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CONTINUITY OF TANGENTIAL DERIVATIVES
OF A THERMAL POTENTIAL

In [3] we proved that if the density w(Q,T) of the ther-
mal potential of double surface distribution is determined on
a closed Lapunov surface S and satisfies Hdlder s condition

®
l9(a,0) - 0(@ D] <X, (laal”? +t=719 ()

(k¢> 0; h, e (0,1]3 ﬁwe (0,1)), and if {SP} is a tangent vector
field given on S and fulfilling the condition1

(spysp) < C | PP | (%%)

with Cs > 0 hS € (0,1), then the values of tangential deri-
vatives of the afore-said potential on the surface S satisfy
Holder s condition with respect to both spatial and time va-
riables with the exponents h" and k" respectively, and the
coefficient k", subject to the following relations

h’<hp; h*< h(ﬂ; X' = C*t_B k(ﬂ (%= %)
(€*>05pe (1)
By basing on that result, a non-linear tangential bounda-

ry problem was examined in [5], whence 1t turned out that re-
lations (x«x) involved some additional, rather odd, conditions

T 1n (%) above P and P are arbitrary points on .S, and (sP, 513)

denotes the angle formed by the vectors Sp and Spe
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A.Borzymowski

concerning functions given in the boundary problem (see [5] ’
assumptions (12) and (13)), and as such should be modified,
if possible.

The aim of this paper is a modification of the results of
paper [3]. We shall prove that if the surface S and the ve-
ctor field {SP} satisfy some conditions more resgtrictive than
those in [3], then relations (»x»*) can be transformed to the
following form

h" = hg; B'<Ry; k. = Ok, (nn %)
which evidently enables a reduction of the afore-mentiened as-
sumptions in [5].

The conditions concerning S and {SPL as well as the
appropriate assumptions for ¢(Q,T), will be specified in the

sequel,’
*

. * »*

Let t denote a variable in a finite interval (0,T), and
let A(x1,...,xn) be a variable point of an m-dimensional do-
main Q- placed in the space E, (n>2) and bounded by a clo~
ged Lapunov surface S.

Consider the thermal potential of double surface distri-
bution of the form ’

S _ |aqf®
v(4, %)= [ [ (4=1) 2 |Q| cos(QA, ny) exp [—m]w(o.r)mm (1)
0S - . ,

where n. denotes the dinward normal .to S at the point Q,
and IAQI is the euclidean distance of A and Q.

The following theorem is valid.

Theorem 1. Assumptions:

1°, Punction ¢(Q1) satisfies

lg Q)| <M,T* (2)
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Continuity of tangential derivatives 3

o0, 0-0(@D] < k7 (10T ™+ [-71™) (3)

where

0<T < T<T; M,>0; ky>05u,e[0,1); hye (0,1);

£ ¢ (]
h¢e (_2—’1)5

2°, Por each point Q € S and each vector s, tangent to
S at Q there exists a tangential derivative %E—Q(Q,T) and

'/“"P

%(Q'Tﬂ <y (4)

holds, where M;> 03 p@e[0,1). If, moreover, vectors Sp and
sQ belong to a continuous tangent vector field then the HO1l-
der inegquality

d i d = ' —,u' — My
ia‘sa“’(Q'T) - ﬁ‘é‘P(Q,T)‘ < k1 7lQQl? (5)
is valid, with k, > 0 and h:pe (0,1] .
The sis: For each point P on S and each vector
sp tangent to S at P, the equality
lim d v(4,t) = (2vm)*" (p(P t) + ds ——V(P,t) (6)

A=p

is satisfied, where

51)v(P.t) -ff asy {(t T) "Iza] cos(@, )exp[ 4Pt 2“ (M

-T

:[ot@,0)-(a,0)] aaar+2°r (P [ 13- {170l Poos(@, n) | [9(0, )4

= (P(Pot)]dQ +
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4 ‘ A.Borzymowski

1Paj?

: 4t n
-2nsf a%;llPQl1'ncos(@.nQ)of Q’ e'qdq}w(Q,_t)dQ
with all integrals in (7) being absolutely convergent.

Proof is analogical to that of theorem 2 in [2],with lit-
tle modifications. _

Now, we shall prote the following theorem.

Theorem 2., Assume that:

19, Punction ¢(Q,1) satisfies (2) and (3);

2°, Surface S 1is of Class By(c,x), (see (6], p.96) and
satifies the condition below:

(¢) There exist on S n-1 fields of tangent unit vectors

{r;},...,{r§—1}such that forseach pair of points P and P
belonging to Sy the following relations

{rgorp > = 4, (8)
oL ot = h
(rpyrg) < CL|PB| T (9)

hold (where o« = 1,eee,n=13 B = 1,eee,n=1; C,> 0, b €(0,1],

<, > denotes the scalar product and dg is the Kronecker deltéh
3°, {SP} is a tangent vector field given on S and ful-
£illing the condition (x*) with

> -
hg 1-hg,. (10)

Then, tangential derivative (7) satisfies the following
Holder condition

d d — — 'p‘(g — hn - i,h'aﬂ .
Gog! (B 1)~ goz V(BT < (AMyrhoky)t (12B] "+ ]3] 77 (1)

(3 > t), where A and A

ding on ¢, and

are pogitive constant not depen-

1 2

h, = min(hg, 8, min(h,,h_,x)) {12)
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Continuity of tangential derivatives 5

8
Bew= —5 b,
with 0, and 8, being chosen arbitrarily in (0,1).

Proof. We shall give here only some parts of the proof,
omitting the parts which are similar to the appropriate frag-
ments! of the proofs of theorems 2 and 3 in [3].

In order to prove the validity od the first part of rela=
tion (11), let us denote the successive integrals on the
right-hand side of (7) by I,0 I, and Ij, respectively.

For the integral I1 we keep in force the appropiate Hol-
der inequality obtained in [3] (formula (40)), which has the

form
- -, h
|1,(B,%)-1,(, )| < const | pF|" (13)

Passing on to the examination of the second integral, 12,
we consider a sphere X with center at P and radius 2|PP|,
and an (n-1)-dimensional circular cylinder A with axis ny
and a constant sufficiently small radius 4. It is sufficient to
consider the case when 2|PF| <d.

We have the following estimates (see [3], pp. 162-164)

$-5 5-5 - —h

|12 et -1, " (P,t)‘ < const. kwt'u"IPPl ° (14)
S S - - _h

lIQK (P, t)- 12" (P,t)} < const. k(Pt“("PPl ¢ (15)

where
h = min(hs’hr’hw)'

Further, we have

$p-S Sp-S¢ - _
I, " (P,t)-I1) " (B,t) = st [ﬁ;(lml’ cos(TP,ny)) +
AT VK

1 Although in [3] the Hélder coefficient of the function ¢ was assumed

to be limited, the results are easily extendable on the case of an un~
limited Holder coefficient (see [4] , pp.144-147),
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o= < (|7al" cos(dﬁ.nq))]-[¢(Q,t)-w(§,t)]dq +

"d

+[o(F, 1) -o(P, t)]f (IPQ| " cos(@B,n,))4Q = J
Sy %

Now, let us introduce two rectangular 1local systems of
axes PX,,e¢ee,PX, and Pi1,...,Pin, with theiaxei Pxy, ?ii,
Px, and Px, coinciding with the vectors Thy THr» Dp anan,
respectivelyl (i = 1,.e4yn-1),

Basing on the decomposition
n-1

ds £(2, t)-dSP £(5,1) = 2_{[eos(x, 8p) cos (%, 8p)] s&-1(2, %)+

=1

+[ 72 2B, ) (1-008 (x4 ) )+ (gl (P, ) =g £(B, 8)) 008 (x,, %) +

n -— p— —
_ zz: iaf(P,t)cos(xﬁ, xa)] cos(xa,sﬁ)} (17
B=1
ﬁ#a o
and on assumptions 2° and 3 , we obtain for the integral J1
the folowing inequality
i h
|J1|< const.k¢t“ﬂPP|° (18)

For the integral J2 we have

_.[(p(P t) -¢(P, t)sfS ZOTHPQI cos(Q P,n ))(cos(xi,sP)dQ +
K

p-d -n —
+[tv(?,t)—9(P.t)]f ] {%.HPQI1 cos(QP,ny)) +
st (19)

- 5%1 (|PQ11qmcos(QTf,nQ))} cos(x;,8p)dQ = Hy+H,

~

1 -
Here r;' and r% are vectors appearing in the condition ().
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Continuity of tangential derivatives n

where Q' is the orthogonal projection of a point QESA-SK on
the plane Tl tangent to S at P.

Denoting by h2 the integrand o°f the integral H2 in (19
we can write the following equality1

n-4
h, = GOS(H?.nQ);cos(xi,sP) [ -3—25 (12Q| ™®-|2Q| ™ +nt; . (20)

n-1 . _
{2 B bumta) (12l 120 T gy o[ |

= k1 + k2 + k3

in which expressions k and k2 satisfy

]
|k1| <const.|PQ'|2'n (21)
| k,| < const.|PQ'|%7 (22)

It is evident from (21) and (22) that the integrals having
the integrands k1 and k2, respectively, satisfy an ine-
quality analogical to (18). Hence, in order to prove our
theorem, it is sufficient to examine the integral H1 in (19)
and the following integral

n-1
Hy = -n [o(B,8)-0(e,0)] [ > [2a ™7 ¢ aq (23)
my-my 37

where T, ~Tlk is the orthogonal projection of the domain SA-SK
on the plane 11,
We shall use the following relations

n-1 2 2 n-1 2
2%3(0) _ 2%(7) 2%g(P)
€= 2 Z(ataaeﬁ‘ asuagl;) €atpt 7 2 aE. 0k fa bp (24)
&F1 B
29(a) _ (%9 _ ot \ & 2a(n) (25)
0%, pz__:; (aeaagﬁ aeqa%) pr ; 9, 9% e

1 g({;-,l,'...,én_;l) is a function appearing in the local representation of
S in the neighbourhood of point P,
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8 A.Borzymowski,

(o = 1,600pn=-1) in which Q, and § are some pointis inside the
segment joining the points P(0, ses,0) and Q (61,...,.% )of
the plane TT,

Now, by making use of (24) and (25) we can express H
and H2 in the form

1

iy = (9@, 0) -9, 0)]{ [ =, (2,0 S o(7)
1 = Lo(®, £)-9(2, = (B@aQ + > Cop 3% .9t

Sy S¢ o, f,r=1
o [ 1Rl g e aq + (26)
TA=Tl
n-1 _ 2 . _ :
+ > Gy %fé% [ 1rai™e, dq] = Y VY55
“:T.= nA—nK
= [¢(®,)-o(2,0)]{ [ =,(p,@)a0 +
SASx
+ En—1 = aQ(P) f IPQ'|_(n+2)§ é g dQ,} =7 . +% (27)
o, =1 apT 06, 98p Ok T =BT 1R

where C,g. Ca; and cam are constants, and =~,(P,Q) and E_Z(P,Q)

are some expressions satisfying

| =, (,Q)| € const. |pg| ™™ (28)
(j = 1,2)
Prom (28) it follows that
|¥,| < const.k, t"¢|PE|" (29)
|2, < const.k, t“?]PP| o (29")

We shall prove that all remaining terms on the right hand
sides of (26) and (27) are equal to zero, that 1is, that the
equalities

Y; =0 (i =2,3) (30)

are valid.
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Continuity of tangential derivatives 9

In fact, by introducing in the plane Tl a polar coordi-
nates system with the pole at P (see [2], p.108), each of the
expressions Y1’Y2 and 22 can be written as a linear combina-
tion of products of some factors, with each product contai-

ning one of the following integrals1
4 2n i
f sinPw coswdw ; j sin%w cosw dw 3 f sin®T* 1y do (32)
0 0 0

where p,q and r are non-negative integers.

A1l integrals above are equal to zero, whence (30) and (31)
hold.

On joining the results (21), (29), (29'), (30) and (31)we
get for the integral J, in (16) the following estimate

|9,| < constak, £\ pp|" (33)

and by virtue of (14), (15), (18) and (33) we obtain
_ _ o, .
| 1,(B,t)- I,(B,t)| < constuk,t '|PB| (34)

(hy = min(h,hg,h))).

Now, we pass on to the examination of the integral Ié(Iyt)
in (7) .
We can write

I3(p,t) = -Zn{sff(P.Q.t) [o(Q,t)- o (2, 8)]dQ + (35)
+ ¢(P,t) ff(P,Q,t)aq} = 1,(2,t) + I(2,t)
M

35(Byt) = -zn{gff(?,q,t)[(p(Q,t)-(y(l—’,t)] aqQ + (359

+ g (B,1) [ £(5,q,4)4Q) = I3(F, 1) + I5(F,4)
N

1 The form of the integral contained by a product depends on the valu--

es of the indexes a,f and y appearing in this product,
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10 A.Borzymowski

where

>
=3
~

|

t

(X, Qt) = £E[|XQI1'ncos(ch,nQ) q?” eqdq] (36)

Q\h

(with X =P or X = P).

On considering the sphere K and the cylinder A introdu-
ced above in the examination of 12; on decompos}ng the surfa-
ce S into three parts: S-SA, SA"SK and SK' and on making
use of (24) and (25) we can show that

- h
|T5(2,8)-T;(F, t)| < const.kyt s 1p5| (37)

In order to examine the difference of integrals TB(P,t)
and TB(f,t), let us introduce two (n-1)-dimensional circular
cylinders W and W1, with the common radius d' and the axes
of revolution coinciding with np and ng regpectively. Assume
that ¢' is so small that (SWUSW1)CSA.

The following decomposition
A~ . -~ - _ ~S"5A4 ~S'SA =
I;(p, )~ IB(P’t) = [13 (B, %)= I3 (P,t)] +
ety « (1 @0 @) -
= Uy + Uy + Uy (38)

1 2

is valid,
For the first two terms on the right-hand side of (38),

the estimate
_ S e
|Uy| < (B34, +Ek,) 7| PE| (39)
(where i = 1 or 2, and A, and 32 are positive constants)

is easily obtained.
In order to examine the third member, U,, let us note that

by virtue of (24), (25), (30) and (31) we have

f':" (Pyt) =9(P,%) f & (P, t;Q)dQ (40)
. Sw
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Continuity of tangential derivatives 11

~ S _ _
IE,6) = o) [ &,(F,t50)40 (41)
Su,
where & (P,%;Q) and &1(P.t;Q) are some expressions satisfy-
ing the inequalities

~n+1+R

(42)

- -n+i+

(42")

| &, (2,
in which Q' 1is understood as above and Q" denotes the ortho-

gonal projection of the point Qe Sy, on the plane Pi1...in_1.

We can write 1

U, <] T @)+ TXE | +
|~ w™ Sk

(2, t)-I @, 0| 5 (B, %) (43)

where

1,3, P, t3;Q)| dQ (43")

WW1
with sww1 = (Sw“5w1)\\(sw“sw1)'
It follows from (42) and (42') that the following inequa-—
lities

~5 Hy, %
|13‘ (X,t)| < const.M, t *|PB| (44)
* - _[J'g _
13 (P,t) const.M, t | PP| (45)

hold, for X equal to either P or P.
Now, it can easily be observed that in order to estimate

~ Sw-Sk

the difference of integrals Ij (P,t) and I (P t) (see

(40) and (41)), the following expressions

n-1 ~ n-1 =
- o%q(@)  a%g(p dq,(Q) % (F) =
T OZ [3§ ok 3%, afb] - Z [aga oFy  0E, 9%y ]Gﬂ (4e)

p=1
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12 A,Borzymowski

n-t n-1
2= > 3 ‘aq(m (leal™-1p0| ™) -> a—""—(lpol -1RMy (4T
a=1

a=1

n-4

i 2%(0,)  9%(p)
93‘3;“ [asa% 3, asﬁ]e Spty +
1Py '/‘
T %, (0, 9%g,(P) -
'qﬁzm[a%a%'omtp Je5 W

should be examined. Here Q, and § are understood as in (24)
and (25), Q«» and Q denote some points inside the segment
joining P and Q" (see (427)), while ¢ = 8(Eqyeeesty 4)

and En = g1(§1,...,En_1) are local representations of* S in
the neighbourhoods of points P and P respectively, with
(51,...,en) denoting the coordinates of a point QeSW—SKiJlthe
local system PxjeseX,, and (E1,...,En) - the coordinates of
that point in the local system Pi1...in.

Note first of all that the following relations

) n-1
E—n=g1(€1t '°"gn-1) = ;avn(év—iv)+am[g(€1’""En—1)-in] =

= é(E‘]’ °°'p€n_1)§

3

1,.00,[1"1) (49,)

ga = ava(gv-iv) (o=
v=1
= b £ + i ( = 1 es e n) (50)
are valid, where a,; = bji = cos(EJ,§i), and i1""’§n de-

note the coordinates of point P with respect to the system
of axes quoooxn.
It follows from (49) - (50) that

g Q" o "2%g(Q’)
ag aéﬁ :E:: ann al BJ a;iagj | (51)

lj-
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Continuity of tangential derlvatives 12

whence

% (P)  %g,(P) 3%(P)
lag 9,  OF, 0k, ‘<|" ""lzlaeiae.l |boi] 1051 + (52)

’ag(P) _3%(P) +]1-b ” _o%g(?)
08,085 0%, Ofp Bl | 9k, 0%

2%q
+|"baa||bf3/3||ag aeﬁl Z || il o]

where P' denotes the point of Tl with coord1nates(i1,...,

+

azq(P

1,O), and E 'is understood as E with 1i#aand J #8 .
=1 L =1
However, due to the assumption (c) and the special choice

of the systems Px1...xn and Px1...xn, we have

h
Pfl T (v #a)
2h,, (53)

| 2,4 | < consta

| 1-84, | L const.|PP|

where o = 1, +se,n. Hence, and by making use of the inequali-
.ty

2 2 /=
?°g(P) 2°g(P) o |2
En il s (>4

(which results from the relation Se.LE(C,x)), we obtain for

- the difference on the left~hand side of (52) the following e-
stinate

2 _

Pe® _ &

IR T

(55)

where h = min(hr,x).
Now, let us observe that for the expression (46) the fol-
lowing equality

RS %@ %@ T 8%,(7) _ 2%(p)
" ; { [6% qaip agq ang [ag oF, 0 qagﬁ ]5
* (&5 5) [aaeagg,)s - aifé:;]}

- 217 -
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2 3
5 g, (Q)
In order to estimate the difference [Q g(Q) - 1_

we make use of the equalities

iazgﬁ)_ 9g,(Q")  2g,(P)
e % aep P ok Ok,

- hes D -] S, [ ), 0

! azgg”g)€ _2g(Q’ 25(P)
L OE, 08 P T 0k, 0k,

where the symbol 2 ' is understood as above.
On substracting the equalities in (56) from each other,
and on making use of (49) - (50) and of

s Zaéasg(") (57)

9k,
| P' Q'|<conste| Q] (58)

(Q € Sy-Sg, and PePP'), we obtain

|i (6?1(-5) - Zal@) | & sonet |5 |5 (59)
p=1

ok, g 9§, %%g
Finally, let us note that the following sequence of rela-
tions

léﬁ‘gﬁl-;lé[&_{z (Ev Xy *“n;s[q(h---- §p-1)" ’~‘n]“4

- n—1, .
4“;&““%;3'*"‘3”%5' > : | ayg] L6,-%,] +
+lanﬁ‘lq($1""'€n-1)—;n‘<

h 1-h
< const|PP| T|PQ| T (60)

ig valid.
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Continuity of tangential derivatives 15

By (55), (59) and (60) we get for the expression e, in
(46) the estimate of the form

_ fl ’ _ hr ,1-heea
le1|<const-'(|PP| ipQ|+|PP| ¥ |PQ| ) (61)

The expression e (see (47)) can be examined by basing on
the equality

Q"
22 (|zq| ™ ~r1™ - “T (15| M |B| D) -
_[ogta) _ %" -0 _ipg/~R
_[ o T ](|PQ| [PQ'|7) + (62)
g (Q"

+ =3 [0zQl™-12Q™) +

- (|Bq|™® - lmr%+<rﬂm -|8|™)]

and by using the relations‘l

1QQ'| < const .| PQ'I2 (63)
|Q' Q"] € const.} PP| | PQ] (63)
og(@) _ %&1(Q" ag(o )
%k, ot I = [1-baa +(1=a,,) boe ]+
n-1 a ]
=84n Do "Z [avn * 8nn _gm]bav
V=T 0k,
V# s
which are valid when Q e Sw-SK.
As a result we obtain
_ “e1) | _ b, -0 )
|e| < const. (2P| |2Q'| " "+|PB[" | 2Q] (65)

1 Inequality (63') is taken from [1], p.207.
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16 A,Borzymowski

The expression €3 given by (48), is studied similarly
as e, and the result is as follows

_n b 3-h e
|e3|4const;.(|PP|hlPQ’|3 +PB| "Rl ") (66)

Basing on (61), (65) and (66) we get the inequality

~ Sw Sk ~ TSy -1 ¢
JET T -5 (F 0] < (oigeeyk,) 6 pB|R (67)

where C1 and C2 are positive constants, while h = min[h¢,
8 min (hr,hé,i)], with 8 being an arbitrary number in (0,7%).
On joining (37), (39), (44), (45) and (67) we obtain

- ~ ~ -1 —h
| 1502, £) -1, (B, 1) < (B, M,48 kg ) &[22 (68)

and the validity of the first part of the required Holder con-
dition (11) follows immediately from (13), (34) and (68),
Now, we shal% prove the second part of condition (11).
Let us consider again the expression (7).
For the integrals I1 and 12 in this expression we keep in
force the conditions1 obtained in [3], P+175-179. Hence"

- ~Hy _eﬁw
|11(1>,t)-11-(1>,t)|<const.k¢t lt-%| (69)
- '“\p T h*
| 1,(2,$)-1,(P,%)| < constek,t "|t-F| (70)

_ h¢
(t >%; h, =853 8e(0,1)).

The integral 13(P,t) in (7) can be examined by way of ex-
pressing it according to the scheme (35), and by subsequent
consideration of the sphere K; with the center at P and the
radius (§-t)" , and of the cylinder W introduced above.The

1 Let us note that in virtue of the relation S ¢ Lz(c,u), we can put

-in these conditions » = 1,
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Continuity of tangential derivatives 17

reasoning is similar to that in the proof of (68), but ismuch
simpler. As a result we get

' * % X - hau
|15(2,8)-15(2,8)] < (€M 485kt " -t] (71)

On joining (69), (70) and (71) we obtain the second part
of Hélder condition (11), q.e.d.
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