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Wactaw Dyczka

POLYA DISTRIBUTION
CONNECTED WITH THE PROBLEM OF BAYES

0. Introduction. In this paper we attempt
to transfer some considerations carried out in [3] and [7] to
case when we start not with a binomial or a hypergeometrical
distribution but with a Polya distribution:

n) p[m,-a] q [n-m,-a]

P(X=m) = (m oy

) m=0,1,2,...,n, (101)

where: p, g, o are arbitrary real numbers which satisfy the
conditions p>0, q>0, p+q=1, n (-x)<min (p,q) and the
expression xlnn] is a factorial polynomial of the r-th
degree with respect to x

x[r'h]' = X(X—h) (X-Qh) eee (x"(r—1 )h)i

(we shall write =[T]. instead of x(" if h = 1).

A corresponding model of drawing lots called in the paper
the continuous scheme ~f Polya has been assigned to this di-
stribution. According to the conditions of the scheme we
perform n, experiments, the parameter p of Polye distribu-
tion being treated as a realization of the random variable P
with the density £(p). X, stands. for a random variable
whose values are the numbers of successes in the result of
the whole experiment which consists in obtaining the number
P 1in a random way and performing n, experiments, according
to the continuous Polya scheme.
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2 W.Dyczka

The distribution of this variable has been deduced for
an arbitrary admissible density f(p) and in the special ca-
ses when f(p) is the.density (1.7) and (1.8): the uniform
and the beta distribution respectively. It has been found
that a special case of thé obtained distribution of the va-
riable X, (if f(p) dis given by the formula (1.8)) is again
a Polya distribution (with positive f ).

The ordinary and factorial moments of this variable, in
particular the mean value and the variance, have been found
for the general case as well as for the special cases of the
random variable X,. This is the contents of § 1 and § 2. In
§ 3 and § 4 the random variable X2 whose values are the
numbers of successes in the further n, random experiments
performed according to the continuous Polya scheme under the
condition that the mentioned experiment results in n,
successes, is being considered; the distribution of the random
variable X,|X; and its moments have been deduced.

The distribution and their moments obtained in this paper
are rather complicated (but also general); +this follows from
the fact that the starting point is the relatively general
and complicated distribution (4.1). The problems discussed in
the paper may be extended to the case of a discrete distribu-
tion of the random variasble P, by replacing the Riemann
integrals appearing in the formulas by Stieltjes integrals
with respect to the distribution function F(p) of the discre-
te random variable P with the values from the interval
(031). In this case integration has been replaced by summa-
tion. Practical examples corresponding to the model discussed
in the paper are similar.

§ 1. THE DISTRIBUTION OF THE RANDOM VARIABLE X1
1% The Yontinuous" Polya s che -
m e. Polya distribution (1.1) 1is more general then the

distribution
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Polya distribution 3

M[m:‘5] (N - M)[n—m,—s]

] y M=0,1,25¢00,0, {1.2)

P(X=m) = (n)

m

connceted with the urn Polya scheme [2], because the probabi-
lity p = M/N in the latter is a rational number of the in-
terval (0,1) while in the former it is an arbitrary real
number from this interval. But the Polya scheme corresponds
to Polya distribution (1.1) with the following modification.
We perform n random experiments in such a way that the pro-
bability of a success varies from sample to sample: let ©p be
the probability of a success in the first sample, 0<p<1; if
1 successes and k-1 failures have Dbeen realized in the
first Xk experiments, the probability of a success in the
(k+1)-st experiment is defined as follows

D+ lo . (1.3)

Hence it follows that the probability of m successes in
n experimehts with an arbitréry order 1is given - by formula
(1.1). Probabilities (1.3) and (1.1) are also well defined
for « < 0 under the condition that n{(-o)< min (p,q); since
then p + la>0, 1=0,1,2,00eyn, 1+ka>0, k=0,1,2,...,n and
(p+ 1o): (14ka) €13 it is evident that +the last condition
holds if, taking into account the foregoing, we write it in
the form (k-1)(-o)<q. The above described scheme may be
termed the continuous Polya scheme, %o distinguish it from
the ordinaryﬂ(discrete) urn scheme of Polya.

2. Introduction of t he randomn
variable X1. We perform +the following composed
experiment: a number pe(0,1) is obtained by a random method,
as a realization of a random variable P  with +the density
£f(p) for pe(0,1) and O for pe(0,1); next we carry out
n, experiments according to the caontinuous scheme of Polya
defined above i.e. with ‘the (conditional) probability of
success Sk+1 in the (k+1)-st experiment given by the for-
mula
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4 W.Dyczka

P(8,,4|P=p) = B-E1% | %=0,1,2,...,00-15 1<k (1.3

Let X‘l be a random variable whose values are the numbers
of successes resulting from the whole experiment; thus X1 can
have the values 0,1,2,...,n1. The conditional probability
of the random variable X,I with the condition P=p i.e. the
distribution of the random variable (X1|P=p) is independent
of the distribution f(p) of the random variable P, and
it is a Polya distribution: '

n [my-o]  [ng=my-o]
1> D q » 11=0,1,2y000 e (1.4)

P(X,I =m,]| P=p) = <m1 q["h'“]

The inconditional distribution of the random variable X1
is obtained by applying the theorem on the total probability

1
0

- 1["v‘“]

j P[’“1'"°‘] é["j'”‘v‘“]

f£(p)dp, my=0,1,2peeyny. (1.5)

The function under the last integral is inconvenient for
integrating because it involves except f(p) also the product
of factorial polynomials. But if we +take 1into account the
following relationshirs
my

m m,-i
5, (-0 ' pt 5

[m1,—ot]
Y

q[n1‘m1y'°'*] - E sjn1'm1 (_a)"1‘m1‘.| qj
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Polya distribution 5

in which s? stand for the Stirling numbers of +the <first
kind i.e. the coefficients (with respect to x) in the iden-
tity

1 2 -
x[n] = sg + sx,%x + sgx + oeos sg_,]xn 1 + Bixno

then formula (1.5) takes the following, more expanded form:

04
<m my,ny-my: -
1 1 Mmm

ny-i-} L
P(Xy=m,) s DAL (- fplqaf(p)dp. (1.6)
1 1 i,j=0 0

m1 = O,/I,ooo ’n,]o

3. Particular cases with res -
pect t o t he distribution of t he
random variable P, The inconditional distri-
bution of the random variable X,] depends essentially on the
density f(p) of the random variable P. Consider now two
particular cases of the distribution of the random variable P.

(a) The random variable P 1is subject %o a wniform di-
stribution with the density

‘1 for 0<p<1

f(p) (1.7)
0 for p<£0 or p»1i

(the postulate of Bayes).
(b) The random variable P is subject to a beta distri-
bution with the density

r{1/s) YB-1_(1-9)/p-1
2P) =\ro7mTCCi=n/p P @

0 for p< O or p 21,

for 0<p<1
(1.8)

+ and B being arblitary numbers which satisfy the conditions
0<¥<1, p>0.
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6 W.Dyczka

If the random variable P has uniform distribution (1.7},
then formulas (1.5) and (1.6) become respectively

(=)

1
[my-a]  [ng-my,-o]

P(X=n) =753 fp 1 dp,  my = 0,1,e0uynyy  (1.9)

1 0

<n1> my,n,-m
m oMM m pgem ng-i-j
1 4 1 1 1 .

p(x,]-m,l) oy ey > 8; S (- B(i+1,j+1),

1 Lj=

(1.10)
m,‘ = 0,1,...,1‘11,
B(x,y) being the beta function.
For P with beta distribution (1.8) formula (1.6) is
transformed to the following

n . .
1 - m ny-m ny-i-j ) i,-
<m1> My, Ny=my < 1 5.1 1(-—(1) i 0[1 ] (1-0)[, p]

¥ = - i 73
P(x’l—m']) '1 [ny,-«] 1[“}“_!3] ’ (1.11)

Lj=0

since

r(1/s
INE

[ -

{1
r{ K

1
WRti-1 _(1-%)/prj-1 N
NEYE 17p) ! p q dp =

- r(o/p%}{ﬂo)/m B(»/B+i, (1-2)/p+j) =

r{1/p6) I"(v[[}+i)|"((1-1))[|§+j) _
= Tr(a/pIT((1=0)/B) r{1/p+i+j) -

';H(/f) _ ro/p) (v/0) r((1-9)/8) ((1=0)/8)07 ")

= r(ﬂ/ﬁ ‘t?')/fS) r(‘l/ﬁ)(']/ﬁ)[uj’_ﬂ

= (o/8) 1 ((1-0)7p) 007" oLl (q_g)li-P]

(1/[5)[1*1}‘1] 1[i+j,-ﬁ]

- 150 -



Polya distribution 7

4, Particular cases with respect
t o t he parameter o.

Let in the formulas (1.3), (1.4), (1.5), (1.6}, (1.9),
(1.10), (1.11) the parameter o« = 0; then these formulas be-
come simpler and take the form

P(sk+1|P = P) 1= Py (1'33)
n m, ny-m
P(X1=m1|P=p)=<m:>p1q1 ! , {1.4a)
1
n m, n-m (1.5a)
P(Xy = my) = <m1> fp1 q f(pldp, (1.6a)
0
1
n m Ny-my
I>(x1=m1)=<ml>f1;>1q1 dp =
0

(1.9a), (1.10a)

(Y B(mtmy emtt) = —]
TAm M+, =M+ T+ 1?

(1.11a)

i . n, 1)['"11‘(5] (1_0‘)[”1‘"‘1"(5]
L m1' - m1 1["1"3]

respectively.

The last formula yields Polya distribution (1.4) with »
and p instead of p and o (if we are confined only to the
positive values of the parameter «); this can be explained
as follows. The obtained distribution (1.11) may be treated
ag the composition of Polya distribution (1.4) with Dbeta
distribution (1.8); on the other hand +the composition of a
binomial distribution with a beta distribution with sui-
tablyb chosen parameters ylelds a Polya distribution. The
problem which has been considered here is more general
{because the Polya distribution is more general than the
binomial distribution). The +%wo problems become equivalent
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8 o W,.Dyczka

if we accept o = 0, hence formula (1.11) for a =0 is a
Polya distribution.

§ 2. THE MOMENTS OF THE RANDOM VARIABLE X,

1l Pactorial moment s. An ordinary fac-
torial moment of the random ‘'variable X1 with distribution
(1.5) (or in the transformed form (1.6)) is given by the
formula '

N .
q[r] = 1—[—;_,_1—“] Z s:]'.":('—a)r-i E(Pl), (2.1)
i=0

where E(Pi) is the average value of the random variable pt

(i.e. the 1i~th ordinary moment).

In fact, applying in succession: the definition of the
r-th factorial moment, the distribution of the random variable
Xy given by formula (1.5), the following formula for the
r-th moment of the Polya distribution [1]

n1[r] plr-ed

o [I‘] = 1 [r, -a] ’

the sum- form of a factorial polynomial and the definition of
the mean value of a function of a random variable we find

*[r] * 21 n™) R(x = my) -
my=0

n1> [my,-]  [ng-my,-o]
q

n 1 <m D
= ?: m‘I[r]' f - 1[n1v-oc] ' *p) dp -

my=0 ~ -0
B9\ _[my-e] [ng-mg-o)
1 p q
- [r] (m1)
/ >" o

my=0
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Polya distribution 9

1 n‘l'_r] p[r,—a]

='/'__1~['_':]— f(p) dp =
0

Y C

i=0

[r] r 1

4

t=0 0

NEI

L S (e s(eh,
' i=0 .

If now P has uniform distribution (1.7}, then E(Pi) =
= 1/(1+i) and formula (2.1) becomes:

nf o o] (™

oL ='——~a—‘ —‘T—.‘—— . (2.2)
[I'] 1[!‘, ] Y + 1

For P with distribution beta (1.8) E(2l)= olvFl/1(i-f]
and formula (2.1) is transformed to
r S;E (-Cx)r-i 1)[&»'{3}

)
a[r] =‘1[r"°‘] ; 1['::"5:‘] * (203)

Let in formulas (2.1), (2.2), (2.3) the parameter o = O,
then they become simpler being reduced to the form

%rp] = n[r] E(P), (2.1a)
[r]
orp] = %; , (2.2a)
(r] , 8]
“lx) = E (2.3a)



10 W;Dyczka

The last formula is the r-th factorial moment of the Polya
distribution, what obviously could have been expected.

2. Ordinary momemnt s. The ordinary moments
of the random variable X, (and of its particular cases) are
obtained by making use of +the deduced formulas for the
factorial moments and of the following forfula which expresses
the ordinary moments in terms of factorial moments

.
- r
% = ; Si OL[i],
where Sg are Stirling numbers of the second kind i.e. the
coefficients in the identity

= S + 57 ry (1] + 55 r,[2] + oeee + S§_1x[r'1] + 8 x[Iq

Thus the ordinary moment o, of the random variable X,

with distribution (1.6) is given by the formula

r

bl : s .
op= > 85T S o (¥ BN, (200)
e e

In particular if P has uniform distribution (1.7) or

beta distribution (1.8), then the ordinary moment o, of the

random variable - X, is expressed by appropriately simpler

formulas:

SJ (-ot)']_l
ZE: J 1D,a] ZE: i+ 1 (2.5)

si (- a)j -1 0[1’-ﬁ

“r = Z 31[;, a3 Z Tie] . (2.6)

The formulas become simpler if we accept o = O:

ap = > 55 nlilE(ed), (2.4a)

T Ly
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Polya distribution - 11

. nld]
r 1
o = 5 Sj 753 (2.5a)
=

. old] li-8]
o4 = S_; . — . (2.6&)
2T 2 % 6

The last three formulas are just the ordinary moments of the
composition of a binomial distribution and of a distribution
with the density - f(p). Formulas (2.5a) and (2.6a) are par-
ticular cases of formula (2.4a) which are obtained by accep-
ting for f(p) +the densities (1.7) and (1.8) respectively.

3, Mean value and variamnce. For-
mulas (2.1) - (2.6) obtained above involve Stirling numbers
of the first and the second kinds. To make use of them for
finding moments (especially those of higher orders) one must
have the tables of Stirling numbers or find them from the
following reccurence formulas {[4], [6]):

r+1 ;o r

s§+1 = 8] 4 - T8 .

One may also proceed in another way, namely taking into
account that the r-th (ordinary, factorial) moment of
distribution (1.6) is the mean value of the r-th (ordinary
factorial) moment of the Polya distribution, if the. parameter
p -appearing in the formulas for the moments of the Polya
distribution be treated as a realization of the random
varigble P with the density f(p). i.e.

E(g(X,)) =E(E,(g(x1)|1>)) ‘where g(X;) = 11[1'] or g(X,) = X5 .

Now this method shall be applied to finding the mean value-
and the variance of the random variable X1 (together with
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12 W.Dyczka

the particular cases). Making use of the first and the second
moments of the Polya distribution we find

E(X,) = E(E(X1IP)) = E(n,P) = n, E(P), (2.7)

E(x]) = E(E(X5|P)) = E(nyP(myP + 1 = P + nga)/(14a)) =

= ({1 + new) E(P) + (n, - 1) E(B2))
"1+ 1 1
by which
p2(x,) = E(x2) - E%(x,) =
- (14 nye) E(B) + (ny=1) B(P2) + n, (14a) B2(P)) =  (2.8)
D ’ 1 1 1 = .

- (e (1-E(P)) B(P) + n,D2(P) + E(P) - E(P2))
T 14+ 1 1 *

To find the variance D2(X1) we could have also employed the
formula

D2(X) = 5] -0c12 + ooy .

If P has distribution (1.7), then the mean value and the
variance of the random variable X, are represented as fol-

lows
4
E(X1) = _é_ ] (2.9)
2 4 ‘
D (X‘l) =12 (1 + o) (3 ngx + 0y + 24, (2.10)

For P with distribution beta (1.8)
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n,%
D2(Xy) = g (nge(1=9) + ngp 153 - 2B 41), (2.12)

since then:

E(P) = », E(P?) = 2§ﬂiiﬁﬁl . 02(p) = @1}(} = :) .

When o = 0, then the formulas for mean values (2.7},
(2.9), (2.11), do not involve the parameter « and remain

unchanged, while variances (2.8), (2.10), (2.12) are trans-
formed as follows

p?(X,) = n; (n0%(R) + E(P) - E(P?)), (2.8a)
( 2)
p2(x,) = El——;%—i—~— , (2.10a)
o n10~(1 -3) (1 + n1B)
D°(X4) = T+ . (2.12a)

The last formula yields the variance of the Polya distribution.

§ 3. THE DISTRIBUTION OF THE RANDOM VARIABLE X2|X1

1« Introduction of t he random
variable X2|X1. On. performing a composed experiment
in which m, successes have been realizedy we carry out
further n, experiments according to the conditions of the
continuous Polya scheme. Let X2 be a random variable whose
values are the numbers of successes in those n, experiments.
The probability of success in the first experiment of the
second series is thus

P + myo

1 + n1a, * (301)
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14 W.Dyczka

The conditional probability of +the random variable X2
with the conditions Xy=mq, P=p 18 again a Polya distri-
bution:

P(X, = mzlx1 =m, P=p)=

05\ (p+me) [ma.me] (g+(ny-m, )a)[nz-mz'-‘“]
B <m > (1+n1a)[n2|'°‘] y m2=0,1,...,n2. (3.2)

2

If « <0 it is assumed that the condition: (q+n2H—d<mmﬂp,q)
holds.

Now we shall be concerned with the random variable X2|X1,
its unconditional probability (with respect to P)is obtained
by applying the theorem on the tatal probability

1
P(Xy=my| X,=m,) = [ P(P=p|Xy=m;) P(X,=m,|X;=m;, P=p) dp. (3.3
. 0

The second factor under the integral is given by formula (3.2),
the first is obtained by applying the appropriate case of the
Bayes theorem and taking into consideration formula (1.4):
P(X, = my|P = p) £(p)
= 1 =
J B(xy = my|P = p) £(p) dp
0

[my-a]  [ny-my,-a]
9

j’p["‘ﬁ‘“] q[”1“m1v'°‘]

0
On substituting (3.2) and (3.4) into (3.3) we get

f(p)
f(p) dp

P(Xy = mp|Xy = my) =

<“2> b r-a) [nemeo] m = myem
' ' fipld
i [ ki P (3.5)

. - ' I'my,-a -My,-0 =
(1+n1ot)[n2' ] ofp[ n-a] q[”1 m ] £(p)dp n = ny+n,.
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Polya distribution 15

On replacing the product of the factorial polynomials
appearing under the integral of the last <formula by the sum,
this formula is reduced to the form

P(x2 = mzll(,1 = m1) =

n m,n-m , Y
> _ N .
<"‘2> ;srf 53 (=) _of B o3 £(p) ap

= — — 9 (306)
[n2.-a] WM m, n-my ny-ij ! .
(1+n4) jf:; s, 85 (-9 { o' o¥ £(p) ap
. bLY =
where 'm==m1+ my, n=ny+n,,
with simpler integrals.
2, Particular cases with res -

pect to t he distribution of +the
ran dom variable P. If uniform distribution
(1.7) of the random variable P is assumed, then formulas
(3.5) and {3.6) are reduced to the following simpler form

P(X, = m,y|Xy = my) =
.
n m,- & ~m,-
<mg> !p[ R m

’ (3.7)
dp n = n,+n,

m1 +1112

[nzmo] ‘/JAp-E"‘v'"‘] q[“r’"tv' o]

(140, )

1]

P(X, = my|Xy = my) =

n mn-m .
2 m _n-m n-i-j . .
<m2> i§=osi 85 (-«) B(i+1,j+1)
Ny, -] ™ m ne-m ny-i-j
(14n,e)" sl s (- B(141,341)
7= *+ J

. (3.8)

For a random variable P with beta distribution (1.8), di-
stribution (3.6) becomes

-]59_



16 W.Dyczka

P(X, = mp|Xy = my) =

() S e £ @b o)

_ 0y =3
= [ng,~o] DM, m,  nem m-i-j  [i,-8] [i.-8), [i+j,-B]
('l+n,|a) ’ E <Si1 t:‘»j1 ! (-oc)1 v {(1=0) /1l )--‘
Lo ‘
3. Particular cases with res -
pect to t he parameter « Let the para-

meter « = 0 in formulas (3.1}, (3.2), (3.4), (3.5), {3.7),
(3.8), (3.9), this means the reduction of a continuous Polya
scheme to a Bernoulli scheme. These formulas become simpler
assuming respectively the forms: (3.1a) P (of the success in
the first experiment of the second series) = p, ‘

n m Ny,~m
P(X, = my|Xy = my, P =p) = <m§> p2q’ ', (3.2a)
m1 ny-my ( )
: P f '
PR = p|Xy = my) = =B, (3.4a)
fp q f(p) dp
0
n m -m o= my+n,
P(X,=my| X =my) = <m2> f P f(p)dp ' (3.5a)
f p ! f(plap 0= D0
P(X, = my|Xy = my) =
1 .
m n-m
_ (P2 fop q 4P /Bo\ B(m+ 1, n 4+ 1) (3.7a), (3.88)
T\, [ omy e T \m, B{my + 1, ny + 1) . ’ .
Ofp q dp
P(X, = my|Xy = my) =
] <n2> 20 1o AR
My 1},[’"1"{3’] (1_0)[”1'”’1'“(5] /1["1"”’]

- 160 -



Polya distribution 17

(B 4oy mmg )P

ﬁ)[”m‘ﬁ]

<n2> (o+my B)
i {1 + n,

Formula (3.9a) implies the following. If the continuous Polya
scheme appearing:'in the experiment is replaced by a Bernoullie
scheme i.e, if o« =0, and the random variable P has distri-
bution (1.8), then, the random variable X2|X1 has Polya dis-
tribution (3.9a).

§ 4. THE MOMENTS OF THE RANDOM VARIABIE X,|X,

An ordinary factorial moment of the random variable X2|X1
is given by the formula

1 .
ngr] Aiﬁlﬂmﬁ“‘“]q[m‘mv‘“] £(p)dp

! - - -
aﬂﬁ'“] J p[mh o] q[m my, - o] £

(4.1)

*[r]

(1 + n, pldp

or in a more éxtended form

M1, Ne-My

PP | .
m,+r ng-m ne+r-i-j .
r 1ty nemmy 1 i
A L MY LS OT
Te] = [r-o] R —— npiej ! *
. - 4 1= My (! i3
(14n,a) : 8y 8y (- fp a'f(p)dp.
0

WY

In fact, emploing in succession the definition of the 1p-th
ordinary factorial moment, +the distribution (3.5) of the
random variable X,|X; and the formula for the r-th ordinary
moment of the Polya distribution we obtain
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18 _ W.Dyczka.

* (2] Zm x"z"‘ =n,)=

' [mg,-a [ng-mz,-a]

o o g el e
fp[ ] [1 It ]t() [l']( ) [n:'_:] ) dp
o ) (1+n1<x) )

my=0

f -a =My, =0
fp[m" VBl e

0

[[mn DL ([, [n-al/(mu)f“‘f‘])r(p>ap

f’ [mo-a] Inmo-ed
P
0

g e Tl o
0
- 1 Mg
(1“0‘ el b{p[m q[n1 " ]f(p) d -

On replacing the product of factorial polynomials appearing
under the integral in the numerator and in the denominator

by the corresponding sum we get (4.1).
For P with uniform distribution (1.7) formulas (4.1) and

(4.1') become

R 1
[m +r,-(1] [n -m y'°‘]
ngr] .4 P g ap :
o = -
[r] (1 + n a)[r' ] J [my,-o Ng-My,- o » (4.2
1 / 1 ] ) [1 1 ]
P q dp
, 9
Mg+, Ny-My Myl Ngrr-i-j. ny+r-i-j
[r] ) Si Sj (-or.) B(i+1,j+'])
o = = (4.2)
[r] [r-«] @ "1 M m ny-m ny-i-j *
(’I+n,loc)v si’ sj‘ " (-0 J_ B(i+1,3+1) .

1,j=0

_ If P 1is subject to distribution bveta  (1.8), formula
(4.1') is reduced to : '
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MM mse ng-m, (-o‘)n1+r—i-1( fi- [5] [j B]/ [i+i, B])

[r] E s 8
O e o i (Do (DAl enne] )
r r-o m,n-Mmy p n -0 ) -L= i,- s t+ ], .
(a0) 20'11 °j1 ! (ew) 1 ( ” /1 )
L= .

If in formulas (4.1), (4.2), (4.27, (4.3) we put « =0
we obtain respectively the formulas

OL'l = ’ (4-13)
(] fp"H q”1 1 £(p) dp
i
1
o 4T d T telap
*Ir] B /1 my ne-my
p D
b
[r] B(m1+r+1, ny-my+1) Er] (m1 +1)!

B(my+1, ny -my +1) (n1+3)[”'ﬂ . (4.2a)

a[ ] _ ngr] v[mfr.-a] (1_0)[01‘m1,—f3] /1[n1+r,_r3]. _
a zb[m"-ﬁ] (l]_v)[”th'ﬂ] /1[n,,—{5]

.ngr]. (1}+m1f5)[r'-ﬁ]

= . : (4.33)
[ry'ﬂ]
- (14nyB). :

The ordinary moments of the random variable X2|X1 can.
easily by obtained using the factorial moments found above and
the quoted relationship expressiné the ‘ordinary moments in
terms of the factorial ones. -

§ 5. EXAMPLES

Suppose that a large number of industrial enterprises form
a union. We may accept that 1° the occurence of an accident
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in one of them is a random event, 2° +the occurence of an
accident in some enterprise reduces the probability of another
accident in the same enterprise (because the care for security
measures is then increased), 30 the probability of an accident
in different enterprsees in the unit of time is different. We
observe the enterprise in which the next accident happens;
what is the probability of m, accidents within n, units of
time in an enterprise in which an acc¢ident has accured (if we
dassume that only one accident is possible in a unit of time,
this is the case if for instance the accident makes the work
impogsible during the whole unit of time).

Thus in this problem it may be assumed that the parameter
p is a realization of the random variable P in the mearing
that the observed enterprise has been chosen at random from
all the enterprises in the union, If moreover we take into
account assumption 20, then it is seen that m, is a realiza-
tion of theé random variable X,I considered in the paper and
thus the required probability is given by formula (1.6), which
unfortunately involves an unknown density f(p) and an unlkmown
parameter o 3 they should be taken from the preceding obser-
vation of the problem. The method of estimating the parameters
+ and B appearing in the density f(p) defined by formula
(1.8) is given in paper [5].

There is a number of similar examples. It suffices to
replace the industrial enterprises in the above example by
various populations (e.g. by professions if human populations
are concerned), and the accident by contraction of an infec-~
+tions disease (every infection increases +the chances of a
next one).

If seems that the distribution of +the random variable
X2|X1 may also be employed in such situations as those quoted
above if the present data are used to estimate the future (and
the past data to estimate the present).
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