

Wacław Leksiński

ON SOME CLASS $\mathfrak{h}(M, \alpha, \varphi)$ OF FUNCTIONS
DEFINED ON A NON-CLOSED ARC

I n t r o d u c t i o n. We shall give the definition of a class $\mathfrak{h}(M, \alpha, \varphi)$ of functions defined on a non-closed arc. This class contains, among others, the class \mathfrak{h}_α^μ defined by W. Pogorzelski ([1], [2]). A modified definition of the class \mathfrak{h}_α^μ was given by author in [3].

Let M and α be fixed real numbers, $M \in (0, +\infty)$ and $\alpha \in (0, 1)$. Let $\varphi = \varphi(\delta)$ be a real function, continuous and increasing in the interval $(0, +\infty)$, which satisfies the following conditions:

- 1^o $\varphi(0) = 0$,
- 2^o $\bigwedge_{\delta \in (0, 1)} \varphi(\delta) \geq \delta$
- 3^o $\bigwedge_{v \geq 1} \bigwedge_{\delta \geq 0} \varphi(v\delta) \leq v\varphi(\delta)$

Consider a non-closed smooth arc $L = \overrightarrow{ab}$, with ends a and b . Let $L_0 = L - \{a, b\}$. For any $t \in L_0$ let t^* denote this element of the set $\{a, b\}$ for which length $\overrightarrow{tt^*} = \min(\text{length } \overrightarrow{at}, \text{length } \overrightarrow{tb})$. Analogously, for any $t_1 \in L_0$ let t_1^* denote this member of the set $\{a, b\}$ for which length $\overrightarrow{t_1t_1^*} = \min(\text{length } \overrightarrow{at_1}, \text{length } \overrightarrow{t_1b})$. We assume that length $\overrightarrow{tt^*} \leq \text{length } \overrightarrow{t_1t_1^*}$.

D e f i n i t i o n. By the class $\mathfrak{h}(M, \alpha, \varphi)$ we understand the set of all functions $f(t)$ of a complex variable t , defined and continuous in the set L_0 , which for every pair of points $t, t_1 \in L_0$ satisfy the following inequalities:

$$|f(t)| \leq \frac{M}{|t-t^*|^\alpha} \quad (1)$$

$$|f(t) - f(t_1)| \leq \frac{M}{|t-t^*|^\alpha} \varphi\left(\left|\frac{t-t_1}{t-t^*}\right|\right). \quad (2)$$

In case $\varphi(\delta) = \delta^\mu$ ($0 < \mu < 1$, $\alpha + \mu < 1$) $\mathfrak{h}(M, \alpha, \varphi)$ is the class \mathfrak{h}_α^μ of Pogorzelski with the constant M .

We shall give an example of a function from the class $\mathfrak{h}(M, \alpha, \varphi)$ which does not belong to \mathfrak{h}_α^μ . This will show that the class $\mathfrak{h}(M, \alpha, \varphi)$ is an essential extension of the class \mathfrak{h}_α^μ .

Let

$$\varphi(\delta) = \begin{cases} 0, & \text{if } \delta = 0 \\ -\frac{1}{\ln \delta}, & \text{if } 0 < \delta \leq e^{-4} \\ \delta^{\frac{\ln 2}{2}}, & \text{if } \delta \geq e^{-4}. \end{cases}$$

The so-defined function $\varphi(\delta)$ is continuous and increasing in the interval $\langle 0, +\infty \rangle$ and satisfies conditions 1^o and 2^o. To show that φ satisfies also condition 3^o we consider three cases:

1) $\nu \delta \leq e^{-4}$

$$\varphi(\nu \delta) = -\frac{1}{\ln \nu \delta} \quad \text{and} \quad \varphi(\delta) = -\frac{1}{\ln \delta}.$$

$$\text{Since } \varphi'(\delta) = \frac{1}{6 \ln^2 \delta} > 0 \quad \text{and} \quad \varphi''(\delta) = -\frac{2+3 \ln \delta}{6^2 \ln^3 \delta} < 0,$$

we have

$$\frac{\varphi(\nu \delta)}{\varphi(\delta)} \leq \frac{\nu \delta}{\delta} \quad \text{i.e.} \quad \varphi(\nu \delta) \leq \nu \varphi(\delta)$$

2) $\delta \geq e^{-4}$

$$\varphi(\nu \delta) = \nu^{\frac{\ln 2}{2}} \delta^{\frac{\ln 2}{2}} \leq \nu \delta^{\frac{\ln 2}{2}} = \nu \varphi(\delta)$$

3) $v\delta > e^{-4}$ and $\delta < e^{-4}$

$$\varphi(v\delta) = v^{\frac{\ln 2}{2}} \delta^{\frac{\ln 2}{2}} < v\delta^{\frac{\ln 2}{2}} < v\left(-\frac{1}{\ln \delta}\right) = v\varphi(\delta), \quad \text{because}$$

$$\wedge \quad \delta^{-\frac{\ln 2}{2}} < -\frac{1}{\ln \delta} \cdot \\ \delta \in (0, e^{-4})$$

Moreover it is evident that

$$\wedge \quad \wedge \quad \wedge \quad \vee \quad \wedge \quad \varphi(\delta) > (4e^4)^{\alpha+\mu} A\delta^\mu. \quad (3)$$

$$A > 0 \quad 0 < \mu < 1 \quad 0 < \alpha < 1 \quad \delta > 0 \quad 0 < \delta < \delta$$

Consider now the following function

$$f(t) = \begin{cases} 0, & \frac{e^{-4}}{2} < t < 0 \\ \varphi(t), & 0 \leq t < \frac{e^{-4}}{2}. \end{cases} \quad (4)$$

We shall show that $f(t) \in \mathfrak{H}(1, \alpha, \varphi)$.

The function $f(t)$ satisfies inequality (1).

In fact, we have

$$|f(t)| \leq \varphi(t) \leq \frac{\varphi(t)}{|t-t^*|^\alpha} \leq \frac{1}{|t-t^*|^\alpha}.$$

To show that $f(t)$ satisfies inequality (2) we consider four cases.

1) $-\frac{e^{-4}}{2} < t \leq t_1 \leq 0$ - obvious.

2) $-\frac{e^{-4}}{2} < t < 0 \wedge 0 < t_1 < \frac{e^{-4}}{2}$

$$|f(t) - f(t_1)| = -\frac{1}{\ln t_1} < -\frac{1}{\ln(t_1-t)} = \varphi(|t-t_1|) < \frac{\varphi\left(\left|\frac{t-t_1}{t-t^*}\right|\right)}{|t-t^*|^\alpha}.$$

3) $0 < t < \frac{e^{-4}}{2} \wedge \frac{-e^{-4}}{2} < t_1 < 0$ - analogously as in 2).

4) $0 < t_1 < t < \frac{e^{-4}}{2}$

$$|f(t) - f(t_1)| = \varphi(t) - \varphi(t_1) = \frac{1}{\ln t_1} - \frac{1}{\ln t} = \frac{\ln t - \ln t_1}{\ln t \cdot \ln t_1}.$$

Let

$$g(t_1) = \frac{\ln t - \ln t_1}{\ln t \cdot \ln t_1} + \frac{1}{\ln(t-t_1)}, \quad t_1 \in (0, t).$$

The derivative of this function is

$$g'(t_1) = \frac{1}{(t-t_1)\ln^2(t-t_1)} - \frac{1}{t_1 \ln^2 t_1}, \quad t_1 \in (0, t).$$

The function $\frac{1}{r(x)}$, where $r(x) = x \ln^2 x$, is decreasing in the interval $(0, t)$. Consequently,

$$g'(t_1) \begin{cases} < 0, & \text{if } t_1 < t-t_1 \\ > 0, & \text{if } t_1 > t-t_1. \end{cases}$$

Since $\lim_{t_1 \rightarrow 0} g(t_1) = 0$ and $\lim_{t_1 \rightarrow t} g(t_1) = 0$,

we see that $\forall t_1 \in (0, t) \quad g(t_1) < 0$, hence in the considered case:

$$\frac{\ln t - \ln t_1}{\ln t \cdot \ln t_1} < -\frac{1}{\ln(t-t_1)}.$$

Applying this inequality we obtain

$$|f(t) - f(t_1)| < -\frac{1}{\ln(t-t_1)} = \varphi(t-t_1) \leq \frac{\varphi\left(\frac{|t-t_1|}{|t-t^*|^\alpha}\right)}{|t-t^*|^\alpha}.$$

Since the function $f(t)$ satisfies inequalities (1) and (2) with $M=1$, we infer that $f(t) \in \mathfrak{h}(1, \alpha, \varphi)$.

We shall show that the function $f(t)$ defined in (4) does not belong to Pogorzelski's class \mathfrak{h}_α^μ .

Let $t_1=0$ and $t \in (0, \frac{e^{-4}}{4})$.

We have:

$$|f(t) - f(t_1)| = -\frac{1}{\ln t} = -\frac{1}{\ln(t-t_1)} = \varphi(|t-t_1|) =$$

$$= \frac{|t-t^*|^{\alpha+\mu} \varphi(|t-t_1|)}{|t-t^*|^{\alpha+\mu}} > \frac{\left(\frac{e^{-4}}{4}\right)^{\alpha+\mu}}{|t-t^*|^{\alpha+\mu}} \varphi(|t-t_1|).$$

According to (3) we see that

$$\begin{array}{cccccc} \wedge & \wedge & \wedge & \vee & |f(t)-f(t_1)| > \frac{A|t-t_1|^\mu}{|t-t^*|^{\alpha+\mu}}, \\ A > 0 & 0 < \mu < 1 & 0 < \alpha < 1 & t \in (0, \frac{e^{-4}}{4}) \end{array}$$

which means that $f(t) \notin \mathfrak{h}_\alpha^\mu$.

THE COMPACTNESS OF THE SET $\mathfrak{h}(M, \alpha, \varphi)$

It is easy to see that the set $\mathfrak{h}(M, \alpha, \varphi)$ is closed and convex.

Consider the functional space Λ consisting of all complex functions

$$U = [f(t)] \quad (5)$$

which are continuous in the set L_0 and satisfy the condition

$$\sup_{t \in L_0} [|t-t^*|^{1+\alpha} |f(t)|] < \infty \quad (6)$$

These functions are the points of Λ .

We define the sum of two points $U = [f(t)]$ and $V = [g(t)]$, and the product of a point by a number as follows:

$$U+V = [f(t) + g(t)], \quad \lambda U = [\lambda f(t)].$$

The norm $\|U\|$ of the point (5) is defined by the formula

$$\|U\| = \sup_{t \in L_0} [|t-t^*|^{1+\alpha} |f(t)|]. \quad (7)$$

The distance between two points U and V can then be defined as the norm of the difference $U-V$, i.e. $\varrho(U, V) = \|U-V\|$.

In this way the space Λ becomes a Banach space.

Let $\{U_n\} = \{[f_n(t)]\}$ be an arbitrary infinite sequence of elements of the set $\Lambda(M, \alpha, \varphi)$.

According to the definition of the set $\Lambda(M, \alpha, \varphi)$, for every natural number n the following inequalities are satisfied

$$|f_n(t)| \leq \frac{M}{|t-t^*|^\alpha} \quad (8)$$

and

$$|f_n(t) - f_n(t_1)| \leq \frac{M}{|t-t^*|^\alpha} \varphi\left(\left|\frac{t-t_1}{t-t^*}\right|\right). \quad (9)$$

Consider now the functional sequence with a general term

$$\Phi_n(t) = \begin{cases} (le \cdot \tilde{t}t^*)^{1+\alpha} f_n(t), & \text{for } t \in L_0 \\ 0, & \text{for } t=a \text{ or } t=b \end{cases} \quad (10)$$

where le denotes length.

We have the following lemmas.

Lemma 1. The functions in the sequence (10) are uniformly bounded in the set L .

Proof. In view of (8) and (10), for every natural n and every $t \in L_0$ we have

$$|\Phi_n(t)| \leq \frac{M}{|t-t^*|^\alpha} \cdot \frac{1}{\chi^{1+\alpha}} \cdot |t-t^*|^{1+\alpha} \leq \frac{Ml}{2\chi^{1+\alpha}}$$

where l is the length of the arc L , and $0 < \chi \leq 1$ is the greatest lower bound of the quotient of the chord and the arc corresponding to this chord.

Since $\Phi_n(a) = \Phi_n(b) = 0$, we see that

$$\bigwedge_n \bigwedge_{t \in L} |\Phi_n(t)| \leq \frac{Ml}{2\chi^{1+\alpha}} \quad (11)$$

which ends the proof of the lemma.

Lemma 2. The functions in the sequence (10) are equicontinuous in the set L .

Proof. We consider two cases.

1° Let $|t-t_1| \geq 1$. Then it follows from (11) that

$$\bigwedge_n \bigwedge_{t, t_1 \in L} |\Phi_n(t) - \Phi_n(t_1)| \leq \frac{Ml}{\chi^{1+\alpha} \varphi(1)} \varphi(|t-t_1|^\alpha) \quad (12)$$

2° Let $|t-t_1| < 1$. In view of (8), (9), (10) we obtain

$$|\Phi_n(t) - \Phi_n(t_1)| = |(le \cdot \tilde{t}t^*)^{1+\alpha} f_n(t) - (le \cdot \tilde{t}_1 t_1^*)^{1+\alpha} f_n(t_1)| \leq \quad (13)$$

$$\leq \frac{M}{|t_1 - t_1^*|^\alpha} \left| (le \cdot \tilde{t} t_1^*)^{1+\alpha} - (le \cdot \tilde{t} t^*)^{1+\alpha} \right| +$$

$$+ \frac{M(le \cdot \tilde{t} t^*)^{1+\alpha}}{|t - t^*|^\alpha} \varphi \left(\left| \frac{t - t_1}{t - t^*} \right| \right) = \Delta_1 + \Delta_2$$

For every pair of points $t, t_1 \in L_0$ we have

$$\begin{aligned} \Delta_1 &= \frac{M}{|t_1 - t_1^*|^\alpha} \left| (le \cdot \tilde{t} t_1^*)^\alpha [le \cdot \tilde{t} t_1^* - le \cdot \tilde{t} t^*] \right| + \\ &+ le \cdot \tilde{t} t^* \left[(le \cdot \tilde{t} t_1^*)^\alpha - (le \cdot \tilde{t} t^*)^\alpha \right] \leq \end{aligned} \quad (14)$$

$$\begin{aligned} &\leq \frac{M(le \cdot \tilde{t} t_1^*)^\alpha}{\chi^{1+\alpha} (le \cdot \tilde{t} t_1^*)^\alpha} |t - t_1|^\alpha + \frac{M(le \cdot \tilde{t} t_1^*)^\alpha \cdot (le \cdot \tilde{t} t^*)^{1-\alpha}}{\chi^\alpha (le \cdot \tilde{t} t_1^*)^\alpha} (le \cdot \tilde{t} t^*)^\alpha \leq \\ &\leq \frac{M}{\chi^{1+\alpha}} |t - t_1|^\alpha + \frac{M}{\chi^{2\alpha}} \left(\frac{1}{2} \right)^{1-\alpha} |t - t_1|^\alpha \leq \frac{M}{\chi^{1+\alpha}} \left[1 + \left(\frac{1}{2} \chi \right)^{1-\alpha} \right] \varphi(|t - t_1|^\alpha) . \end{aligned}$$

We shall estimate the component Δ_2 in (13). Let $r \leq \min(1, \frac{|b-a|}{4})$ be the radius of a circle $K(t^*, r)$ with the center t^* . We assume that this circle is sufficiently small in order that it intersect the arc $t^* t_n$ exactly in one point (t_n is the end of the arc $L=ab$ opposite to t^*). Let Q denote the middle point of the arc L .

If t is an interior point of the arc $t^* t_w$, then $\frac{1}{|t - t^*|} \geq 1$.

In this case we have

$$\Delta_2 \leq \frac{M}{\chi^{1+\alpha}} \varphi(|t - t_1|^\alpha) . \quad (15)$$

If $t \in \tilde{t}_w Q$, then $\frac{1}{|t-t^*|} \leq \frac{1}{r}$.

Moreover, we also have

$$\Delta_2 \leq M \left(\frac{1}{2r} \right)^{1+\alpha} \varphi(|t-t_1|^\alpha). \quad (16)$$

Observe that if $t=t^*$ or $t_1=t^*$, we can apply (10) to obtain

$$|\Phi_n(t) - \Phi_n(t_1)| \leq \begin{cases} \frac{M}{\chi^{1+\alpha}} \varphi(|t-t_1|^\alpha), & \text{if } |t-t_1| < 1 \\ \frac{Ml}{\chi^{1+\alpha} \varphi(1)} \varphi(|t-t_1|^\alpha), & \text{if } |t-t_1| \geq 1 \end{cases} \quad (17)$$

In view of (12) - (17) we see that there exists a positive constant K_φ which is independent of n and which depends on M, χ, α, r, l and on the function $\varphi = \varphi(\delta)$ such that for every pair of points $t, t_1 \in L$ we have

$$|\Phi_n(t) - \Phi_n(t_1)| \leq K_\varphi \varphi(|t-t_1|^\alpha). \quad (18)$$

Moreover it can be shown that if $\alpha = 0$ then there exists a positive constant \tilde{K}_φ independent of n and depending only on M, χ, r, l and $\varphi = \varphi(\delta)$ such that for every pair of points $t, t_1 \in L$ we have

$$|\Phi_n(t) - \Phi_n(t_1)| \leq \tilde{K}_\varphi \varphi(|t-t_1|) \quad (19)$$

From (18) and (19) it follows that the functions of the sequence (10) are equicontinuous in the closed set L .

We can now prove the following theorem:

Theorem. The subset $\mathfrak{h}(M, \alpha, \varphi)$ of the Banach space Λ is compact in itself.

Proof. In view of Lemmas 1 and 2 the assumptions of Arzeli's theorem are satisfied and we can infer that there exists a subsequence $\{\Phi_{k_n}(t)\}$ of the sequence (10) which is uniformly convergent in the set L . This subsequence must satisfy Cauchy's condition, so that

$$\Lambda \quad \forall \quad \forall \quad \sup_{t \in L} |\Phi_{k_r}(t) - \Phi_{k_s}(t)| < \varepsilon. \quad (20)$$

From (10), (20) and the obvious inequality $|t - t^*| \leq \text{length } t \text{t}^*$ it follows that

$$\Lambda \quad \forall \quad \forall \quad \sup_{t \in L_0} [|t - t^*|^{1+\alpha} |f_{k_r}(t) - f_{k_s}(t)|] < \varepsilon. \quad (21)$$

This means that a subsequence $\{f_{k_n}(t)\}$ of an arbitrary sequence of points from the set $\mathfrak{h}(M, \alpha, \varphi)$ satisfies Cauchy's condition in the norm (7). Since Λ is a complete space, this subsequence is convergent to a point $[f_*(t)]$ of Λ . On the other hand, all the elements of the sequence $\{f_n(t)\}$ belong to the closed set $\mathfrak{h}(M, \alpha, \varphi)$ hence $f_*(t) \in \mathfrak{h}(M, \alpha, \varphi)$. This shows that the set $\mathfrak{h}(M, \alpha, \varphi)$ is compact in itself.

BIBLIOGRAPHY

- [1] W. Pogorzelski: Sur une propriété principale d'une classe de fonctions discontinues pour le système d'arcs, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. (1960) 8, N° 6, 359-364.
- [2] W. Pogorzelski: Problèmes aux limites discontinus dans la théorie des fonctions analytiques. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. (1959) 7 N° 6, 311-317.

[3] W. Leksiński: O pewnej modyfikacji definicji klasy \tilde{h}_α^μ funkcji określonych na łuku niezamkniętym. Zeszyty Nauk. Politech. Warszaw., Matematyka 12 (1968).

Received, December 15th 1971.

Address of the Author: dr Wacław Leksiński, Warszawa, ul. Prosta 2/14 m 163.

