subset of S<X>. Then Ann T (or 
Anx^ T, if it is necessary to mark the set X) denotes the 
set 

(s e S(X> : s t = 0 for all t e T } 
and it is called the annihilator of T. It is clear that 
Ann T is an ideal of S<X>. Moreover 

Ann T = Ann(T) , 
where (T) denotes the ideal generated by T in S(X>. Por a 
finite set {t^,.. ,tnJ we write (t/|f... ,tn) instead of 
(|t/|,... ,tn|). 

L e m m a 7« If I is an ideal, then Ann 1=1'. 
P r o o f . If se Ann I, then of course s I = 0 and 

$(s I) = 0. Hence s e I'. Conversely, if s e I,' then 
$(s I) = 0. Since s»I is.an ideal in S<X), we have s.I=0 
by Lemma 4- (b). Hence se Ann I, and the lemma is proved. 

As a simple consequence of the above lemma and Theorem 6 
we obtain the following. 

T h e o r e m 8. Let I and J be ideals of S<X>. Then 
(a) dim I + dim Ann I = 2n 

(b) I = Ann(Ann I) 
(c) Ann I fi Ann J = Ann(l + J) 
(d) Ann I + Ann J = Ann(l fi J). 
R e m a r k. The above theorem shows that S<X> (X - fi-

nite) is a Frobenius algebra (see [4], § 61). 

2. In this section we extend a part of the previous re-
sults to the general case. Henceforth we drop the assumption 
that the set X is finite. 

If Y is a subset of X then S<Y> may be considered as 
a subring of S<X>. It is obvious that for any finite sub 
set T of S<X> there exists a finite subset Y of X such 
that T C S(Y). Hence we obtain. 

L e m m a 9• The ring S(X> is the directed union of 
all subrings S<Y>, where Y is a finite subset of X. 
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L e m m a 10. Let X be a finite set and X=YU jx^,... 
..., xkj, x^ Y (i = 1,2 k). If I is an ideal in S<Y> 
then 

dim I S<X> = 2k-dim I . 

P r o o f . It is sufficient to prove the lemma for k=1. 
In such a case, if are elements of a basis of I, 
then it is easy to see that the elements 

S/j, • • • • • • 'sdXX/|) 

form a basis of I S<X>, and the lemma is proved. 
P r o p o s i t i o n 11. Let I be an ideal in S < X > 

generated by a finite set of elements S/| s^. Let Y V>e a 
finite subset of X such that belong to S<Y> and 
let J denotes the ideal generated by in S<Y>. 
Then 

Annx I = (Anny J) S<X>. 

P r o o f . At first we prove the proposition assuming 
that X is a finite set. 
If X = Y U ... ,xkJ , x^ $ Y, and Y has n elements, 
then 

dim (Anny J) S<X> = 2 k dim Ann^ J 

= 2 k(2 n - dim J) 

= 2 n + k - dim I 

= dim Ann^ I, 

where the first and third equalities follow from Lemma 10 and. 
two remaining equalities follow from Theorem 8 (a).-Hence the 
statement follows by Proposition 5 (d) since (Ann^ J) S<X> 
CAnri^ I. 
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In tlie general case we have 

Ann^ I = U Annz{s1f...,sd} 

= U (Anny J) S<Z> 

= (Anny J)(U S<Z>) 

= (Anny J) S<X>, 

where all sums run over all finite subsets Z of X such that 
iCZ. Hence the proof is completed. 

T h e o r e m 2. If I and J are finitely generated 
ideals in S<X>, then the following statements hold: 

(a) Ann I is finitely generated ideal, 
(b) I = Ann(Ann I), 
(c) Ann I H Ann J = Ann(l + J) » 
(d) Ann I + Ann J = Ann(l fi J) . 
P r o o f , (a) follows immediately from Proposition 11. 

(b) If s e Ann(Ann I), s1 sd are generators of I, and 
I is a finite subset of X such that sis1,...,s(3 e S<Y>, 
then s e Ann^Ann^,,,... ,sd}). By Theorem 8 (b) the last 
ideal coincides with the ideal J generated by s^,...,sd in 
S<Y>. Since J C I , we have proved that Ann{Ann I) C I. The 
opposite inclusion is obvious, (c) is easy and may be omit-
ted. (d) follows simply from (b) and (c) as is shown below 

Ann(l fi J) = (Um [Ann (Ann I) fl Ann (Ann <j)] 
= Ann [Ann(Ann I + Ann J)j 
= Ann, I + Ann J. 

R e m a r k. Observe that by the above facts it is easy 
to show that the ring of structural numbers is a coherent ring 
(see [2] and [?]). 

3 . In the final section of this'paper we compute the an-
nihilator of the ideal generated by finite humber of linearly 
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independent elements of S^. Suppose that t^,...,.tm are such 
m 

elements of S-^ If t-^ = t^ + £ e ^ t ^ e^ e Z2, then it is 
/ 

clear that t^,t2>•••>tm are linearly independent elements 
too and 

t1 ''' ^n = * *' ^m ' 

By repeating this argument we obtain. 
L e m m a 13. If elements t/|i«*.»t £ S^ are linearly 

independent and elements t ^ . . . , ^ e S^ span the same vec-
tor subspace as t/|,...jtm then 

t1 ^m = t1 * " tm* 

C o r o l l a r y 14. Elements t,],..., tffi e S^ art* li-
nearly independent if and only if ... tffl ^ 0. 

P r o o f . If t2$.««»tm are linearly dependent ele-
ments, then it is clear that t^ ... t = 0. Assume that 
t^,..., t m are linearly independent. Let Y = •[ y^,... ,yn J be 
a finite subset of X such that e S<Y>. Let 
tm+1 , , , ,' tn s u c ^ elements of S^<Y> that the elements 
t,|,...,tn form a basis of the vector subspace S^<Y>. Since 
the elements ( 7 i ) » • • • a l s o form a basis of Syj<Y>, by 
Lemma 13 

Hencei in particular», we obtain that t^ ... tffl ̂  0. 

C o r o l l a r y 15. If t^,...,tm are linearly in-
dependent elements of S,j<X>, then the Z 2 - subalgebra A of 
S<X) generated by t^,...,tm is isomorphic to the ring of 
structural numbers S<Y> for any finite set Y with m ele-
ments . 

P r o o f . Let Y = {7i»"'»7mj« Consider the homomor-
phism 

fsZ2[y1t...,yJ S<X> 
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A 

def ined by f ( y = t ^ , i = 1 , . . . , m . Since = 0 the idea l 
generated by squares y | i s oontained in Ker f . Hence f i n -
duces an epimorphism 

fsS<Y> > A. 

Since ••• 7m,)) » t,, . . . tffl ^ 0, we have Ker f = 0 by 
Corollary 3» Hence f i s an isomorphism and the lemma i s 

•proved. 
L e m m a 16. Let X = { ^ } w e W and { tJweW be a ba-

s i s of SyjOO Then t h e r e ex i s t s the unique automorphism 
f iS<X> >S<X> such t h a t f ( {x^ ) ) = t w f o r weW. 

P r o o f . S imi lar ly as in the proof of Corollary 15 
we prove t h a t the re e x i s t s an endomorphism f of S<X> such 
t h a t . f(({li^)!) = t w f o r a l l weW. Since the s e t { t w } w e W 

i s a bas i s of S<X>, a l l elements w e W, belong to 
Im f . Hence f i s an epimorphism. 3y Corollary 15 i t i s 
easy to prove t h a t f i s a monomorphism. Hence f i s an au-
tomorphism. 

T h e o r e m 17« If t / j » . . . » t m a re l i n e a r l y indepen-
dent elements of S^OO, then 

(a) A n n ^ t , , , . . . , ^ ) = (t<, . . . t m ) , 
(b) Ann(t^j f . . . t j = ( ^ . . . . t j . 

P r o o f , (a) By Lemma 16 we may suppose tha t elements 
belong to X. The inc lus ion ( t^ . . . t^) C Ann(t^, . . . 

. . . , t m ) isvobvious. If tyjS s? tgS = . . . = t m s = 0, then as 
i n the proof of Lemma 1 we obta in t h a t s = t^ • . . . t d^ . . . 

. . . d t ( s ) e ( t^ . . . t m ) . Hence the statement (a) i s proved, 
m 

(b) fol lows from (a) and Theorem 12 (b ) . 
C o r o l l a r y 18. Suppose t h a t 

*** m̂ = *** ^n ^ 

where t ^ t ^ e S ^ . Then m=n and ( t ^ , . . i , t m ) = ( t j j , . . . . 
P r o o f . The coro l la ry fol lows immediately from Corol-

l a ry 14 arid Theorem 17 (b ) . 
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