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APPLICATION OF THE CHAPLYGIN'S METHOD
IN THE THEORY OF ELASTICITY

1. INTRODUCTION

Let V be a domain in the space EB’ bounded by the closed
Lapunov surface S, In this paper we shall consider the fol-
lowing boundary value problem in the theory of elastiéity.
Find the displacement vector-function  u(x) =[u1(x), ua(x),
u3(x)] in the domain V, such that

Au(x) +0%u(x) = F(x,u(x)) xev (1)

and

Tu(x,) +6 (x Ju(x,) =0 x_¢5. (2)

Here, we admit the same notation like in the paper [4].’1‘he
problem (1),(2) is the special case of the problem which has
investigated in the paper [4] by the potential method. There
was given the existence and uniqueness of the solution by the
Banach's Fixed Point Theorem.

The First Boundary Value Problem for the elliptic equation
was treated, by the Chaplygin’s method ([2]), in the paper [3],
written by I.P. My s ows k i ¢ h, In the paper [5], the
similar problem was solved with the weak assumptions +than in
[3]. There, we have based on the properties of the Green’s
function.

In this paper we shall base on the properties of the dy-
namic Green’s tensor of the third kind G(x,y). We shall in-
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2 J.Chmaj.

troduce the notion of the sequence upper (lower) vector-func-
tions, and then we are going to prove the convergence of this
sequence to the solution of the problem (1),(2).

We shall admit the following assumptions

I. Fj(x,u,l,uz,u3) are real functions, defined on the set
xeV, |us |<R and fulfil the Hdlder-Lipschitz condition

h. 3
|Fj(x,u1,u2,u3)-}?j (x’,u’,],dg,ug”s KF|xx’| F+kFZ:|us—u'S[ . (3)
. s=1

where R and KF are positive constants, O < hF < 1.
' The constant kF fulfils the inequality

1
0< ky < =g (4)

where
1 [ §als)
C. = sup [z= GY%/ (x,3)avy (5)
J x(:V-o’-S[w/S_Z1 J ’ ]
[
CzCy+Ch+ Cyu
II. The functions Fj(x,uq,u2,u3) satisfy the ineguali-
ties

Fj(x,uq,uz,u5)< Fj(x',ufl,ué,u%), (6)
/ 2 /
when ug < uy and u € Uy and u3 < u5 .

III, ¢ (xo) is a real function, defined for x,€ S and
fulfils the Hélder condition '

v h
ld(xo) -9 (x’o)} < k¢ Ixoxo‘ ¢ ’ (7}

where kg 1s a positive constant, and O0<hy <1,
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2. GREEN'S TENSOR G(x,y)

We shall define the dynamic Green’s tensor of the third
kind similary like the tensor of the first kind, whose defi-
nition was given in the monograph [1] on p.88,

Definition. The dynamic Green’s tensor of the

third kind is the tensor

o0 o) of)
6(x,y) = | 6§ of2) ol (8)
HORESCRNE)

satisfies the following conditions

a) A'G(x,y)+w2G(x,y) =0 for x,y,eV and x £y,

b)
lim [T(X)G(k)’(x,yh d(x)G(k) (x,y.)] =0 for x,yeV (y fixed)
XX, ' and x_ €8

c) G(x,y) =T(x,5) - e(x,5) for x,5€V
where '

MN(x,y) - is the matrix of the fundamental solution,
g(x,y) - is the matrix od the regular solution of the
. AR 2
equation A g(x,y) +wg(x,y) =0

The existence of the tensor G(x,y) follows from the exi-
stence of the solution of the boundary value problem

A*g(x’y) +‘(‘325(X)y) =0 X,yev
Lin [7()g() (x,5) + 6 (x)g() (x,5)] =
XX :

= 2(%) P () (x_3) 46 (x,) P (x,5) (9)
X,yeV, X, €8.
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It can be proved that the functions ng)(x,y) are posi~-
tive.

3. UPPER (LOWER) VECTOR-FUNCTION

We shall prove the fundamental theorem
Theorem 1, Iff the vector - function v(x) is re-
gular in the domain V+S, fulfils the inequalities

A*kv(x)+ uevk(x) < Fk(x,vq(x),vz(x),VB(x)) for xeV (10)

and the boundary condition

Tv(xo) + 6(x,)v(x,) = 0 for x,¢& 8, (11)

the functions Fk(x,v,](x),vz(x),VB(x)) satisfy the assumption
I, then
vi(x) > us(x) , (12)
Y a7
where u.(x) are the components of the solution of the prob-
lem (1), (2),
The vector-function v(x) satisfying the assumptions of
this theorem will be called the upper vector-function.
Proof. Let be z.(x)=v,(x)-u;(x) for xeV, Now,
we shall prove that zj?x) 2 0. Let o(x) =[o,(x), %5(x),
Oﬁa(x)] be the vector-function with the components satisfying
the Hllder condition for xeV. The exponent of this condi-
tion is equal to hF' Moreover, we assume, that

Av(x) + wzv(x) = P(x,v(x)) +%(x) for xeV. (13)

Obviously, O(,I(x) < Q0 for xeV.

By virtue of the definition of the vector-function z(x),
from the equations (1) and (13), we get '
Az (x) +w2z(x) = F(x,v(x))-F(x,u(x)) ~&(x) for xeV (14)
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Application of the Chaplygin’s method 5
and the boundary condition

Tz(x,) +6 (x5)z(x,) = 0 for x €8 (15)

According to the results of the paper [4], by the defini-
tion of the Green's tensor G(x,y), Wwe can write the solution
of the problem (14), (15) in the form

z(x)= %g—/G(X.y)[F(y,u(y))-F(y.\'(y))]dvy- %/G(x.y)d(y v, (16)

v Y
or, using the indexes

3
250) =y [ 3 64 )[Rl (0220105 0)) +
v k=1 '

- Fk(y,Vq(y),vz(y)’Vi(y)>]dvy ¥

3
2 of ) ay ey . (17)
y oK

By virtue of the definition of the vector-function « (x)

and from the assumption I, we obtain the system of inequali-
ties

z4(x) 2 W/Z o) (x,3) }: |ug(7)-vg(3) |av,  (18)

=1
From here

- 3 3
5007 T [ 36l 3| 50l ¢
v k=1 s=1
. 3
_%/i ng)_(x,y} Z zs(y)dvy (19)
k=1 s=1 '
v

or

- 59 -



6 J.Chmaj

3
_ZZj(X) < ;—g—/Zng)(x,y)
k=1

M

[Izs(y)l —ZS(:/)JdVy +

—_

s=

Vk 3 3
+—§%;/ZG§k)(x’y) Z zs(y)dVy . (20)
k=1 Y
Let '
A = }s{ue.pv [lzs(x)‘—zs(x)], A= Aj+hy+Ag (21)

Suppose, that zs(x)<0, then A = sup [—EZS(X)] and
xeV :
As > 0. Taking the greatest upper bound for both sides of the

inequality (20), by the definition (5), we obtain the system
of the inequalities :

A, < 2k C.A . 2
5 S 2kpCiA (22)

Hence

A < 2k CA . (23)

From the assumption (4#) it follows, that A < 0. It im-
plies Zj 2 0, Similarly, we shall be able to prove

Theorem 2., If the vector-function w(x) is re-
gular in the domain V43, fulfils the inequalities

A*kw(x)+ wgwk(x) > Py (x,w, (x),,wz-(x),wz(x)) for xeV  (24)
and the boundary condition
Tw(x,) + 0 (x Jw(x,) = 0 for =x €8, (25)

the functions Fk(x,w,](x),w;z(x),wB(x)) satisfy the assumption
I, then '

wj(x) < uj(x) R (26)

where u.(x) are the components of the solution of the prob-
lem (’1),22).
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Application of the Chaplygin’s method 7

The vector-function w(x) satisfying the assumptions of
this theorem will be called the lower vector-function,

3.1, EXAMPLE OF THE LOWER AND UPPER VECTOR-FUNCTIONS

Let H(x) = [Hq(x),Hz(x),HB(x)1 be the vector-function
with the components

3
Hy(x) = —7};/2 e{E) (e, av, (27)
Y

where

M%k);a nggs IFk(x,0,0,0)|, Ny = [Méq),Méz)aM§5)] . (28)

From the definition of the Green'’s tensor it follows,that
T(XO)H (x )+ 6(x )H.(x.) =0 for x €85
Jyo’ o/7"j\iol T o] ’

Since ng)(x,y) > 0, therefore Hj(x)-s 0 for x ¢V,
From the equation

KE(x) +w%H(x) = 4y,

we obtain

2

NHE(x) + 0 H (x) - Fy (%,H,,Hy  By) =

= (%) - 7 (x,0,0,00) = (Fy (x,H,Hy By ) - B (%,0,0,0) ). (29)
Hence, by the assumption II, it follows, that

A" H(x) + 0P H (%) - By (x,Hq HyiH5) > 0.

From the last inequalities it follows, that the vector-
~function H(x) is the lower vector-function.
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Similarly, we shall be able to prove, that the vector-fun-
ction h(x) with the components

hy(x) = - ZG xymF vy, (30)

where

m}g,k)s -Xi’-vl_l'_’s IFk(X9OvO’O)l, Iy = [ml(i'll).’mé‘a),’mé‘a)] , (31)

is the upper vector-function,

4, SEQUENCE OF THE UPPER (LOWER) VECTOR-FUNCTIONS
Now, we are going to define the se%uence of the upper (lo-
wer) vector-functions. Let v(o_(x), w o)(x) denote the up-

per and lower vector-function, respectively.
Let

oL }((p)(x) = A*kv(o)(x)ﬂ.)avl((o)(x)-Fk(x,vgo)(x),véo)(x),vgo)(x))<o (32)

o ()xy = for {20y, 0 L)), 0§ d ) ]
B 00 = Al B r (1,0 ), )W) () 2 0 (33)

6 ) =[p {0, p L), p0m) T

Theorem 3, If the vector-function v(q)(x)
[v(q) éq) x) v(q) x)] is a solution of the boundary va-

lue problem
A (v (x)v () () )a P (v (D) () (0) (x)) =

= kF@(1)(X)_ q(o)(x) for xeV (34)
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Application of the Chaplygin’s method 9
1
Tv(q)(xo)-+ d(xo)v( )(xo) =0 for x&5, (35)

where

3
¢ (M) <[ 37 (i) - ),
k=1

3
{6 - W), N @ - W],
k=1

k=1

then the inequalities vé1>(x) < vﬁo)(x) are fulfiled, and
v 1‘(x) is thé upper vector-function.

Proof. We first prove that the boundary value prob-
lem (34), (35) has a unique solution. By virtue of the Pois-
son's Equation (27) from the paper [47] we can write

v @) (x) = - 2 fo(x,y) 8N )y, +

ey [t al e, (36)
or y
3 3
V{1 )v°) (x) = - 2 f S 6 ,9) ST N ) v{0) (9)ave
k=1 s=1
p
+ %erng)(X.y)o\l(f)(y)dV (37)
k=1
Let us Y
3
£,(x) -W/ng ) x,9) a f) (s)av,
k=1
4
£(x) = [f1(x),f2(x),f3(x)]
and
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Consider the sequence of the functions
(1) - o) _
(w31 (x) = w00 (x)) = £5() (38)

({0 -v{) )y, =

k 3 3
i) k
S 21 ¢! )(x,y)z1 @)= (3))gq @V, for m > 1,
K= §=
Hence, by the nqtation (5), we obtain the inequalities

i - e, < vge)®. (39)

By virtue of the assumption (#) it follows, that the so-
lution of the system (37) exists as the sum of the uniformly
convergent series

vgq).(x)—vgﬂ(x) “mZ (V( ).(x)—vg())(x))m . (+0)

Now, we shall prove, that vgq)(x)—vgo)(x) < 0.
From the formula (57) and (32) it implies

v§“?(x)—v§°)<x)\<-§—/ gk,xyZ[v“)(y) ) ]av, -
' 4

v )

Suppose, that vgq)(x)—v(o)(x) >0 for xe¢V. Then the
right side of the inequality (41), by the properties of the
Green'’s tensor, is negative. This result denies our supposi-
tion. Hence vgq)(x)-vgo)(x) = 0. '

Finally, we shall prove that v(q)(x) is the upper vec-
tor-function. From (34) and (32) we obtain the relation

A V(/I)( )+ w v( )(x)-Fk(x v3 (x é )(x ,v )(x)) =
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+ 2, v§0) (), w80 () 1w () ) -By (e, v ) () v E ) () o § ) ),
From the assumption I and the inequalities vlg'])s vl({o)_,we
have

A*kv(q)(x)+ w2vl({’l)(x) - Fk(x,v,(l,‘)(x),véq)(x) ,véq)(x)) <0.

Hence and from the theorem 1 it implies vgq)(x) > uj(x).
Similarly, we shall be able to prove
T eorem 4., If the vector-function w(q)(x) =
[w ﬂ(x) (/I)(x) w(q)(x)] is a solution of the boundary
value problem

D)0 200w ()i D) 900 gor xev(u2)

Tw(q)(xo)+ d(xo)w(,‘)_(xo) =0 for X, € S, (45)
where
3
Y @) =[S D ) 2 () ()2 (),
k=1

S (o] ?(x)-wfi )(xn] .

k=1

then the inequalities (q)(x) > ( )(x) are fulfiled, and
(1 (x) 4is the lower vector—functlon '

Now, we shall construct two sequences of the vector-fun-
ctions { (m (x)t, (m /(x)t so that its components are the
decreasing sequence for the functions vkm (x} and the in-

creasing sequence for the functions w(}in)(x), respectively.
Let

ql({m-1)(x) = A*kv(m"q)(xh wzvl({m"/l)(x) +

- Bl v ), v ) B () <0 (w)
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12 J.Chmaj
o2 () <[ {1 (), o 1) (), {2 ()]
pl((m—’l)(x) = (m—’l)(x)+ 2 (m 1)()() +
- Ty e ) B 0 T () 20 (as)

p(m=1(x) <[ p =V ), pE(x), p{= ()]
Theoren .. If the vector-function v(m)(x) =

= [vgm)(x),vém)(x) (m) (x) ]15 a solution of the boundary va-
lue problem

A% ) () v (1) ) )4 B () () (1) ()
= kF@(m)(x)—O((m_q)(x) for xeV (46)
Tv(mj(xo)+ d(xo)v(m)(xo) =0 for x,€8, (47)

where

3

[Z ™) (x) - v (),

) - vim ()]

Mo.

3
ST @) - A1),

k=1

k=1
and the vector-function wl [ wim) (%), ém) (x), w m)(x)]

is a solution of the boundary value problem
A (@) (x) - w1 () s 02w () - wlm=1(x)) =
= kFY(m)();) - ‘Z‘)(m—/l)(x) for x eV (48)

Tw(m)(xo) + d(xo)w(m)(xo) =0 for xS, (49)
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Application of the Chaplygin®’s method 13

where
3 \
Y@ <[ ST ) - WtV @),
K=1

53: (w®) () - B (x)), i(wﬁm)(x) - wim= ) ],
k=1 k=1

then the following inequalities hold true

W) 2 v{m ) 2 ), w0 < ™ () < u(x).

This theorem can be proved similariv, like the theorem 3.
From the theorem 5, by the induction, it follows

YIQO)(X). >v1£7)(x)> >v1£m)(x)> vee> u(x)  for xeV

Wl({°>(x) <w£1),(x)< ces <w1£m)(x) < oo <u(x)  for xeV,

5. CONVERGENCE OF THE SEQUENCE OF THE UPPER (LOWER)
VECTOR-FUNCT ION

The sequences vlgm)(x) R «{wl(cm)_(x)} are convergent for
m—= "~ because they are monotonic and bounded, for exapmle,the
sequence {vl({m)(x)} is’ bounded by the function H, (x). We
shall be able to prove.

Theorem 6, The sequences {vl({m)(x)}, {wl({m)(x)}
are uniformly convergent for m—=~ o the solution of the
problem (1), (2).

Proof. From (46), (47) and (48), (49) after substi-
tution (44) and (45), respectively, we have

A (vl () -wl®) () ) 0B (08 ()P () ) =

= 1 (B0) (0)- ¢ () () Y (e, w (B0 ) ) w21 () )
for xeV (50)
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T(v(m)(x)-w(m)(x))+6(xo)(v(m)(xo)-w(m)(xo)) =0 for x €5.
(51)
Similarly like in the proof of the theorem 3, we shall

write the solution of the problem (50),(51) in the following
form

) )n®) ) = 2 [ o) () 0)- 22 0)) v,

v
- [ o) 2o TN Ee ) ar (52
Y

or

| 3 3
o )l ) = = 2 [ 37 609 (x,5) S (v (5)-ul®) )y

dJ :

2 (3)-ulmV () av, +

U’/'\

M/ZG“‘)” (

=1

sz 6{) (x,9) (2 o2V () w2V () v P (5))

-~ A v )N ), 2N ) @ (53)

Hence, by the assumption II, we obtain the inequalities

v )™y < H/ze(k%x y)\;(v(’“'”(y) W)y vy L (54)

4
Taking the greatest upper hound for the both sides and u-

sing the definition (5), we get

sup (v(m)—w(m) kFC :i: sup (vém—1)_wgm-1)). (55)

V+S So1

If we introcduce the notation :E: sup véo)-wéo)) =L, we

V+5
obtain
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sup (vgm)-wgm)) < (kFc)m L. (56)

From the inequality (4) it follows that v(m)(x)—vgm)(xFO

for m—-~. Hence, v(m)(x):= u(x) and wim (x)== u(x) for
m— ~ and Xxe¢V+S.
From (44), (46), (47) we have

V@) = e o) @ -%/e(:c,y).w(y.v(m'“><y>>avy.(57)
v v
Now, if we take the limit for the both sides of this for-
mula we get the solution of the probler (1),(2)

u(x) = _l_j‘—/G(X’y)F(y’u(y))dvy .

v

This solution is unique.
Suppose, there exist two vector-functions u(x), u(x) as

the limit of two different sequences of the upper vector-fun-
ctions. For the difference u(x)-u(x), we get

d(x) () = -;ch,(x,y) Fr())F ) ar, . (s8)
2

Hence for the greatest upper bound of the components we
have

3

/ " A "

TR =0 i D[N | (59)
s=1

Finally, by virtue of the inequality (4) it Tfcllows
u%(x) = ug(x) for xé€V+S.
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