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SUR LA SOMMABILITE FORTE DES SERIES DE FOURIER

§ 1. Introduction. Soit C,, une classe de fonctions de
période 2 et continues dans 1l’intervalle (-, o). Désig-
nons par Sk(x;f) (k=0,1,2,3,...) les sommes partielles de la
série de Fourier

a O
(*) —22 + A (aycos vX + b sinv x)

N

d’une fonction f£€ Gy, et par §k(x;f) (k=142,34+..) les som-
mes partielles de la série conjuguée
(%) Z (a,sinyx ~ b cos rx).

v=
Nous définissons les modules de continuité du premier et du
second ordre de la fonction f€ Co,p oF la fonction conjuguée,
d'une facon connue, par les égalités:

0<h<d | ~mgx<

wa(8) = @ (852) = sup { -max lf(x+h) - f(x)l],'

wo(d) = wy(d3£) = sup max If(x+h) - 2f(x) + f(x—h)' ,
0<hgd |- rex<r '

- .
F(x) = __1;%1% f(x+t)' -1f(x—t) at
/ 2 tg >t

pourvu que cette limite existe pour tout x réel.
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Dans la premiére partie de cette note nous limiterons, au
moyen des modules de continuite de la fonction f ECzﬂ, les
expressions

UI(IP)(X;f) =1 a Z ({{l)'sk(x;f) - f(x) ’ p g—

1

np)(x;f)=4——2 ] (x3£) - £(x IPp’

ol p =1, que l'on rencentre dans la méthode d*Euler-Knopp
de sommabilité forte des séries (x) et (xx).

Dans la deuxiéme partie on établit des limitations pareil-
les pour les déviations

(B)(rep) o] Ty & . P %
v (x3£) =4 e Zo 5 lSk(x,f) - £(x)] %
& .
o a
Vip)(x;f) = e-rE: %g— §k(x;f) - F(x) p’ p
k=0 ’

o p>1, r>0, qui interviennent dans 1’étude de la som-
mabilité forte au sens de Borel des séries (x) et (xx).
Les théorémes obtenus généralisent et développent quel-
ques résultats de L. Rempulska [2].
Pour abréger l'écriture nous utiliserons les notations

9, (t) = £(x+t) - 2 £(x) + fx-t),

Y (t) = £(x+t) - £(x-t).

Les symboles C, Cn(p) (n=1,2,3,...) désigneront des con~
stantes absolues resp. des constantes dépendant seulement du
paramétre p.
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§ 2. La méthode d'kuler-Knopp. ilous etablirons dGlalord 1ie
Théoreme 1. Soit f€C,, une fonctlon de mo-

(t)
dule de continuité w,(d) tel que 1l'intégrale / 2
soit finie, p =1 et -2i

at
2% 1. Alors on a

[ % (t) 7 (t)2q 219
Y 1 “2
UI(IP)(x;f) < Cq(p) ’o/’ Zt at +7;L/é;< T > dt}

pour tout x€(-ocy oo ) et n = 1,2,3,.40

Démonstration., Onsait que

Sp(x58) = £(x) = 3 [o,(5) (%) at,

t]
L1 sin(k+ »)t
Dk(t)=%+Zcosvt= 2

sin kt :os kt
.1 =7 7. YTz
y=7 2sinzt 2t 5%

En vertu de 1'inégalité de liinkowski, on a

comme

n
v
|20 < 55, (O<vsm er ) (P) 2R
' k=0
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on a

A2

7/vn s ‘
p_(t ol t
Aqg%./.l"_(_)_l_dtggf AL
[4

t t
0

En appliquant les inégalités de Schwarz et de Minkowski on
obtient ‘

k=0 0 ’/(’52 tg 5t
n aw
9.(t) 2p] 2p
+[Z /—lz—» cos kt db )
k=0 | 17

on a, d’aprés 1’inégalité de Hausdorff-Young,

a
7 Q 2q
1
As < Cx(D) —sm dt
2< %(p) TA7ap MF }
P (%)

n

24 (t)
2 tg 5 t

1

2q 2q
at :l

tg 4t 2at (0. t< )

Enfin, 1?inégalité
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entraine

.ﬂ‘w (t) 2q 2q
Ao < 0 (p) 7z /< % at
A J

et la conclusion annoncée est ainsi établie (v. aussi [2],
pp.14-15).

Remargque 1. Par une méthode analogue a celle de
la note ([2], p.16-17), on peut démontrer que

‘ 2_1n i (fcl),{sk(mf) - f(x)}|<

v (%) 7 0, (%)
%)
2 AN n1
g 05 / t ’ dt +/ t CcOsS 2 t dt

0 7

n

La derniére intégrale est de 1’ordre 0{02(1AJE)}, puisque

w,{t) ws(s)
;2 <42 si o<s<t<w ([4], p. 116).
S

Ainsi le premier terme joue dans cette limitation un r8le es-
sentiel.
Nous allons maintenant démontrer une inégalité analogue
pour Uﬁp)(x;f).
Théoréme 2. Soit fEC,, une fonction de module
1
wq(%t)
I]
t
nie, p et q étant les mémes que dans le Théoréme 1.

Alors on a
a
dt

~ 7 (4]
UI(IP)(x;f) < 06(p} _1%— at + n,&}p%( 1
A/n

de continuité w,(d) tel que l’intégralle dt soit fi~
. 0

[/
pour tout x et n=1,2,3,...
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Démonstration. Posons

ra
f(x) = =— )/ ———dt (0<h <7).
h T, 2 tg it

Alors, comme on le voit aisément, il existe une limite finie
l:Lm fh(x) = f(x) pour tout x et F(x) est continue dans

1’1ntervalle. (mooyoo)e
Evidemment, on a

B (xsf) - £(x) = (‘é_k(x;f) - fh(x)> +»<f"h(x) - f(x)>

et
1 h
B (x;2) - £ (x) __7,0/1,, £) B (t) at -
1/ t)
- — t t at + dt
,,/wx() /“g% ,

_ 1 cos(k + 3)
D (t) =5 ctg =t -
k 2 2 2 sin > t
I1 en résulte que
. B . A - 1 7 cos(k+ %)t
8y (x2)-Fy (x) = - ;/vx(t)Dk(t)dt + o [ vy (%) s omIe O®
2 # 2

-ainsi que

A
fh(x) - f(x) =%/ﬁ—(2|—dt.
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En vertu de 1’inégalité de Minkowski

1
~ - P D
S (x;f) - £(x) E

(D) (o A - o
U P (x3f)<{ = )
Pl < 2 k;(k

£, (x) -f(x))=Q+R.

En posant h = 1/\/5' et en appliquant de nouveau 1?inégalité
de Minkowski on obtient

n AN
<A A n Y
Q<51 () | / %(t) D (t) at +
27 k=0 G
n T _’L _1_
"1 1 o cos(k+ 3)t p|D
+—43 (k) l/fxi('b) — 3 dt =
7| 2" = o - 2sin3t
n
~ ”
Comme Dk-(t‘)lg 5 (0 <t ), on trouve

D?autre part,

cos(k+ —%—)t 1 1
T = 7 cos kt - ?sin kt .
2 gin 5 t 2 tg 5t

En procédant comme dans la démonstration du Théoréme 1 on ob-
tient
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1
o 2|5 Fuglo) 2p ] 2p
111 n X
B2< ? _22.—11 (k) Z /—é—m cos kt dt +
k=0 k=0 Vo )
1
JT I
S| 7 vle) 2p| 2p
+ Z"T81nktdt <
k=0 4/\/[?
1
2q

IO
407(p);1—}4—p 4< 1 ~>2 atr .

Enfin, comme

Wh
Rg—}/
0

le théoréme se trouve démontré.
Remargue 2. En tenant compte -du théoréme 1 et
de 1’inégalité connue ([4], p.176)

SONCTED foo(ust)
< 2 [ “o\us 2luj
wo(t3F) < cg t/- 3 du +/————u = dul,

W
Wt
JT

[

¥ (%)
2 'bgj'Z—t

[4

on peut aisément obtenir une autre limitation pour 1’expres—
sion Uz(lp)(x;f) = Ur(lp)(x;f) ol figure le module w,(u;f)
(cf. [3]) p.51-52).

§ 3. La méthode de Borel. Nous établirons maintenant des li-
mitations pour les deux autres déviations définies au premier

paragraphe.
Théoreéme 3. Sous les hypothéses du'Théoréme 1 on a

() Wy (5) . [ e\ 124
Vrp (x3%) <09(P) —x— 4t + m[/( > dt:l
0 . €

pour tout x et T >1.
- 12 -
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Démonstration., Posons s=1/T. Alors, en
appliquant 1?inégalité de Minkowski on obtient

(72

1
- ==Y k S5 p —
Vl(‘P)(x;f) <lie I‘; i_!!(/yx(t) D (%) dtl +
1
- k P P _
+]1r e I‘Zi—! /¢x(t) D, (t) dtl } =G+ Gy

En procédant ensuite de méme gque dans la démonstration du
Théoréme 1, on trouve

ainsi que
| % 20
oo 2y 2p|[ 1 2g 7 4q
G, < —+ e‘2rZ(r—k> L —(p’-‘g—?‘— at +
2 KT
7 = & s Ztg‘z"t
N a
AN 2
7, (%) qdl ¢
+ 5 ti .
s i

Comme {[2], p.34)

oo/ 2
= E < e eoo

k=0

, 1
1 ”02(t) q 2q
G < Oq0(P) 783 i o

' G

on trouve

ce qui achéve la démonstration du théoréme.

- 13 -
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Théoréme 4. Sous les hypothéses du théoréme 2
WF x 7
@9

o 2q 2q
TP) (x;2) < C4(0) / a(ct) a + Iﬂ714p {/( 11(;*’)) dt}
¥ v |

pour tout x et r >=1.
Démonstration., De méme que dans la démonstra~
tion du théoréme 2, on a

Alors
= g N
Qg% e"rZo 5 ¥, (t) B(t) dt‘ +
K==

En raisonnant comme auparavant on obtient

"
walt
.H,,< 2/—1—,(6 ) at ,
4]
2 12q
Jgr ’ q q
1 94(*) 1
r L’/"F JI
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Le terme R est le méme que dans la démonstration du théo-
réme 2 et ainsi la conclusion est démontrée.

Remarque 3. Toutes les déviations discutées ci-
~dessus: ng)(x;f), ﬁgp)(x;f), Vgp)(x;f), V§P)(x;f), ¢tant
non décroissantes par rapport & 1l’exposant p > O, on peut
les limiter pour les exposants p€ (0,1) par les expressions
obtenues précédemment, en y mettant p = 1 et q=1 (cf. [2],
p.12 et [5], p.25).

Les remarques du § 2 se rapportent aussi & la méthode de
Borel.

L'auteur tient A remercier M.R. Taberski dont 1les pré-
cieux conseils lui ont permis d’améliorer la rédaction de
cette note.
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