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SUR LA SOMMABILITÉ FORTE DES SERIES DE FOURIER 

§ 1 . Introduct ion. S o i t C 2 j r 11116 c l a s s e ¿L© fonct ions de 
période 2 - r e t continues dans l ' i n t e r v a l l e i - 0 0 » 0 0 ) . Désig-
nons par S j £ ( x { f ) ( k = 0 , 1 , 2 , 3 , . . . ) l e s sommes p a r t i e l l e s de l a 
s é r i e de Fourier 

+ ^ ( a v c o s + b y s i n v x) 
V'1 

d'une fonct ion f € C2jr» et par S j £ ( x j f ) ( k = 1 , 2 , 3 , . . . ) les som-
mes p a r t i e l l e s de l a s é r i e conjuguée 

y 1 ( a y s i n » x - b^cos x ) . 

Nous déf inissons l e s modules de cont inui té du premier et du 
second ordre de l a fonct ion f £ C 2 j r e t la fonction conjuguée, 
d'une facon connue, par l e s é g a l i t é s : 

u A S ) = ^ ( ( T j f ) = sup j max f(x+h) - f ( x ) 

Up{<f) = = sup max 
- jr^xurf 

f (x+h) - 2 f ( x ) + f (x—li) 

f ( x ) = - — lim f f ( * + t ) - A * - * ) d t , 
^ h * ° J 2 t g T t 

pourvu que c e t t e l i m i t e e x i s t e pour tout x r é e l . 
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Dans la première partie de cette note nous limiterons, au 
moyen des modules de continuité de la fonction f € "'"es 
expressions 

1 
l4p)(x;f) = 

u £ P W ) = 
1 f >11' 
„n ? ^k 

i I (£) ) - f M 

S, (x;f) - f(x) 
1 

où p > 1 , que l'on rencontre dans la méthode d'Euler-Knopp 
de sommabilité forte des séries (*) et (•**)• 

Dans la deuxième partie on établit des limitations pareil-
les pour les déviations 

vip)(x;f) = 

-r 

-r 

li 
K=0 

lr 
V L. k! 
k=0 

Sk(x;f) - f(x) 

Sk(x;f) - f(x) 

1_ 
P 

1 
P 

où p >1» r > 0, qui interviennent dans l'étude de la som-
mabilité forte au sens de Borel des séries (*) et (*-*)• 

Les théorèmes obtenus généralisent et développent quel-
ques résultats de L. Rempulska [ 2 ] . 

Pour abréger l'écriture nous utiliserons les notations 

,<?x(t) = f(x+t) - 2 f(x) + f(x-t), 

rx(t) = f(x+t) - f(x-t). 

Les symboles Cn, Cn(p) (n=1,2,2,...) désigneront des con-
stantes absolues resp. des constantes dépendant seulement du 
paramètre p. 
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§ 2. La méthode d'Euler-Knopp. ITous établirons d'abord l e 
T h é o r è m e 1. Soi t f 6 0o ^ une fonct ion de mo-

dule de continuité v0(<?ï) t e l que l ' i n t é g r a l e J — ^ — dt 
1 1 ° so i t f i n i e , p et + j q = 1 • Alors on a 

u ( » ) ( x | f ) ^ ( p ) / 

ÎVîT 
4i2 ( t ) 

dt + dt 
1Mn 

pour tout oo ) et n = 1 , 2 , 3 , . . . 
D é m o n s t r a t i o n . On sa i t que 

JT 
S k ( x ; f ) - f ( x ) y V x ( t ) D k ( t ) dt 

ou 

K 
^ ( t ) = ^ + Y^ c o s " t = 

s in(k+ g-)t sin kt cos kt + — 
2 sin t 2 tg t * 

En vertu de l ' i n é g a l i t é de Minkowski, on a 

u ( p ) ( x ; f ) ^ ± 
n v ' ' ^ jr 

i in £ ffi 
k=0 

i E A . : ^ V * ) 

A . ( t ) D , ( t ) dt 
'/f/f 

i 
IP ! ^ 

— Â j A2 • 

Jomme 

et Y^ (J ) = 2n , 
7To 
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on a 

A 1 < ïfm^lf t + \ 1 / wol t j 

e 

dt . 

En appliquant les inégalités de Schwarz et de Minkowski on 
obtient 

32n Z_ ^ 
- k=0 

2p 
r n i. 7, 

m 2 tg f t 
sin kt dt 

2p 2p 

i I: cos kt dt 
I °1/Vn 

Mais, comme ( [ 1 ] » P«5i?0.) 

2p 2p 

< Co 2 2n 1 

k=o n 1/2 ' 

on a, d'après l ' i n éga l i t é de Hausdorff-Young, 

A2 < C5 (p) 

1 

T » 2 tg j t 
dt 

r 2q 

lXT1 
dt 

2q 

Enfin, l ' i n éga l i t é 

tg -J t > \ t (0.< t < ir) 
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entraîne 

A2 ̂  C4(p) -^¡¡^ 
JT, uJ t) 

A * 

\2q 
at 

2q 

et la conclusion annoncée est ainsi établie (v. aussi [2], 
PP.14-15)• 

R e m a r q u e 1. Par une méthode analogue à celle de 
la note ([2], p.16-17), on peut démontrer que 

5 t -k~0 
€ 

sr 
-c Gc 

[1!\n , . 
ft4üdt + 

'/fir 

^(t) n 1 ^ — cos j t dt 

La dernière intégrale est de l'ordre ojk^ , puisque 

t) CJ2(S) 
-"S— < ^ si 0 < s < t < ? r - ( H , p. 116). 
t s 

Ainsi le premier terme joue dans cette limitation un rôle es-
sentiel. 

Nous allons maintenant démontrer une inégalité analogue 
pour iï£p)(x{f). 

T h é o r è m e 2. Soit f£ C 0~ une fonction de module 
Y / ^ ( t ) 

de continuité ŵ (cF) tel que l'intégrale / — ^ — dt soit fi-
nie, p et q étant les mêmes que dans le Théorème 1. 
Alors on a 

U^)(xîf)< C6(p) 
4/ïn 

I 1 
d t + 745 

r * 

n t / 

2q 
dt 

J_ 2q 

pour tout x et n=1,2,3,... 
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D e m o n s t r a t i o n . Posons 

- / v 1 / V x ( t ) 
f h ( * ) = - 4 7 2 * -i t d t 

/? d t g 2 « 

A l o r s , comme on l e v o i t aisément, i l e x i s t e une l i m i t e f i n i e 
l i m fv,(x) = f ( x ) pour t o u t x et f ( x ) es t continue dans 
h-»-B+ n 

l ' i n t e r v a l l e . ( - » , » » ) . 
Evidemment, on a 

S k ( x ; f ) - f ( x ) = ( s k ( x ; f ) - f j x ) ) + ( f h ( x ) - f ( x ) ) 

e t 

r 
S k ( x ; f ) - f h ( x ) = t ) D k ( t ) dt -

h ^ 

OU 

^ ^ cos(k + 2")t 
D k ( t ) = g ctg r t - 1 . 

2 s m ^ t 

I l en r e s u i t e que 

y. f 1 /. f COS(k+ p-)t 

h s l n 2 r 

•ainsi que 

f j x ) - f (x) = - / x * d t . 
4 2 t g j t 
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En vertu de l'inégalité ¿Le Minkowski 

uî»>(x,f)< T E £ ( k ) S k(x 5f) - fh(x) 
k=0 

1 
P 

> + 

+ fh(x) - f(x) = Q + R . 

En posant h = 1/yîT et en appliquant de nouveau l'inégalité 
de Minkowski on obtient 

n . WiT 3r L © /*<*> dt 
k=0 

3T 

JT 1 
,, „ f cos(k+ o-)t £ E <£> / Tî xrat 

2 *=o ^ f i f r 1 2 v 

1 p 
+ 

= B/j + B2 • 

Comme 
JT Dk(t) < (0 < t on trouve 

lAni / Ni ' f f î l \ fx(t)l „ / ^ ( t ) / dt -i 2 J — - dt . 

D'autre part, 

cos(k+ 

2 sin -g- t 2 tg -¿-t 
1 î]— cos kt - -g-sin kt 

En procédant comme dans la démonstration du Théorème 1 on ob-
tient 
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B 2 < Î 
1 

,2n 

il ' 

k=0 

2p 
I 

L k=0 iApr 
2 t g j t 

cos kt dt 
2p 2p 

n 1 
jr 

sin kt dt 
*=0 V^T 

2p" 

< O 7 ( P ) dt 

2p 

1_ 
2q 

< 

Enfin, comme 

jr 
Y^t) 

2 tg -g- t 
dt < 

1/Jn 

ï/1 dt , 

l e théorème se trouve démontré. 
R e m a r q u e 2. En tenant compte du théorème ï et 

de l ' i n éga l i t é connue ( [ 4 ] , p.176) 

u2{tff) s? C8 
2 / ^ ( u ; f ) r o 2 { u j f ) 

u du 

on peut aisément obtenir une autre l imitation pour l 'expres-
sion ÏÏ^p)(xjf) = U^ p ) ( x ; f ) où f igure le module u 2 ( u j f ) 
( c f . [5 ] , p,51-52). 

§ Î a méthode de Borel. Nous établirons maintenant des l i -
mitations pour les deux autres déviations définies au premier 
paragraphe. 

T h é o r è m e J. Sous les hypothèses du Théorème 1 on a 

4 p ) ( x ; f ) ^ C 9 ( p ) 
f 'A* 'fi / / W2(t) 1 

dt + —1 
TAp 

- Jr J M t )N 
2q 

dt 
2q 

pour tout x et r ^ 1. 
- 1 2 -
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D é m o n s t r a t i o n . Posons s = 1/^F. Alors, en 
appliquant l'inégalité de Minkowski on obtient 

r(*>(x,f) 
JT e " r E i r | A ^ ) D * ( t ) d t 

k = 0 

1 
p I p 

r 
~ k 

9 _ r Z kl « A x ^ D k ^ ) d t 
k = 0 -5 

= G. + Go . 

En procédant ensuite de même que dans la démonstration du 
Théorème 1, on trouve 

e -r ï # y 
k = 0 

T -
dt 

p 1 A>2(t) 
< t J -V-dt 

ainsi que 

2 ̂  Jt 
~-2r 

k=0 

, -TL 
2p 

> < / 2 tg pL t 2q 

dt 

J_ 
2q 

TT 

J 
9x{t) 2q 

dt 

i 
2q 

Comme ([2], p.34) 

* = 0 
on trouve 

G 2 < C10(P) / bp(t) 2q 

dt 
2q 

ce qui achève la démonstration du théorème. 
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T h é o r è m e 4. Sous les hypotheses du théorème 2 
on a 

V ^ W ) < 0 ^ ( 5 ) 

r '/VF , . r Jr 
A u i ( t ) 1 r /? 

0 L 

t ) 
dt 

J_1 
2q 

pour tout x et r ^ 1. 
D e m o n s t r a t i o n . De même que dans la démonstra-

tion du théorème 2, on a 

i r - ? h ( x ) k=û 

'•) 1 

f (x) - f h ( x ) = Q + R 

Alors 

^ k I ^ 
~rLh \JvxW d t 

Jo 

± p 

00 k I / 
r r I i r ! / ^ v * ) d t 

= + H-2 • 

En raisonnant comme auparavant on obtient 

H ^ 2 / dt , 

H2 ^ C12(p^ 1/4p 

.rr 

/ 
1/1F 

s i 1 3 ) 
2q 2q 

dt 
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Le terme R est le même que dans la démonstration du théo-
rème 2 et ainsi la conclusion est démontrée. 

R e m a r q u e J>. Toutes les déviations discutées ci-
-dessus: u£p)(x;f), U^p)(x;f), V^p)(x;f), v£p)(x;f), étant 
non décroissantes par rapport à l'exposant p > 0, on peut 
les limiter pour les exposants p£ (0,1) par les expressions 
obtenues précédemment, en y mettant p = 1 et q=1 (cf. [2], 
p.12 et [5], p.25). 

Les remarques du § 2 se rapportent aussi à la méthode de 
Borel. 

L'auteur tient à remercier M.R. Taberski dont les pré-
cieux conseils lui ont permis d'améliorer la rédaction de 
cette note. 
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