

Wacław Leksiński, Wojciech Żakowski

ON SOME CLASSES OF NON-BOUNDED FUNCTIONS

I n t r o d u c t i o n. Recent investigations in the theory of functional equations have singled out some classes of non-bounded functions. In [1] a class $\mathfrak{K}(M, \mu, \varphi)$ of functions defined on an open arc L_0 has been introduced, and in [2] - a class $\mathfrak{K}(\alpha, \beta, \omega)$ of functions defined on a set $\Omega \subset E^n$. In the sequel we shall denote the first class by W , and the second by H . Our aim is to show that in case $L_0 = \Omega (n=2)$ the class H is included in the class W .

T h e c l a s s W . Let $L = ab$ be a non-closed smooth arc with ends a and b . For every $t \in L$ let t^* denote that end of L for which $le.\overline{tt^*} = \min (le.\overline{at}, le.\overline{at})$, where $le.s$ denotes the arc s . Analogously, let t_1^* denote that end of L for which $le.\overline{t_1t_1^*} = \min (le.\overline{at_1}, le.\overline{t_1b})$. Let $L_0 = L - \{a, b\}$. For every pair of points of L_0 we denote one point by t and the other by t_1 according to

$$le.\overline{tt^*} \leq le.\overline{t_1t_1^*}. \quad (1W)$$

Consider a function $\varphi = \varphi(\delta)$ increasing and continuous in the interval $\langle 0, +\infty \rangle$ satisfying the following conditions

$$\varphi(0) = 0 \quad (2W)$$

$$\bigwedge_{\nu > 1} \bigwedge_{\delta > 0} \varphi(\nu\delta) < \varphi(\delta) \quad (3W)$$

$$\bigwedge_{\delta \in \langle 0, 1 \rangle} \varphi(\delta) \geq \delta. \quad (4W)$$

D e f i n i t i o n. The class W is defined as the set of all complexvalued functions $f(t)$ of a complex variable t that are defined and continuous in L_o and satisfy the inequalities

$$|f(t)| \leq \frac{M}{|t - t^*|}, \quad (5W)$$

$$|f(t) - f(t_1)| \leq \frac{M}{|t - t^*|^\mu} \varphi\left(\left|\frac{t - t_1}{t - t^*}\right|\right), \quad (6W)$$

where $M > 0$ and $0 < \mu < 1$ are fixed constants.

T h e c l a s s H . In [2] Adamczyk introduced a class of functions defined in a domain $\Omega \subset E^n$. We shall restrict Ω to L_o , where as previously L_o denotes the interior of a non-closed smooth arc L with ends a and b whose length is l .

Consider real functions $\alpha(t)$ and $\beta(t)$ defined and continuous in the set L_o and assuming only positive values. For every pair of points of L_o let t denote one point and t_1 the other according to

$$\beta(t) \geq \beta(t_1). \quad (1H)$$

Next consider a function $\omega = \omega(\delta)$ increasing and continuous in the interval $\langle 0, 1 \rangle$ satisfying the condition

$$\omega(0) = 0. \quad (2H)$$

We assume that for arbitrarily close points $t \in L_o$, $t^* \in \{a, b\}$ the following inequality holds

$$\frac{\alpha(t)}{\beta(t)} \leq K_\omega \omega(|t - t^*|), \quad (3H)$$

and for every pair of arbitrarily close points $t, t_1 \in L_o$ the following condition holds

$$|\beta(t) - \beta(t_1)| \leq K_\beta \frac{\beta(t) - \beta(t_1)}{\alpha(t_1)} \omega(|t - t_1|) \quad (4H)$$

where K_ω and K_β denote some positive constants.

D e f i n i t i o n. The class H is defined as the set of all complexvalued functions of a complex variable t , defined and continuous in L_0 , such that the following inequalities hold

$$|f(t)| \leq M_f \alpha(t), \quad (5H)$$

$$|f(t) - f(t_1)| \leq K_f \beta(t) \omega(|t - t_1|), \quad (6H)$$

where M_f and K_f are some positive constants.

T h e o r e m. $W \subset H$.

P r o o f. It is to be shown that

$$f(t) \in W \implies f(t) \in H.$$

Accordingly, assume that conditions (1W) - (6W) hold. It is known that there exists a positive constant χ such that for every point $t \in L_0$

$$\chi \text{le.} \widetilde{t}t^* \leq |t - t^*|. \quad (1)$$

From (1) and (3W) we infer that

$$\varphi\left(\left|\frac{t - t_1}{t - t^*}\right|\right) \leq \varphi\left(\frac{|t - t_1|}{\chi \text{le.} \widetilde{t}t^*}\right) \leq \begin{cases} \frac{1}{\chi \text{le.} \widetilde{t}t^*} \varphi(|t - t_1|) & \text{if } \text{le.} \widetilde{t}t^* \leq 1 \\ \frac{1}{\chi \text{le.} \widetilde{t}t^*} \varphi(|t - t_1|) & \text{if } \text{le.} \widetilde{t}t^* > 1 \end{cases}$$

that is,

$$\varphi\left(\left|\frac{t - t_1}{t - t^*}\right|\right) \leq \frac{\max(1, \chi)}{\chi \text{le.} \widetilde{t}t^*} \varphi(|t - t_1|). \quad (2)$$

Since

$$\varphi(|t - t_1|) \leq \begin{cases} \varphi(|t - t_1|^\mu) & \text{if } |t - t_1| \leq 1 \\ \frac{\varphi(1)}{\varphi(1)} \varphi(|t - t_1|^\mu) & \text{if } |t - t_1| > 1, \end{cases}$$

that is,

$$\varphi(|t - t_1|) \leq \max(1, \frac{\varphi(1)}{\varphi(1)}) \varphi(|t - t_1|^\mu),$$

we infer from (2) that

$$\varphi\left(\left|\frac{t - t_1}{t - t^*}\right|\right) \leq \frac{M_0}{\chi \text{le.} \overline{t t^*}} \varphi(|t - t_1|^\mu), \quad (3)$$

where $M_0 = \max(1, \chi 1) \cdot \max(1, \frac{\varphi(1)}{\varphi(1)})$.

In view of (5W) and (6W), and using (1) and (3) we infer that

$$f(t) \leq \frac{M}{\chi^\mu (\text{le.} \overline{t t^*})^\mu}, \quad (4)$$

$$|f(t) - f(t_1)| \leq \frac{MM_0}{\chi^{1+\mu} (\text{le.} \overline{t t^*})^{1+\mu}} \varphi(|t - t_1|^\mu). \quad (5)$$

Letting

$$M_f = \frac{M}{\chi^\mu}, \quad K_f = \frac{MM_0}{\chi^{1+\mu}},$$

and

$$\alpha(t) = \frac{1}{(\text{le.} \overline{t t^*})^\mu}, \quad \beta(t) = \frac{1}{(\text{le.} \overline{t t^*})^{1+\mu}}, \quad \omega(\delta) = \varphi(\delta^\mu), \quad (6)$$

we see that the function $f(t)$ satisfies conditions (5H) and (6H). In view of (1W), (2W) and (6), conditions (1H) and (2H) also hold.

According to (6) we have

$$\frac{\alpha(t)}{\beta(t)} = 1e \cdot \tilde{t}t^*. \quad (7)$$

Using (1) and (4W) we see that

$$1e \cdot \tilde{t}t^* \leq \frac{1}{\chi} |t - t^*| \leq \begin{cases} \frac{1}{\chi} \varphi(|t - t^*|^\mu) & \text{if } |t - t^*| \leq 1 \\ \frac{1}{2\chi \varphi(1)} \varphi(|t - t^*|^\mu) & \text{if } |t - t^*| > 1. \end{cases}$$

Hence by virtue of (7) we infer that

$$\frac{\alpha(t)}{\beta(t)} \leq \frac{1}{\chi} \max \left(1, \frac{1}{2\varphi(1)} \right) \varphi(|t - t^*|^\mu). \quad (8)$$

Now letting

$$K_\omega = \frac{1}{\chi} \max \left(1, \frac{1}{2\varphi(1)} \right)$$

and using (6) we get

$$\omega(|t - t^*|) = \varphi(|t - t^*|^\mu), \quad (9)$$

which shows that condition (3H) holds.

It remains to show that condition (4H) holds.

In view of (6) we infer that

$$\begin{aligned} |\beta(t) - \beta(t_1)| &= \frac{(1e \cdot \tilde{t}_1 t_1^*)^{1+\mu} - (1e \cdot \tilde{t}t^*)^{1+\mu}}{(1e \cdot \tilde{t}t^*)^{1+\mu} (1e \cdot \tilde{t}_1 t_1^*)^{1+\mu}} = \\ &= \beta(t) \beta(t_1) \left| (1e \cdot \tilde{t}_1 t_1^*)^{1+\mu} - (1e \cdot \tilde{t}t^*)^{1+\mu} \right| = \\ &= \beta(t) \beta(t_1) \left| (1e \cdot \tilde{t}_1 t_1^*)^\mu \left[1e \cdot \tilde{t}_1 t_1^* - 1e \cdot \tilde{t}t^* \right] + \right. \\ &\quad \left. + 1e \cdot \tilde{t}t^* \left[(1e \cdot \tilde{t}_1 t_1^*)^\mu - (1e \cdot \tilde{t}t^*)^\mu \right] \right| \leq \end{aligned}$$

$$\leq \beta(t) \beta(t_1) \left[\frac{1}{\alpha(t_1)} \text{le.} \widetilde{t_1} t + \frac{1}{\alpha(t)} (\text{le.} \widetilde{t} t^*)^{1-\mu} (\text{le.} \widetilde{t_1} t)^\mu \right].$$

Hence according to (1), (1W) and (6) we get

$$\begin{aligned} |\beta(t) - \beta(t_1)| &\leq \frac{\beta(t) \beta(t_1)}{\alpha(t_1)} \left[(\text{le.} \widetilde{t_1} t)^{1-\mu} (\text{le.} \widetilde{t_1} t)^\mu + \right. \\ &\quad \left. + (\text{le.} \widetilde{t} t^*)^{1-\mu} (\text{le.} \widetilde{t_1} t)^\mu \right] \leq \frac{\beta(t) \beta(t_1)}{\alpha(t_1)} \frac{2}{\chi^\mu} 1^{1-\mu} |t - t_1|^\mu. \quad (10) \end{aligned}$$

Applying (4W) we obtain

$$|t - t_1|^\mu \leq \begin{cases} \varphi(|t - t_1|^\mu) & \text{if } |t - t_1| \leq 1 \\ \frac{1}{\varphi(1)} \varphi(|t - t_1|^\mu) & \text{if } |t - t_1| > 1. \end{cases} \quad (11)$$

Formulas (10) and (11) imply that

$$|\beta(t) - \beta(t_1)| \leq \max\left(\frac{2}{\chi^\mu} 1^{1-\mu}, \frac{21}{\chi^\mu \varphi(1)}\right) \frac{\beta(t) \beta(t_1)}{\alpha(t_1)} \varphi(|t - t_1|^\mu).$$

Finally putting

$$K = \max \left(\frac{2}{\chi^\mu} 1^{1-\mu}, \frac{21}{\varphi(1) \chi^\mu} \right),$$

and considering (9) we see that condition (4H) holds.

Hence we have shown that (1H) - (6H) hold, which means that $f(t) \in H$. This ends the proof of the theorem.

BIBLIOGRAPHY

- [1] W. Leksiński: On some class $\mathfrak{N}(M, \alpha, \varphi)$ of functions defined on a non-closed arc, *Demonstratio Math.* 4(1972) 51-61.
- [2] H. Adamczyk: Investigation of systems of functional equations in some class of non-bounded functions, *Demonstratio Math.* 1 (1969) 5-50.

Received January 29th, 1972.

Addresses of the Authors: dr Wacław Leksiński, Warszawa, ul. Prosta 2/14 m 163,
and
prof. dr Wojciech Żakowski, Warszawa, ul. Turecka 3 m 54.

