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SOME PROBLEMS CONCERNING THE PROSPECTIVE
AND THE RETROSPECTIVE EQUATIONS
FOR NON-MARKOVIAN PROCESSES

Let Y, = Yi(w) (te <0,T >, we Q) be a stochastic process
defined in a probability space (Q,S,P)..We shall assume that
Yt is a stochastic process with real values from some inter-
val I, by A we shall denote a Borel subset of I, Let 0 < t0.<
< t1.< ese £ tn-1 < tn £7T, y5 € d for 1i = 1,2,e0e900

Let FY n denote a 6-algebra generated by the family of

?
sets {UJS Yt1(w) < y." Y.tg(w) < yzgoo'gytn(“’) < yn}o
We shall use the following denotations for the conditio-
nal probabilities with respect to 6-algebra FY,n

2(¥y e APy 4) = Bl e AlYt1 = y4) = P(ty,5,,t,4) (1)
P(Y.b2< Yo|Fy 1) = P(Yt2< y2|Yt1=- ¥4) =2 P(by,790%5,7,)  (2)
P < P = P ¥ = = ) =
(Yt3 ¥3|Fy,2) (Yt3 < 33|Yt1 Vo Ty, ¥o)
= H(t1,y1,h2’y2,t34y3) (3)

P(Yt2< yz,Yt3< y3|FY’1) = P(Yt2< y2,Yt3<y3|Yt1 =y, =

= G(t1’y1’t2’y2’t3'y3) (4)
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2 A.Plucifiska

and the following denotations for the transition probability
dengities

_0__ =
ayz F(t1ny1vt2vy2) 4 f(t1vy1at2,y2)

—3'%: H(t1 »Yq ’t20Y20t3)y3) = h(t1 ,y1,t2,y2,t3,y3)
2

2
9

If Yt is a Markov process and some regularity conditiona
are satisfied then it 1s well known that the following Koimo-
gorov equations hold

? 0

(5)

2
+ %32(17'1 oY1) 8—52‘ F(t1 *Yq 9";293’2) =0,
1

ol o
3t £(t,590b5075)+a, (4,,y¢) 3, 281,715 850,)+

(5")
1 82
+ §a2(t1.y1) 5;5 f(t1,y1,t2,y2) =0,
1
) ? .
(6)
1 8 (o) (07,0206, 534 tp07)] = 0
) - AP P 1959925297 ’
2
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Some problems concerning non-markovian processes 3

where a; are infinitesimal moments given by formulas

- 1 [ gyt @ B
a(t,y) = um gzl [ (y;-p) dy (6,3, 0088,57) 5 (D)
lyy-yl<d

i=1’2; d>00

It is also assumed that
lim 1
At—0 2% f &y Flt,y,b+86,3,) = 0 . (8)
l4y-y|>0

In paper {1] a generalization of equation (6) to the case
of non-markovian processes was given,Namely it was proved the
following.

’ Theorem 1, If for any 4> 0O

lim 1 i
At—0 - 2E j (y3-y2) h(t1 ly-l ,‘bz,yz,t2+At,y3)dy3 =
fys-y| <6
{(9)

= a?(t19Y1 11‘2'3'2) ’ i=1,2,

lim

N ) |
i EE [ nGeayyetapetatat,ydays=o  (10)

tys-yg| > ¢

the convergence in (9), (10) is unform with respect to Yor
functions _
h(t1’Y11t2sy29t3QY3)r

1
3 4 a[.h
3t i(t1,y1,tz,y2),ayi[ai(t1-,y1,tz,yZ)f(t1,y1,tz,yz)] » (11)

2
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4 A.Plucifiska

are continuous, then the following partial differential equa-
tion holds

0 3 {,h

2
1 8%[.n -
T2 52 [32(t1'3’1’tz'yz)f("1'3’1't2'y2)] =0.

>

In [2] was proved the following
Theorem 2, If conditions (7), (8) are satisfied
uniformly in Yoo there exist continuous derivatives

5%; H(t1,y1,t2,y2,t3,y3) , (13)

L % 9 ) 1= 1,2
3 1 19719V 097 00 39Y3 ’ ’
I2

then the following partial differential equation holds

E%E H(t1’y1’t20Y19t3ay3)

t2=t1

+ a1(t1,y1) 5%5 H(t1y1ot1yy2rt31Y3)- + (14)

y2=y1

2
+ % 32(t1’y1) gg§'H(t1’y1vt1vy29t3vY3)‘ =0,
y =
2 Y0554
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Some problems concerning non-markovian processes 5

where

H(t1oy1nt1vyzy 3’YB)
6y2

y2=y1

- lim [ H(t, - At,y1,t1,y2,t3,y3) ]; i=1,2,
At —0 6y2

Yo=Y

The explanation (15) is .connected with +the fact that
the function H(t1,y1,t2,y2,t3,y3) is undefined on the set S:
t1=t21 y1fy2o .

If there exists the density h +then it follows from (14)
that the following equation holds

365 BEpsyy b0,y t3,73) *
2 t,=t,

+a1(t1,y1) 7S h(t1,y1,t1,y2,t3,y3) + (14")
yE=Y1

52
+ 28 (81,7;) —25 Bty 43080750507 5) =0.
95

Y2=y1

In this paper the following questions will be considered:

I. A generalization of theorem 1,

II.Some conditions that a process will be a Markov process
in the wide sense,

III. The unique solution of some differential partial e-
quations,

IV, A correction concerning paper [9].

Equations (5), (5'), (6) for Markov processes are proved
under different conditions, They are given for example in [3]
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6 A.Plucifiska

- [6]. In [3] the proof is based on Lebesgue integral, in [4]
- [ 6] on Rieman integral,

In this paper all the integral are Lebesgue integrala, In
the theorem based on Lebesgue integral theasswnption of wuni-
Tormity of convergence may be omitted,

By I we shall denote the closure of I on the straight
line,

I. In this part we shall assume that the function h exists
and is continuous in I, Next we shall assume that Tor an ar-
bitrary ¢ >0

. : - -
Lin Ef J[ 8(t94549% 50700 bp#8,y3)dy 44y, = O (16)

L T R

At*O Zflf (y3-y2) g(t1vy19t2932vt2+At,y3)dyé =
[93-yp] <&
= bi(t19319t2,y2)3 i=1,2,

It is evident that if there exist limits (9), (10) then
there exist 1limits (16), (17) (on condition that h  exists)
and

h .
hi(t1oy1ﬁt2»¥2)=ai(t]vy19t29Y2)f(t11y19t2'y2) .
We shall denote

1 | |
3 | ) elt, s tpyastyrat,yddy; =

lys-yp] < d

= B (B4,7 0508550063 i=1,2,

- 2k -



Some problems concerning non-markovian processes 7

We shall prove the following

Theorem 3, If for some. Ao and for an arbitrary
interval (a,b) there exist functions Ci(t.l, Y Y2, y2) in-
tegrable with respect to Yo for a <« Yo <b such that

]Bi(t1,y1,t2,y2,nt)| £ 03 (414719b097,)

almost everywhere in {a,b) for 4t <4y relations (16), (17)
hold, functions '

i :
5%, T0haT10t207,), -a'—afbi(t1,y1,t2,y2) , 1=1,2 (18)

are continuous in I, then equation (12) holds,

Proof. Let a and b be arbhitrary real numbers aich
that (a,b) cI, Let R(y) denote an arbitrary non-negative
function from class 02 and let

R(y) =0 for y<a and for ‘y> b,

In virtue of the relation
20497 0 to+at,y5) = fg(t1 $T10t00T 00 b+ ab,¥5)dy,
I
we have
1 b ,
s f [f(t1,y1,t2+At-,y3)-f(t1,y1,t2,y3)]R(y3)dy3 =
d

(19)

b
1 .

In virtue of the properties of the function R(y), the
continuity of the functions atlf » h and relation (19)we have
- 2 ) .
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8 A.Plucifiska

aT £(t,53¢y o,y.l)R(y3)dy3 (20)

Q\‘o_

1 .
= A}in:[l) A% [!!g(t1,y1,'t2,y2,1;2+At,y3)R(YB)dYQdyB +

I

= 1li 1
= A]{Ji% At[!i’-g(t‘l 9Y1itZDY39t2+M’y2)R(y2)dy2dY3 +

- ff('t1 ,y1,t2,y3)R(y3)dy3]' =
I

= 1im —hf f g(t1,y1,t2,y3,t2+At,yQ)R(y2)dy2d;_r3 +
I |ys-uy|»s¢

T
+ lm U j Bt 371t 0730540847, )R(y, )ay,dyy +
|g3-g2|<tf

1 .
- ff(t1,y1,t2,y3)n(y3)dy3j = Mm 5+ Am o J, .
I

From the properties of the function R(y) it follows
that there exists a constant M such that |R(y)| < M, Taking
into account, (10) and (20) we get

lim J lim

At—=0 At—0 lAt f [ O AP O +At.y2)R(y2)dy2dy3‘ (21)

[ lys-va|>9
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Some problems concerning non-markovian processes 9

éMAltEr?) f / 3(t1 ’5‘19t2’Y39t2+AtIYQ)dY2dY3 =0,
L |y3-usf 9

Bxpanding function R into Taylors series in virtue of
(20), (21) we have

b
a8 -
j i £(t,,71 0%, R(y5)dy, = (22)

.
= um Jp [ayy [ elbmy0ta0getyrat,y,)[Rlyy) +
|U3-112|<d

(y,=y45)? >
+(y,=y3)R’ (y3)+2—3R"(y3)+0(y27y3) ]dyg +

b
- f f(t1¢3’1:t2:y3)R(y3)dy3} =
a

b
a [ys-yz|<d

+ %(yz-yB)zR"(yB)]dyz‘ +

b
1 2
+Altift % jd.y3 f o(yz-yB) g(t1,y1,t2,y3,t2+At,y2)iY2 +
a |3-us| <0

- 27 -



10 A,Plucifiska

b
1 T _
+Altjf:l 7T fd\VB f 8(t11!1otzoy3012+AtaY2)R(Y3)dy2 =
l93-usl ¢

=1im J, + Iim J, + lim J. .
At=0 J  aAt-0 4 At=0 2

It is evident that
lim J5 =0,
Now let us notice that
2 2
Am |5] = A= —;de3 | Gy olrpwy)? (23)
I‘Jz UJ[‘d
“ (%074 000Y 30t ,+08,7,)d5, | <

b
2
A]ﬂ-n(ll ‘3? dy3 I (yg"'Y3) 8(t1 ,y1,t2,y3,t2+At,y2)_dy2 =
a - .
[y-ys) <

£4d

. b
=dz~f e H'Z(H’y1'tZ’YB?At)dy3=dsz2(t1oY1:t2!Y3)dY3 — 0
a

when § — O
a8 the function b2(t1‘,‘ Yqr oo y3) is continuous and con~
sequently for a < Y3 < b 18 bounded.

It follows from (17), (22) and (23) that

a
! £ 204 s¥ (o203 R(y4)dy, = (24)

b
= j [h1',('t1,y1,t2,y3)R' (y3) + F 5,(t,74t,,75)R" (yB)]dy3-.
. a

- 28 =



Some problems concerning non-markovian processes "

Integrating the right side of (24) by parts we have

]
2 3 A
.[ [at2 2(51070%2073) + 37, by (ty9Xqstpeys) + (25)
J |

n

1 9% . ~

Formula (10) follows immediately from (25) and (17) as
the function R(y) is arbitrary,

Remark, Itis evident that theorem 3 is true if we
replace the assumption: "functions (18) are continuous" by the
assumption: "there exist continuous functions equal almost e-
verywhere to functions (18)",

In theorem 1 the convergence must to be uniform, In
theorem 3 the condition of uniform convergence can be omitted.
It is also evident that the uniformity of convergence is not
necesgary in theorem 2,

II, Now we are going to give conditions that equations (5)
(5'), (6) for Markov processes and equations (14), (14'),(12)
for mon-markovian processes have the same form,This will permit
us to give some conditions that a process is a Markov process
in the wide sense, The definition of the Markov process in the
wide sense is given for example in [4].

It is evident that if

h .
then equation (6) and (12) are identical,
Next note that the function H(t1,y1,t2,y2,t3,y3) is un-

defined on the set

2 y-]"yzl



12 APlucifiska

since by putting 1, = %,, y, # y, we obtain a contradicting
condition in (2), Thus all considerations must concern only
the values outside S, It is also evident that the limit

g-tji% H(t1 - 4%, y1ot1 oy2ot3'3’3)

can b considered only in the case |y2-y1|—* © and it ought
to be

}ti-ﬂ H(t1‘At’y2!t29Y2’t3QY3) = F(t21y2’t3’y3) .
d—=0

FProm the definitions of functions F and H it follows
that

H(tzvy29t2oY21t3’Y3) = F(t20y20t305’3) .

Moreover we shall assume that for |y2-y1|<d

. 1
Eﬁft e [H(tz—At,y1,tz,yz,t3,y3)-F(t2,y2,t3,y3)] =0, (27)
-0

We are going to prove the following
Theorem 4, If condition (27) is satisfied then
equations (14), (14') have respectively forms (5), (5'),
Proof, Note that
1 Py =08, ,%5,75) =

= %t fH(‘b.]-A‘b,y-],t1,Y20t3’Y3)dy2F(t1"AtoY1ot-]:YE) =
I

= %§ j F(t1,y2,t3,y3)dy2F(t1-At,y1,t1,y2) +
I

+ %‘E fH(t1-At’Y19t1 oy2ot3'9y'3) +
I

- 30 -



Some problems concerning non-markovian processes 13
- F(t1,y2,t3,y3)] dyzF(t1-At,y1,t1,y2) = 3,40, .

Now we shall evaluate J2. From the properties of func-
tiongs F and H it follows that

| 1o [ [BG=b3,0800550t5033) + (29)
|92-91| 20

- F(t1,yz,tB,y3)]dy2F(t1-At,y1,t1,yz)

< f d, P(t,=8t,55%44¥,) — O when 4% — O,

Fil Yy
2
[Yz-yo| >
1in L= f [H(by=05,5, 15153 50%5075) + (30)
st—g OF 1 T2 v 3eJ 3
60 lup-yy|<d

- F(t1,y2,t3,y3)] dyzF(t1-At,y1 vty,,) =

= 1i i 1 -
1im f Alt:;rns At;[H(t1 A%,y ,1:1,y2,t3,y3) +
|4-yq|<d

- F(t1,y2,t3,y3)] dy (618533, 8007,) = 0

In virtue of (29), (30) we have

lim J =0 .
t =0 2
d—=0
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From (28) - (30) it follows that

1.0 -
lm Jg[F(6)-at,,8,75) + (31)

- i’.F(t-l’y2’t3’Y3)dy2F(t1-Ath1't1 93'2)] =0,

Relation (31) has the same form as in the case of Markov
process, Then repeating the reasoning used for Markov process
in virtue of (31) we get the thesis of theorem 4.

Now we are going to give some conditions +that a process
is a Markov process in the wide sense,

We assume that there exists .a transition density £, equa-
tion (5') holds and functions £, a; (i = 1,2) wsatisfy some
additional regularity conditions, which will he sgpecified in
progress of succesive considerations,

Let us consider equation (5'). Let the coefficients a; be
such that this equation has a unique solution (some additio-
nal marginal conditions may be added),

Multiplying (5') by £(t,,¥,5,t3,55) and integrating we get

f% £(t 571 0b207) E (b 50T p0b5073)dy, +
I '

+a,(ty,5,) Ifa—aﬂ £(t57428207) 80550700t 50 5y, +
K 22 |
+ 3 a'z(t1oy1)f EF f(‘l:1 oy11t2oy2)f\t29Y2ot3vY3)dY2 =0.
I 1
If the function f is sufficiently regulsr and the order

of integration and differentiation can be interchanged;then.we
get

-32. -



‘Some problems concerning non-markovian progesses 15

2 [ ar
i iff(t1,y1,t2_,y2)f(tz,yz,tB,ys)dyz +

+ a;(y,5,) Ijf(t1,y1,tz,'yz)f(tz.yz,tB,yB)dyz +

2
1 il : . ;
1 1

Let us put in (5') ¥y = gy ¥ = T3
If the solution of (5') 1s unique then it must be

204,31 083073) = [ 208,505,070 (25,750t 5,75)dy, - (32)
J .
In virtue of the relation
P('b1 ty1"t29A) = i%a?tt‘l-i!i;tz’yz) = !f(t1 quvt2v3'2}d}’2
equation (32) can be written in the following form
£0t1,71985073) = [ 204,,35085,53)0(5,3, 4 tp0dy,). (33)
1

If the order of integration is interchangeable then in
virtue of (33) we get

P(t,,¥ystqp4) = ff(t1,y3,t3,y3)dy3 =
J _

- 1 ff(tzzyé"ts'ya)i’(*1'V1"‘2’dyz)] a5 =
E 1. :

- 33 -



16 A.Plucifiska

= I[ ff(t2’y2tt39Y3)dy3]P(t1,y1,tz,dyz) =
I A

. IfP(t2,y2,t3,A)P(t1,y1,tz,dye) :

Then the considered'process is a Markov process 1in the
wide sense,

The analogical reasoning can be given with respect to e-
quations (5) and (6),

III, Let us denote by X +the class of probability density
functions f such thats )
1° I = (0, +oo)

y y
0 - I Yo
2% £(%4,7q05007,) = £4(48)F, (At1/p’ At1/p>

where p - natural number, At = $,-t,.

3% there exists a constant d > O such that

e I Y2 _< Yo N (Y4 V2
2<At1/p ’ At1/p>" At1/p> 3<A.b1/p ’ At1/P>

and f, is analitical in Je
In virtue of

If(‘t1 )Y1’t2oy2)dy2 =1,
i .
it follows that

£,(4t) = =17, (34)

We shall find a solution of equations (5'), (6) in the
class K,

The assumption that the function is analytic is one of the
fundamental assumption in the theory of partial differential
equations [7].

- 34 -



Some problems concerning non-markovian processes 17

In the paper [9] a stochastic process was considered for
which the probability density function f was given by the
formula '

f(t1,y1_,t2,y2) = f(At,y1 ,yz_) = ;}ck(z1)fd+kp(z2) (35)
where

¥y
Z, = ’ i=1,2
17 (pag)1/p ’

. -21
ck(z1) ='%T z¥p e (36)
P
7 =_ b d+kp %2 (37)
fa4xplZ2) = C(@FkprTy %2 ° e
D

The functions fd+k are general gamma densities, ) are
Poisson coefficients, function (35) is a randomized general
gamma density, It was shown that for p=1, 4 > 0 and forp=2,
d=2n (n - natural number or O0) the infinitesimal moments a
are given by formulas

i

a,(t,¥) = a,(y) = 2—159:2 y 7P (38)
a(t,y) = ay(y) = 2 y°P . (38')

For p=2, d=0 the coefficients ay have the same form as
for the Wiener process defined for I = (=ee, +eoo ),

In this paper we shall show that (35) is the unique so-
lution in the class K of equations (5'), (6) if a; are
given by (38), (38') for d > 0, p=1 and for p =2, d=2n

(n=og1.2,.oo)o
- 35 -



18 A.Plucifiska

Pirst we must show that functions ai,f satisfy the

assumptions of theorems. 3, 4,
Let us put ¢ = +eo . In paper [9] it was shown that: for

p=1, d>0
bed r
' r ry. k r=k C(d+i+r
m,(7,4%) = !'sz(tvyv"z'yz)dyz = 2 Gy (a)™™ ik
and therefore in virtue of (17)
31(7‘71,3?1,'52,&‘2,4‘@) =%[QT(YaﬁAt)‘y2]f(t1’y1,tggYQ.) = (39)

= (A1) E(, 474 985055)

B,(t, ,y1,t-2,y2,4t—)_ = (39")
1 ( Y4y3|2( t¥,) =
= K.E[mz(yggﬂt)—zyal_xlT szm s £ t1sy11 292
= [ 2y +an ) (a42) 88 ]2, ,3 4 ,557,)
for p=2, d=2n (n=o’1’2,0'tt)l
® (Va) +

mT(y1,At)‘ = e 2 V2 At .~ [—-1—) + Vu %

(n +

ot k +; k+1}

(2k+1)"

forn 21,

where

u
2
¢(u) = Tzi' je X dx, u= ﬁ y? , d=2n (n=0,1,2,¢e0)3
3 .

- 36 -



Some problems concerning non-markovian processes 19

5yt = 3 (D2 (ainyte LGE + 1)
m,(y,,08) = v (2m —2_ -
291 £k rdtl 4 x)

and therefore in virtue of [9]

1 Y =
By (%4451 0%50¥5048) =A—t[m1(y2,At)-y2]f(t1,y1,tz,.yg) = (40)

='{%¥_[y1 Q(ZEZE%T7§>- y1+o(At)] +

Y1
+3—1 0 (W)} (810710 %0072) =

o1 :
+00t) = 50 ((2“)1/2) £(5y45q085075) + 0,(a%) ,

Bz(t1gy1,t2’y2’At) = (40’)

= %¥[m2(y2,At)-2y2m1(yz,At)+y§]f(t1,y1,t2,y2) =

= £t 371 9t207 ) +-%$’E—) = f(t1,y1 stoey,) + 0(8%)

Taking into account (39), (39'), {40), (40') and remark 1
it is easy to verify that all the assumptions of the <theorem
3 are satisfied.

Finding the partial derivatives one can verify that (35)
satisfies equations (5) and (6),

- 37 -



20 A.Plucifska

Now we are going to show that (35) is the unique solution
in the class X of equations (5) and (6),
In virtue of (34) and assumption 3° we can write

£(t1,740%p075) = (080)7VP £,(2,,3,) o

According to assumption 3% we substitute

£(t97¢0t507,) = (pat) VP 58 £3(z,2,) = (41)

_Zp

= (pAt)'1/p z% e f4(z1,z2) .

Taking into account (38), (38') and (41) we have

92
6t1

S _ 0
£(81979085072) = 33

f(t1,y1,té,y2) - (42)

N

- 5 ot
= - (p At) [f2+z1 7. + Z2 @j' =

-t of
= ~(paAt) A(d+1)f4+z1 Bz, " Pz

.
N'o
<%
H
o~
——
[
]
N
N o

3>

3 1 9 =

a1(y1) 35; f(t1,y1,t2,y2) + 2a2(y1) ay2 f(t1,y1,t2,y2) = (43)
> v

10 of asz]
=1 p 1-p ~2 2-p 2 _
= p(p At) [(2+d-p)z1 5z, + 2] <=

Ll of T, -z
1 p v, 1=p _~4 2~-p LRI R
= p(p At%) [(2+d-p/z¢ 7z, + 25 37 j%2

- 38 =



Some problems concerning non-markovian processes 21

2
%—Z—[a1(y2)f(t1,y1,t2,y2)]-;#[%(yz)f(t.l,y“tz,yz)]: (44)

>

1 e 9 1-p ’ 32 2=-p -

= 1(p at)? {32—2[(2+d-p)z2 £,] - 2 [227P £,]} =
2

2

_1xp af of [y
= E(p At) P [p(d+1 )f4+2pZ2 Iz, "~ (2-|-d—p)22 . " Z2 ?"F
2

P
2 a ™
-p zg f4]z2 e .

It follows from (42) - (44) that equations (5') and (6)
can now be written in the following form '

{ B ) 8f4 o 6f4} (45)
p|\d+1)f,+2, 5=t - pzif, + z + 45
| 47%1 Tz, 2'4 ¥ %2 Bz, ,
5 _
of A°f
1-p 74 2=-p 41 4 _
-(2-§-c1-p)z1 7%, " 2] 2 }zz =0 .
24
" af f
S o) 4 4
{p L(d+1--pz2)f4+z1 %, + 2, azz'jl + (46)
. 2: :
- af 9°f
’ P S 1—p}4_2-p 4|4 _
-p(a+1+pz2)f4+ 202, (2+c1--p)z2 5, z5 22 }z2 = 0,
2

The function :‘.‘3 is analytical, hence the function f4 ig
also analytical, Therefore we can write
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24(31025) = )_oyla))eg - (47)

Now we shall find conditions, which the functions ck(z1)
must satisfys

Substituting (47) into (45) and (46) we get

g {zg"'k [p(d+1+k)ck+pz1ci£+(2+q-p)z}*pci{+z$-pbi'{:I + (48)

- p? z%"'k"'p °k} =0,

S L O e
%{z2 (pz,lck pkck) + k(144 p+k)z2 C [=0 o (49)

First we shall consider equation (49), This equation can
be written in the following form

p-1

> k(14+d-p+k) 23t o) 4 (50)
k=0
+ of [ z,0, - pke, + (k+p)(1+d+k)e,, |23%K = 0
< [PP1%k 7 PRk P CrapiZ2 TV e

Equation (50) is satisfied for all z,> O.Then the coeffi-
cients must be zero i,.e.

pz4C) —- Pkey + (k+p)(1+d+k)ck+p =0 for k>0 (5%)
k(1+d~p+k)c, =0 for "0 < k < p . (51')

Now we shall consider two cases:
cds€ A .ee p~1=d i8 not a natural number
case B ... p~1-d 1is a natural number,
In the case A in virtue of (51 ) it must be
¢y = 0 for 1<k <€ p=-1,
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therefore in virtue of (51)

¢, =0 if k#rp, T =0,1,2,... (52)
Differentiating (51) we get
) - 1 1 " N
Cheap = Thrp) (e PUe1)e) = p21c] (53)

Equation (48) can be written in the following form

-1

o

[p(d+1+k)ck+pz1ck+(2+d-p)z]_p-cL+z$"p cy z%+k+ (54)

]
(=]

k

= - 5 , , e
+ Eg;[-p ck+p(d+1+k+p)ck+p+pz1ck+p+(2+d p)z, Cheap *
O

+Z1~ Ck+p]22. =0,

‘Equation (54) is satisfied for all 22:>\O,hence the coe-~
fficients must be zero, i.e,

- 2 ' - 1—p ! 2—p " _
p ck+p(d+1+k+p)ck+p+pz1ck+p+(2+d p)z.| Oiapt?]  Clpp=0s (55)
for k>0
¥ - e
p(d+1+k)ck+pz1ck+(2+d-p)z} pokfz1 pci =0 (55")
for 0 < k < p~1.

Let us multiply (55) by z?. Then we can write this equa-
tion in the following form
°k¥p+pz}*d °k+p-pzz%°k’° . (56)

244 =p "L d
(z1 °k+p) +p(1+d+k+p)z1
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Substituting (53) into (56) and taking into account (51)
we get after some transformations

2
2+d~p ' L !
(2] °k+p o 1+d+k (z ¢y + Pz ck) =0. (57)

Bquation (57) is equivalent to the equation
z$+d-p ) *+ [(1—k)z$+d'p+pz$+d]ck+p2z]+dck=const=D1’k . (58)

~ In order to find the solutions of equation (58) 1let us
substitute

Cp. = UpZ2q € - (59)

then after transformations equations (58) can be written in
the following form

3+d-pHk o, 2H-pHk 2}
23 uy + 23 D1 k' . (60)

We can treat ui ‘as an unknown function.Equation (60) is
then a linear equation (ordinary) of the first order with
respect to uy. It is evident that the general solution of (60)
isg

P
_ 1 p=k=d-2 % ] v
u = f—z1 I:D1’k fz1 o' dzy+D, \ [dz 4Dy .

In virtue 6f (59) wefhave
p
k 2[ 11 p-k—d-2 ]
G724 © {fz1[1?1,kf dz1‘“])2 k dz1'”)3'1‘:} (61)

- 42 -



Some problems concerning non-markovian processes 25

AN ~k-d-2 2! .
Ciqp=Z1 = © 1{f2q D1,k+p_[z1 e 1dz1+D2’k+p]dz1+ (61")

Solutions (61), (61') depend on constants D; i and Tes-
pectively D, Now we are going to show that it must be

i,k+p*
D19k = D2,k =0 for k = O’P’2p’oovs (62)
) - Z?
[pz1ck - pkoy + (k+p)(1+d+k)ck+p]e = (63)

p
k 1 p+k-1 9 p=k=d=2 7, :
=’PZ1-{[ 1 —Pzy H[ (D) fz1 ® ' daz+

+ D2,k)dz1 +.

p
1

X[ 1 p-k-d-2 2
+D3,k] + 24 [Z—1(D1,kfz1 e dz1+D2'k)] } +

k p-k-d-2 zf .
~pkz H (, kJ' P o dz1+D2’k}dz1+D3’k] +
oy kp [ 1 —k-d-2
+(k+p)(1+d+k)z‘| [IEQ(D"-]HP[Z‘ dz1 +

(k+p)

Multipying (63) by 27 and differentiating we get
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26 A,Plucifska

21 p-k~d-2 2}
-p E;(D1,k J,z1 e dz1+D2’k) + (64)
P
-p=1 p=k=d-2 _Z,
-p z1 (D1 %1 < o dz1+D2'k) +
-p p-k~d~2 gk=d=2 7
9270 Dy 47 o +(k+p)(1+d+k) (D1 Jk4p | %1 dz1

+D2,k+p) =0,

Multiplying (64) by 2z and differentiating we get

2 p=k=d -2 1 3,=-p-1 p-k=d=-2
=D D1’kz1 e ' +p7z, [ 1,k.[ 1 e &z +D2 k]

(65)

P
] 2_=p p=k=d=2 %}
= P 24 D1,kz1 e+

2_p=k=-d=2

+\[p z3 p(k+d+1Nz'd'k'2]

zP
1
d1’ke +

)
~k=d=2 2
+ (k+p)(1+d+k)D1’k+p 2] et =0,

Multiplying (65) by z?+1, differentiating and next mul-

P -
tiplying by e ! z$+d+2 P we have

3 ki1 +p2P
07D, 1+ (e4p) (14a41)D, oo ~p(p+14a41)D, 1] [p-=a~14p2k |0,

{66)
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Relation (66) must be satisfiied for all z,> 0,therefore
the coefficlent of zP and the. constant term must be zero i.e.

(ketp) (14a+K)Dy y o = p{p+1++ID, o (67)

() (142+k=p)Dy po = p(1444K)D, o (67")

In virtue of (67) and (67’') it is evident that it must be

D1’k = D1’k+p 0 ¢

- In a similar way it can be shown that condition (62) is
also satiafied for. D2 K*

Now we are going %o £ind D3 jee It fallows from (62) and
(63) that

2
-PDy y + (k+p)(1+d+k)D3 4p = O 0

hence

k
j¢) . -
D3,k = ET(1+)+,., »(T+a+(k=1Jp] 03,0 = (68)

r (1)
= err (1xaEp) P3,0 ¢
p

Now in virtue of (40), (41), (47), (61) and (62) we get
if £,(2,2,)dz, =

2P

(1#) N zy? o A+
= D3,07 % g i (TEER) i[ 2 dzz =
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oo kp
D I (14

therefore

D.. _-_-_LO
3,0 r(li@)

Taking into account (40) (41), (47), (61), (62),(68) and
(69) we get (35). ' '

‘Thus the unique solution in the class X of equations(42),
(43) 1s (35),

Now we shall .consider the case B i,e, the casesp=-1-d is
a natural number, Let us denote N = p~1-d, In virtue of (51)
it must be ‘

ck=0 for 1 < k €< p=-1 except perhaps k=N

therefore instead of (52) we get
¢ =0 1if kérp or if LkfN+rp, 2=0,1,2,.4,

If we repeat all the previous reasoning, we .get for k =
= N+rp function ¢, of shape (61),It is easy to verify that
(62), (63) must be satisfied. Now we are going to show that

D =0 for k = N,N+p,N+2Dyees (70)
3,k S

In virtue of (62) and (63) we have

p2(r=1)
ypr-1-4 7 7= 1(r_1)t(2p-1—d) ...°(rp-1-d)

Dy Dy w =

r(1 + )
(r-1)' F(r + —)

3’N>’ r = 1,2!0.0
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Ih the considered case there can exist two séquences of
coefficients Cper which must not be zero,namelly co,c ’°Zp""
and eyrCy +p’°N+2p"" o Then reapeat:.ng all the previous rea-
soning we get

D1 s N4+Trp = D2’N+rp = 0 for r=‘30,1’2’000> and then

[ £aypa)an, = [ S [oplagad™ + (1)
I I o

=0

=

p
d+N+kp ] 22 :
+ ch\T+kp(z )z ] e’ dzy =

Dy oD +1rtr+ D gt .

Function (71) must be equal 1, i.ey function @(zp) cannot
depend on Zqe In other words (p(zp) nust be constant, Now we
are golng to show that (70) is a nécessary condition that (71)
be constant, Indeed, let us notice that

= D N AT
9'(u) = ZW%’_ 4D [(k + N)u B --uk D}e u .

Mk + 2

N + — k‘1+3 ~u
= =D — = u D _*—L— u e +
PN (g +1—g> . Z > 5+ 1)
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_xd
1 P _~-u

N, .2
F(1+p)

o
o=

o0 N
1 K% -u
- D —_—u =
; PV (e D4 1)

Then the necessary condition that ¢(u) =0 is N =0 or

3 N = 0. The relation. N=0 is.conitradictory with assumption

B that N is a natural number, Therefore 3.N = 0 and this
means that condition (70) is satisfied.

Pinally (35) is a unique solution of equations (5), (6)

in both considered cases A and B, '

Let ue notice that if P[Yt = o] = 1 then
o

'63_2 P[Yt2< -'>’2|Y*c1 =0]= %‘_ P[Yt2< Ya) =

9

~ P { y Jd o pAt
'r(%‘)(pm)”P (pat) /P

and we get genersl gamma distribution.

In virtue of part II we can formulate the following sta-
tement: _

If conditions (26), (27), (38), (38' )~ are satisfied then
the unique transition probability density £ in the class K
is given by (35) and £ is the transition oprobability density
in the Markov process in the wide senae,

IV, The correction concerning paper (8],

In paper [B] on pages 13, 14 examples of solutions of
some partial differential equations were given.These examples
should not be considered there [8], as the solutions do not
satisfy the agsumptions of theorems given in that paper,

This fact was observed by Prof.Ke Ur banik,

The correct discussion of these examples for I = (0,+o<)
is given in the present paper,
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I would like fo express my gratitude to Professor X.Urba-
nik for his valuable remarks concerning my papers,
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