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POLYA DISTRIBUTION 
COriNECTED WITH THE PROBLEM OF BAYES 

0. I n t r o d u c t i o n . In th i s paper we attempt 
to t ransfer some considerations carried out in [3] and [7] to 
oase when we s tar t not with a binomial or a hypergeometrical 
distr ibut ion but with a Polya dis tr ibut ion: 

/ _ 1 n [ m , - a ] [ n - m , - a ] 
P(X=m) = (¿j) — i [ n i q a ] , m = 0 , 1 , 2 (1 .1) 

where: p, q,<x are arbitrary r e a l numbers which sa t i s fy the 
conditions p > 0 , q > 0 , p + q = 1, n ( - a ) 4 min (p,q)andthe 
expression x ' - 1 " ' i s a f a c t o r i a l polynomial of the r - t h 
degree with respect to x 

xf r-h] = x(x-h) (x-2h) . . . ( x - ( r - 1 ) h ) , 

(we shal l write x ^ instead of x ^ ' ] i f h = 1 ) . 
A corresponding model of drawing l o t s cal led in the paper 

the continuous scheme n? Polya has been assigned to t h i s di -
s t r ibut ion . According to the conditions of the scheme we 
perform n̂  experiments, the parameter p of Polya distr ibu-
t ion being treated as a rea l iza t ion of the random variable P 
with the density f ( p ) . stands, for a random variable 
whose values are the numbers of successes in the resul t of 
the whole experiment whioh consists in obtaining the number 
p in a random way and performing iLj experiments, according 
to the continuous Polya scheme. 
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2 W.Dyczka 

The distribution of this variable has been deduced for 
an arbitrary admissible density f(p) and in the special ca-
ses 'when f(p) is the. density (1.7) and (1.8): the uniform 
and the beta distribution respectively. It has been found 
that a special case of thè obtained distribution of the va-
riable X1 (if f(p) is given by the formula (1.8))is again 
a Polya distribution (with positive (3 ). 

The ordinary and factorial moments of this variable, in 
particular the mean value and the variance, have been found 
for the general case as well as for the special cases of the 
random variable X1. This is the contents of § 1 and § 2. In 
§ 3 and § 4 the random variable X2 whose values are the 
numbers of successes in the further n2 random experiments 
performed according to the continuous Polya scheme under the 
condition that the mentioned experiment results in n., 
successes, is being considered; the distribution of the random 
variable X2|X1 and its moments have been deduced. 

The distribution and their moments obtained in this paper 
are rather complicated (but also general); this follows from 
the fact that the starting point is the relatively general 
and complicated distribution (1.1). The problems discussed in 
the paper may be extended to the case of a discrete distribu-
tion of the random variable P, by replacing the Riemann 
integrals appearing in the formulas by Stieltjes integrals 
with respect to the distribution function F(p) of the discre-
te random variable P with the values from the interval 
(0;1). In this case integration has been replaced by summa-
tion. Practical examples corresponding to the model discussed 
in the paper are similar. 

§ '1. THE DISTRIBUTION OF THE RANDOM VARIABLE X1 

1. T h e " c o n t i n u o u a" P o l y a s c h e -
m e. Polya distribution (1.1) is more general then the 
distribution 
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Polya distribution 3 

P(X = m) , ( g ) MCm'-Sl ¡ * n ; _ f . , m=0,1,2,. . . ,n, (1.2) 

connceted with the urn Polya scheme [ 2 ] , because the probabi-
l i t y p = M/N in the lat ter is a rational number of the in-
terval (0,1) while in the former i t is an arbitrary real 
number from this interval. But the Polya scheme corresponds 
to Polya distribution (1.1) with the following modification. 
We perform n random experiments in such a way that the pro-
babi l i ty of a success varies from sample to sample: le t p be 
the probability of a success in the f i r s t sample, 0 < p < 1 ; i f 
1 successes and k-1 fai lures have been realized in the 
f i r s t k experiments, the probability of a success in the 
(k+ l ) -s t experiment is defined as follows 

P + 1<x (1 x) 
1 + k<x . 

Hence i t follows that the probability of m successes in 
n experiments with an arbitrary order is given by formula 
(1 .1 ) . Probabil it ies (1.3) and (1.1) are also well defined 
fo r a ^ O under the condition that n ( -a )4 min (p ,q ) ; since 
then p + !<x> 0, 1 = 0 ,1 ,2 , . . . ,n, 1 + ka>0, k=0,1,2,... ,n and 
(p+ l a ) : (1+ka) < 1; i t is evident that the last condition 
holds i f , taking into account the foregoing, we write i t in 
the form ( k - l ) ( - a ) < q. The above described scheme may be 
termed the continuous Polya scheme, to distinguish i t from 
the ordinary (discrete) urn scheme of Polya. 

2. I n t r o d u c t i o n o f t h e r a n d o m 
v a r i a b l e X^. We perform the following composed 
experiment: a number pe.(0,l) is obtained by a random method, 
as a realization of a random variable P with the density 
f ( p ) for pe (0 , l ) and 0 for p e ( 0 , l ) ; next we carry out 
n^ experiments according to the continuous scheme of Polya 
defined above i . e . with the (conditional) probability of 
success in the (k+l ) -s t experiment given by the f o r -
mula 
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W.Dyczka 

P(Sk+1 lP=p) = jf * , k=0 t1,2 t . . . ,n1-1; 14k. (1.3*) 

Let X̂  be a random •variable whdse values are the numbers 
of successes resulting from the whole experiment; thus X,, can 
have the values 0 , 1 , 2 , . . . . The conditional probability 
of the random variable X,, with the condition P=p i . e . the 
distribution of the random variable (X^|P=p) is independent 
of the distribution f ( p ) of the random variable P, and 
i t is a Polya distribution: 

/n.\ [mi--a] [ni-mi.-a] 
P(X1=m1| P=p) = ( ^ J * , m1=0,1,2,. . . ,n r (1.4) 

The inconditional distribution of the random variable X̂  
is obtained by applying the theorem on the total probability 

1 

P ( X 1 = m i ) = / P(X1=m1|P = p) f ( p ) dp = 
o 

Imy, I f rrriL-al [r^-m^-al 
= . J PL V J f (p)dp, m1=0,1,2 iv,. (1.5) 

The function under the last integral is inconvenient for 
integrating because i t involves except f ( p ) also the product 
of fac tor ia l polynomials. But i f we take into account the 
following relationships 

[mii"°0 ^ «,-i ± 
P s i ( _ c ° p 5 

n 1 - m 1 

q[V>i,-<*J _ ' s ni"mi (_a)n '-mi"J q0 
j =0 ^ 
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Polya distribution 5 

in which, s^ stand for the Stirling numbers of the first 
kind i.e. the coefficients (with respect to x) in the iden-
tity 

X M s + s^x1 + s|x2 + ... + s^x*" 1 + s X . 

then formula (1.5) takes the following, more expanded form: 

fn1\ 
\ / —' mi ni~mi n«-i-j è A -i P ( X , = m , ) = ^ l 4 > s.1s 1 (-«) / p V f(p)dp, (1.6) 

m^ = 0,1,... 

3. P a r t i c u l a r c a s e s w i t h r e s -
p e c t t o t h e d i s t r i b u t i o n o f t h e 
r a n d o m v a r i a b l e P. The inconditional distri-
bution of the random variable X^ depends essentially on the 
density f(p) of the random variable P. Consider now two 
particular cases of the distribution of the random variable P. 

(a) The random variable P is subject to a uniform di-
stribution with the density 

f(p) 
1 for 0<p<1 

0 for p40 or p>1 
(1.7) 

(the postulate of Bayes). 
(b) The random variable P is subject to a beta distri-

bution with the density 

f(p) r(i>/p;r((i-i>)/iO p q for 0<p^1 

for p4 0 or p >1, 
(1.8) 

i> and (i being arbitary numbers which satisfy the conditions 
0 < < 1, |3 > 0. 
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6 W.Dyczka 

I f the random var iable P has uniform d is t r ibut ion ( 1 . 7 ) , 
then formulas (1 .5 ) and (1 .6 ) become respec t i v e l y 

/ M 
V ®1 ) t rm„-«l Fn. -m1,-oc~| 

P U ^ m ^ r ^ ^ j J PL J qL dp, ^ = 0,1 n r (1. 9) 

m i •̂i»f>i~mi m n1-m1 n̂  - i - j 

= s i so B(i+i,j+i), 
1 (1.10) 

m-l = 0 ,1 , . . . , 

B (x , y ) being the beta funct ion. 
For P with beta d is t r ibut ion (1 .8 ) formula (1 .6 ) i s 

transformed to the fo l lowing 

m^-m, m. n,-™, nri-j [i,-|l] [j,-p] 

^ 1 - 1 ) = - ^ ] • ( 1 - 1 1 ) 

1 i.j-o 

since 

rfi/ft) / ( i -wph - i d D _ 
r ( i »/p )r ( ( i-^J/ i j ) J p ^ dp -

= r(o>/p) (r({iSI*)/is) B ( l > / p + i ' = 

riwa) r(0/p+i)rm-*)/p+-i) _ 
= r(^/p,)r((i-o,)/[i) r(i/p+i+j) 

rn/B ) r(i>/p)(i>/p) [ l-'1] r ( ( i - i ? ) /3 ) ( d -^ ) / f i ) [ i ' " 1 1 _ 
r ( » / p ) r ( { i - i » y i * ) r ( i / i J ) ( i /& ) [ H ' ~ 1 ] 
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Polya distribution 

4. P a r t i c u l a r c a s e s w i t h r e s p e c t 
t o t h e p a r a m e t e r ot . 

Let in the formulas ( 1 .3 ) , ( 1 .4 ) , ( 1 .5 ) , ( 1 .6 ) , ( 1 .9 ) , 
(1 .10) , (1.11) the parameter a = 0 ; then these formulas be-
come simpler and take the form 

P(Sk+1| P = p) ,= p, (1.3a) 

P(X1 = m.,| P = p) = i nJ p 1 q , (1.4a) 

(1.5a) /n i\ n m.. m-m, (1.5a) 
P<X1 " V " [m ] ) J P «J (1.6a) 

/n..\ } m1 n,- m, 
= V = ( m ; j J P dP -

(1 .9a ) , (1.10a) 

n1 
m.. 

respect ive ly . 
The last formula y ie lds Polya distr ibut ion (1 .4 ) with x> 

and (5 instead of p and a. ( i f we are confined only to the 
posit ive values of the parameter <x); th is can be explained 
as fo l lows. The obtained distr ibut ion (1.11) may be treated 
as the composition of Polya distr ibut ion (1.4) with beta 
distr ibut ion (1 .8 ) ; on the other hand the composition of a 
binomial d istr ibut ion with a beta distr ibut ion with sui-
tably chosen parameters y ie lds a Polya d istr ibut ion. The 
problem which has been considered here i s more general 
(because the Polya distr ibut ion i s more general than the 
binomial d i s t r ibut ion ) . The two problems become equivalent 
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8 W.Dyczjca 

i f we accept ot = 0, hence formula (1.11) for a = 0 i s a 
Polya distribution. 

§ 2. THE MOMENTS OP THE RANDOM VARIABLE X1 

1. F a c t o r i a l m o m e n t s . An ordinary fac-
tor ia l moment of the random variable X̂  with distribution 
(1.5) (or in the transformed form "(1.6)) i s given by the 
formula 

n M r 

« [ r ] Z I s f C a ^ E i P 1 ) , ( 2 . 1 ) L ' i =e 

where E(P"*") i s the average value of the random variable P^ 
( i . e . the i - th ordinary moment). 

In fact , applying in succession: the def init ion of the 
r-th factor ia l moment, the distribution of the random variable 
X| given by formula (1.5) , the following formula for the 
r-th moment of the Polya distribution [ l ] 

n M p[>•-«] 

the sum form of a factor ia l polynomial and the def init ion of 
the mean value of a function of a random variable we find 

r i 
a [ r ] " Z ^ m1 P ( X = m1} = 

m̂ O 
/ n1 \ |>1.-«] [r^-m,,-«] 

. £ „M j l i l L J _ f(pl dp -
rr̂ -O 0 1 

(nA [ni"mi>"a] i n . _ , m. p q 
- j r . A 

¥ _ n 
W \ml 

m1=0 i [ n 1 . - < \ l 
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Polya distribution 9 

n M i r 

r ; 
= X > i < - « > r _ 1 hlf(p) dP = 

1 ¿=0 0 

r . . 
V B? ( - a ) * - 1 E i P 1 ) . 

1 J i = o 

I f now P has uniform d i s t r i b u t i o n ( 1 . 7 ) , then EfP 1 ) = 
= 1 / (1+1) and formula ( 2 . 1 ) becomes: 

r ( - a ) 1 ' - 1 

<*[r] Z - 1 + i ' { 2 ' 2 ) 
1 i = 0 

For P with d i s t r i b u t i o n beta ( 1 . 8 ) E f ? 1 )= O^'"^/ 1 

and formula ( 2 . 1 ) i s transformed to 

{ r ] ^ ( - c c ) 1 - 1 ^ - - « 
ot [ r ] = ' 1 [ r , -a ] Z _ . 1D.-PJ • ( 2 . 3 ) 

Let i n formulas ( 2 . 1 ) , ( 2 . 2 ) , ( 2 . 3 ) the parameter oc = 0 , 
then they become simpler being reduced to the form 

° c [ r ] = n M E (P) , ( 2 .1a ) 

n W 
01 [ r ] = 1 + r - » (2 .2a ) 

(2 .3a ) 
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10 WiDyczka 

The l a s t formula i s the r - th f a c to r i a l moment of the Polya 
d is t r ibut ion , what obviously could have been expected. 

2. O r d i n a r y m o m e n t s . The ordinary moments 
of the random var iable X̂  (and of i t s par t i cu la r cases) are 
obtained by making use of the deduced formulas for the 
f a c to r i a l moments and of the following forfiiula which expresses 
the ordinary moments in terms of f a c to r i a l moments 

r 

* r " X J S l a [ i ] ' i = o 

where S? are S t i r l i n g numbers of the second kind i . e . the 
coef f i c i en t s in the ident i ty 

x r = + S?x f x ^ + s f * ^ + . . . + S ^ x ^ + s ^ H , 

Thus the ordinary moment « r of the random variable X̂  
with d is t r ibut ion (1 .6) i s given by the formula 

r J d ] J . . . 
- r - H s i <-«)3"x E ( p l ) - ( 2 ' 4 ) 

= 0 i i = 0 

In par t i cu la r i f P has uniform dis t r ibut ion (1.7) or 
beta d is t r ibut ion (1 .8 ) , then the ordinary, moment a p of the 
random var iable X-j i s expressed by appropriately simpler 
formulas: 

a r = S j 1D.-«] Z ^ i + 1 j - 0 1 i =o 
(2.5) 

«* • Z s5 ^ r a • {2-6) 
ĵ O 1 i =0 1 

The formulas become simpler i f we acoept a = 0: 
^ S^ (2.4a) — J 1 
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. or n1 a r I l i r h * ( 2 ' 5 a ) 
j ' - 0 

0] (2.6a) 

The last three formulas are just the ordinary moments of the 
composition of a binomial distribution and of a distribution 
with the density f(p). Formulas (2.5a) and (2.6a) are par-
ticular cases of formula (2.4a) which are obtained by accep-
ting for f(p) the densities (1.7) and (1.8) respectively. 

3. M e a n v a l u e a n d v a r i a n c e . For-
mulas (2.1) - (2.6) obtained above involve Stirling numbers 
of the first and the second kinds. To make use of them for 
finding moments (especially those of higher orders) one must 
have the tables of Stirling numbers or find them from the 
following reccurence formulas' ([4], [6]): 

Si + 1 = 1 Si + Si-1 » 

_r+1 r _ r s. = s i _ 1 - r s i . 

One may also proceed in another way, namely taking into 
account that the r-th (ordinary, factorial) moment of 
distribution (1.6) is the mean value of the r-th (ordinary 
factorial) moment of the Polya distribution, if the parameter 
p appearing in the formulas for the moments of the Polya 
distribution be treated as a realization of the random 
variable P with the density f(p). i.e. 

Bigti,)) =E(E,(g(X1 )|P)) where g(X1 ) = x{r] or g(X1 ) ̂  ¿f . 

Now this method shall be applied to finding the mean value 
and the varianc 6 of the random variable X^ ("together with. 
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12 W.Dyczka 

t h e p a r t i c u l a r c a s e s ) . Making use o f the f i r s t and t h e second 
moments o f t h e P o l y a d i s t r i b u t i o n we f i n d 

E ( X ^ ) = E(E(X^ | P ) ) = E (n^ P) = n^ E ( P ) , ( 2 . 7 ) 

E ( X 2 ) = E ( E ( X 2 | P ) ) = E(n^P(n^P + 1 - P + n . , a ) / ( 1+<*)) = 

= ( i 1 + ^ a ) E ( P ) + ( n i - 1) E ( P 2 ) ) 

by whiC|h 

D 2 ( X 1 ) = E ( X 2 ) - E 2 ( X 1 ) 

= ( 0 + n-|«) E ( P ) + (n-,-1 ) E ( P 2 ) + n., (1 + oc) E 2 ( P } ) = ( 2 . 8 ) 

= (n^oc (1 - E ( P ) ) E ( P ) + n 1 D 2 ( P ) + E ( P ) - E ( P 2 ) ) . 

To f i n d the v a r i a n c e D (X^) we c o u l d have a l s o employed the 
formula 

2 2 D (X) = a ^ j - a^ + a^ . 

I f P has d i s t r i b u t i o n ( 1 . 7 ) , t h e n the mean v a l u e and the 
v a r i a n c e o f the random v a r i a b l e X1 a re r e p r e s e n t e d a s f o l -
lows 

n i 

E ( X 1 ) = , ( 2 . 9 ) 

o n1 

D ' = 12 (1 + oc) { 3 + n i + 2 ) . ( 2 . 1 0 ) 

F o r P with d i s t r i b u t i o n b e t a ( 1 . 8 ) E(X 1 ) = n ^ , ( 2 . 1 1 ) 
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' r r ^ («-,-(1-^) + V - f f f + 1), (2.12) 

since then: 

E(P) = E(P2 ) = , D 2 ( p ) = A i i l ^ - j>| P • 

When a = 0, then the formulas for mean values (2.7) , 
(2 .9) , (2.11), do not involve the parameter ct and remain 
unchanged, while variances (2 .8 ) , (2.10), (2.12) are trans-
formed as follows 

D2(X1) = il, (n1D2(P) + E(P) - E (P 2 ) ) , (2.8a) 

« n1 (n., + 2) 
D (X^ ) = — — ^ , (2.10a) 

„ (1 - 1») (1 + ni|i) 
D (X^ ) = — ^ ¡ q j l— . (2.12a) 

The last formula yields the variance of the Polya distribution. 

§ 3. THE DISTRIBUTION OP THE RANDOM VARIABLE X2|X1 

1. I n t r o d u c t i o n o f t h e r a n d o m 
v a r i a b l e X2|X^. On performing a composed experiment 
in which m1 successes have been realized-, we carry out 
further n2 experiments according to the conditions of the 
continuous Polya scheme. Let X2 be a random variable whose 
values are the numbers of successes in those r^ experiments. 
The probability of success in the f i r s t experiment of the 
second series i s thus 

p + m1a 
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14 Vf.Dyczka 

The conditional probability of the random variable X2 

with the conditions X̂  = m ,̂ P= p i s again a Polya d i s t r i -
bution: 

P(X2 = m2|x1 = m1, P = p) = 

[m2,-a] .[n2"m2'~a] 
n 2 \(p+m.,(x) ( ) a ) 
m J ( 1 + a i t t ) L - i . - J ^ ^ ' • • " V (3.2) 

I f 0 < 0 i t i s assumed that the condition: (rij+ngM-oiKimnfp.q ) 
holds. 

Now we sha l l be concerned with the random variable X2|X.j, 
i t s unconditional probability (with respect to P) i s obtained 
by applying the theorem on the t a t a l probabil ity 

1 

P(x2=m2|x1=m1 ) = J P(P=p|X1=m1 ) PiX^n^ |X1=m1 , P=p) dp. (3.3) 
0 

The second factor under the integra l i s given by formula (3.2), 
the f i r s t i s obtained by applying the appropriate case of the 
Bayes theorem and taking into consideration formula (1 .4 ) : 

P(X1 = m j p = p) f (p) 
P(P = p|X- = bl. ) = - i 1 1 = 

1 n /1P(X1 = a, |P = p) f (p) dp 
0 

[m^-a] [r^-m^-a] 
f (p) 

J K - « ] [n,-*,.-«] f ( p ) d p 

0 
On subst i tuting (3.2) and (3.4) into (3.3) we get 

P(X2 = m2|x1 = m1) = 

] 

m, 
2 f [m,-a] [n-m.-a] ® = 
2 ) I P q f(p)dp 
,fn,,-al /*' rmn-al [n.-m^-oi] , , ' 

(1+ n i a) L 2 J J pL 1 J qL J f(p)dp 
1 0 

(3.5) 
n = n^+n2> 
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Polya distribution 15 

On replacing the product of the f a c to r i a l polynomials 
appearing under the in tegra l of the l a s t formula by the sum, 
th i s formula i s reduced to the form 

P(X2 = m2|x1 = m1) = 

jig \ m.n-m .1 
2 / ^ I ^ f ( p ) ^ ra„ 

, (3.6) 
(1+n^a) s i s j ( - a ) J P 1 t(p) dp 

'.J' 

where m = m̂ + m2, n= n̂  + n2 , 
with simpler i n t eg r a l s . 

2. P a r t i c u l a r c a s e s w i t h r e s -
p e c t t o t h e d i s t r i b u t i o n o f t h e 
r a n d o m v a r i a b l e P. If uniform distr ibut ion % 
(1.7) of the random variable P i s assumed, then formulas 
(3.5) and. (3.6) are reduced to the following simpler form 

P(X2 = m2|x1 = m1 ) = 

/ P [ m ' - a ] d p m = m-|+m2 
2/ o 

. ,[n2.-a] r Ov-«] ["i-mi.-<x] ' (1+n.jOt) J p q dp n = n.|+n, 
(3.7) 

P(X2 = m2|x1 =11^) = 

n \ m,n7m 
4) ^ S ^ ( - c x ) ^ B(i+1 tj+1 ) 

[n2,-al "tol^ m1 n1-m1 n.-i-j 
(1+n^a) 2 Z s i s i ( - « ) . B(i+1 ,j+1 ) 

(3 .8) 

i, j = o ~ 3 

For a random variable P with beta d is t r ibut ion (1 .8 ) , di-
s t r ibut ion (3.6) becomes 
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16 W. Dyc.zka 

P(X2 = m2|X1 = m^) = 

mfn-m 

. U'O 
D.-e] / 

(1+n.a) 
^ ' / m n,-m, nri-j [i,-(3] [j,-|3] Q*j,-fl\ 

kBll s j (-a) (1-*) /l, I u-
3. P a r t i c u l a r , c a s e s w i t h r e s -

p e c t t o t h e p a r a m e - t e r . Let the para-
meter ot = 0 in formulas (3.1)» (3 .2 ) , (3 .4) , (3 .5 ) , (3.7) , 
(3 .8) , (3.9) , this means the reduction of a continuous Polya 
scheme to a Bernoulli scheme. These formulas become simpler 
assuming respectively the forms: (3.1a) P (of the success in 
the f i r s t experiment of the second series) = p, 

/n„\ nu n2-m2 
P(X2 = m2|x1 = m v P = p) = f p ¿ q (3.2a) 

m1 

p ( P = P | X l = m i ) = - H W - V . f ( p ) 

J p q f ( p ) dp 
(3.4a) 

P(X2 = m2|X1 = m1) = L Pm qn~mf(p)dp 
i m1 n1-m1 ' 

/ p q f (p)dp 

m= m̂ +n̂  
(3.5a) 

P(X„ m2 | X̂  = m̂  ) = 

„ . f m n-m . / p q dp 
m1 r̂ -m. 

/ p q o 
dp 

B(m + 1 . n + 1) 7 n l /,, R „ i 
mjBfm., + 1., n i + 1) ' (3.7a), (3.8a) 

P(X2 = m2|x1 = a , ) = 

(3.9a) 
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rn2 - m2, -
n2\ ^+mi|î)L J {1-^.(n1-m1).(i)L2 J 

m2y • (1 + ^ ( i ) 

Formula (3»9a) implies the following. I f the continuous Polya 
scheme appearing-in the experiment is replaced by a Bernoullie 
scheme i . e . i f a. =0, ahd the random variable P has d is t r i -
bution (1-.8), then, the random variable X2|X1 has Polya dis-
tribution (3«9a). 

§ 4. THE MOMENTS OF THE RANDOM VARIABLE X2|X1 

An ordinary factor ia l moment of the random variable X2|X1 

i s given by the formula 

lo J„ V 4 up)dp 
0 (4.1) ^ M j. n f [^,-oc] [nrm„-oc] . (1 + n-a) J p q f(p)dp 

' ft 

or in a more extended form 

fr̂ +̂ n.j-mi 
[r] *Vri ni-mi . .ni*r"H f i i , s 
2 fr=r s i s i I pV f ( p ) dp 

" H = , .[-,-«] B n,-*, , nri-i ' t , , 
(1+i^ot) S i ' s (-a) J p q f(p)dp. 

i,j = 0 J 0 

In fact , emploing in succession the def init ion of the r-th 
ordinary factor ia l moment, the distribution (3.5) of the 
random variable X2|X1 and the formula for the r-th ordinary 
moment of the Polya distribution we obtain 
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H « [ r ] 
2 ' ( V i l V l ) " 

. < p r > 
o m2-0 \ 2/ 

' / p ^ " ^ q
[n'"m'r°] f(p)dp 

1 

/ 
[m„-a] [nrm,,-a] 

P 4 

s*i 

t [m„-a] [nrnV«L, 
J P q f(p)4p 
o 

j l ^ r , -« ] ¿n.-m,,-«] f ( j ) d p 
JL 

(1«1«)Cr'"a] / p K " a ] ,[nrm,'"a]
f(p) dp . 

On r ep l ac ing the product of f a c t o r i a l polynomials appearing 
under the i n t e g r a l i n the numerator and i n the denominator 
by the corresponding sum we get ( 4 . 1 ) • 

For P with uniform d i s t r i b u t i o n (1.7) formulas (4 .1) and 
(4.11) become 

4 r ] 
/ [ml 

i P 
+ r,-a] [n r 

q ^ d p 

" (1 + XL,«)"" 
a] 

/ P ^ 0 
,.-«] [ni_ 

q 
m i ra] 

dp 

m̂ r, n1-m1 

„ M > ' 
m, 

s . l 
*r n1+r-i 

s . 
-j , , n i + r - ' - i 

( - a ) B ( i + 1 , j + 1 ) 
C i.l=0 

m, 
s . l 

- / . . fr. - a] mnnr™i m, 
S i 

ni-mi 
s . 

: 

n.-i-j 
( - a ) 1 B ( i + 1 , j + l ) 

¡,¡=0 

ni-mi 
s . 

: 

I f ' P i s sub j ec t t o d i s t r i b u t i o n b e t a ( 1 . 8 ) , formula 
(4.1') i s reduced to 
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^ , . * ^ J •1,1-0 

a; 
a. 

I f in formulas (4.1) , (4 .2) , (4.2"), (4.3) we put a = 0 
we obtain respectively the formulas 

1 
/

m1 + r n,-m1 
, „ P q f ( p ) d p 

a [ r ] = - V r — z , (4.1a) 
J P q *(p> dp 
o 
1 p rn1 + r n̂ -m̂  

[ r ] J0 p q f (p)dp 
a [ r ] " n2 * ,1 m, nrm, 

J p q dp 

B(m.,+r+1, n.j-m.j+1 ) n ^ (m1 + r ) ! 
= n2 B(m1+1, I L , - IBL , +1) = ( N I + 3 ) [ R , - I ] * ( 4 , 2 a ) 

[m^r.-oc] .[nr^i.-P] k*r,-p] 
[r] (1--J-) /I • 

- TT^BI— • (4.3a) 

The ordinary moments of the random variable X2IX., can 
easily by obtained using the factor ia l moments found above and 
the quoted relationship expressing the ordinary moments in 
terjns of the factor ia l ones. 

§ 5. EXAMPLES 

Suppose that a large number of industrial enterprises form 
a union. We may accept that 1° the occurence of an accident 
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in one of them is a random event, 2° the occurence of an 
accident in some enterprise reduces the probability of another 
accident in the same enterprise (because the care for security 
measures is then increased), 3° the probability of an accident 
in different enterprsees in the unit of time is different. We 
observe the enterprise in which the next accident happens; 
what is the probability of m^ accidents within n^ units of 
time in an enterprise in which an accident has accured (if we 
assume that only one accident is possible in a unit of time, 
this is the case if for instance the accident makes the work 
impossible during the whole unit of time). 

Thus in this problem it may be assumed that the parameter 
p' is a realization of the random variable P in the meaning 
that the observed enterprise has been chosen at random from 
all the enterprises in the union. If moreover we take into 
account assumption 2°, then it is seen that m^ is a realiza-
tion of thé random variable X^ considered in the paper and 
thus the required probability is given by formula (1.6), which 
unfortunately involves an unknown density f(p) and an unknown 
parameter a ; they should be taken from the preceding obser-
vation of the problem. The method of estimating the parameters 
i> and |3 appearing in the density f(p) defined by formula 
(1.8) is given in paper [5]. 

There is a number of similar examples. It suffices to 
replace the industrial enterprises in the above example by 
various populations (e.g. by professions if human populations 
are concerned), and the accident by contraction of an infec-
tions disease (every infection increases the chances of a 
next one). 

If seems that the distribution of the random variable 
may also be employed in such situations as those quoted 

above if the present data are used to estimate the future (and 
the past data to estimate the present). 
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