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INVESTIGATION OF THE NONLINEAR BOUNDARY
VALUE PROBLEM IN THE THEORY OF ELASTICITY

1., INTRODUCTION

Let V be a domain in E5 bounded by +the closed Lapunov
surface S. Consider the follwing boundary value problem in
the theory of elasticity. Find the displacement vector-func~
tion u(x) = [u,l(x), u,(x), u3(x)] in the domain V, such
that

A"u(x) + wau(x) Fx,u(x)) for x eV (1)
and
Tu(x ) +d(x,) u(x,) = G(x,, ufx,)) for x e85 (2)

where A= (A+ 2{,1) grad div - prot rot, & is a real cons-

tant, A , (& are the Lamé’s constants, T = 2y 3a + Andiv +

+p[n‘rot], n = [n,l, n,, n5] is +the unit normal vector,

F(x,u) = [F,,(x,u,],ue,uE), Fg(x1u1’u29u3)’ F;(x,u,],u2,u3)],
G(xo,u) =[G1(x0,u1,u2,u5), Gg(xo’uqaug’uB)’

Gz(xo,u,l,uz,uB):[.
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2 J.Chmaj

The boundary value problem of the type (1), (2) was trea-
ted by W.D.Kupradze in the monograph "Potential met-.
hods in the theory of elasticity" [1]. He considered the 1i-
near problem (i.e. the vector-functions F and G weren’t
dependent on the displacement vector-function u).

In this paper we shall prove the existence and uniqueness
of the solution of the problem (1), (2) by the potential me-
thod.

We shall admit the following assumptions

I. S is a closed Lapunov surface with the constants C, % ;
C>0, O<Xs<1 such that

(a, 4 n )sClxoyo|x. (3)

[¢) y0

II. F. (x 1 U s Upsls ) are real functions, defined on the
set X eV |u | <R and fulfil the Hdlder-Lipschitz conditions

3
'Fj(x,u,l,u2,u3)—Fj(x’,u’,|,u,’a,u’5)‘ SKF,xx'IhF+kF Z ,us—u'sl ,
5=

where R, KF kF are positive constants, and 0 < h’F < 1.

ITI. G. (xo,u,l,ua,u ) are real functions, defined on the
set X € S, ]usl ﬁ R and fulfil the Hdolder-Lipschitz condi-
tions

G
!Gj(xo,uq,uz,uB)—GJ( 0,u U u3) |<kG([xoxo| Z] (5)
We shall take the additional assumption, that +the func-
tions G. are differentiable with respect to uy,, and their
derivatives fulfil the Holder-Lipschitz conditions

9 8 " ~
au J(xo’u ,u2,u3) 6u J(X ,u1,u2,u3)| G( Ixoxo|
3 .
3 ugig))s (©
5=1 '
* In this paper the lower and upper index always takes values 1 or
2 or 3.
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Nonlinear boundary value problem 3

where kG’ ké are positive constants, and O <'hG < 1.

IV. The real function § Cxo) is defined for x €8S and
satisfies the Hbolder condition

/ ' h6
|6(xo) - 6(x,) 's-k% |xox0| , (7)

where k¢ is a positive constant, and 0 < h, < 1.

2. POISSON?'S EQUATION
The fundamental solution of the eguation

A u(x) +w2u(x) =0

is the matrix r1(x,y) with the elements

r‘(k) N 5 glkoT ; g2 eik1r ) elkor *
; (x9) = b2 kI T "Zﬁfaxkaxj T r
(here % = -1),
where
1 k=j y . .
8 s = o=V r)® e (m3p)® e (xgmy5)°
ki =)o ke, £1731 272 3793/
2 2
2 2 2 _w 2 w
a® =A+2yu, b=y, kK =2 k=z-

In the monograph [1], it was proved, that the potential
1 B
o) =5 [9) M) av, (&)
: Y
satisfies the Poisson’s Equation

In the next we shall take the real part of [ gk)(x,y).
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4 J.Chmaj

Nu(x) + wzu(x) = - ¢ (x), (9)

where ((x) is a differentiable vector-function in V.

Now, we prove that the potential (8) satisfies the equa-
tion (9), when ¥ {x) fulfils the Hdlder condition. We shall
base on the method used by W. P o gor z el s k i in [2].

Derivatives ar.(k) X, have singularity like
IXg g J —2(——)

aul (x)

and thus, the derivatives 3% are the absolutely conver-
s
gent integrales

2 X, (x)
Ukis? =7ﬁ%J[¢(y)gul—3§§411 av,, . (10)
)

2.1, INVESTIGATION OF THE SECOND DERIVATIVES
OF THE POTENTIAL U(x)

Let us denote by =x(x,y,z) the square root

I‘(x,y,z) Z‘I'/(;‘yq)z + (x2—y2)2 + (X5—y5')2 + 22|.

Let ['(x,y,2) .be the matrix of the fundamental solution,
where we introduce r(x,y,z) instead of =r(x,y). Consequently

X ‘z
Wk X,3) = 43—qu -XS dVy sy XE€EV, -~z <V,

We shall prove the follwing theorem

Theorem 1.

If the functions \‘Jj(x) for x¢€éV are bounded and inte-
-grable, then
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Nonlinear boundary value problem 5

—.9U, (x)
Wk(x,z)__’ bx, when z—=0.

Proof. Let t(x,Ry) denote a sphere of the radius Ry,
with the centre at a point x€eV. We decompose Wk(x,z) into
the sum

i V=T
W (x,2) = W(x,2) + W (x,z), (11)

where T denote the region equal to the product of T (x,Ry)
and V, and V-T denote over the exterior region. In view

oar(®) o
of the weak singularity of the function -————3§—41l, we have

for every x and 2 s
T.
[ (x,z)| < MyC Ry , (12)

where My = qu sup Iq}a C, is the positive number de-

yert
pendig on the Lame s constants and the constant w . Now, for
an arbitrary positive & we can choose the radius

1

¢
B =36, (75)
such that
T £ .
Iwk (x,z)|< 5! (%)
for every x€eV and -~<z  +~ ,

The function WX—{(x,z) is continuous at 2z = O (uniform-

1y with respect to the point x), since x is placed outside
the region of integration V-t (x,R ). Consequently, having
fixed the sphere T we can choose q(a) depending only on &,
such that

[ )i ,0) | < G when [of < qe). (15)



6 J.Chmaj

We have
U, (x)
"aﬁs— - W (x,2) | < |Wi(x,2)]| +
|wk (x,2) - W (x, o)| (16)

In view of the inequalities (14) and (15), we obtain

.3U.(x)

TicL - Wk(x,z) ‘< &£, when |z| < vz(é) . (17)

S

This completes the proof.

Theorenmnm 2.

If the functions ij(x) for xeV satisfy the Holder
condition

[9500) = g500) [ <y ], (18)

where 0 <7¥<1, ky >0, then the functions W (x,2) have
derivatives with respect to the coordinates of the point x
for xeV and 3z # O, which, in a sufficiently small neigh-
bourhood of every interior point Xo9 tend uniformly to the
linit

W, (x,2) _,
B =g 28 [y,

. 2n(k)
+%/‘H’(y) - *(X)]ngsaxj’y)— vy, when z-=0. (19)

Prof. For z#0 the function W.(x,z) has,at every
interior point x eV, derivatives with respect tc the coor-
dinates of x given by the regular integral

oW, (x z) %f ‘P(k)(x,y.Z) av, . (20)
v

0x ax
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Nonlinear boundary value problem ?

We decompose the last integral into two terms

ow, (x,2) (k)
k . = d ar (xrljzl
ax TR ax / ax dVy *

4:!/[ $(y) - X)]a 2P (x,9,2) av,, . (21)

xsaxl

From the Green’s Theorem, we have

faF( X,¥, z dV /ar X, ,%) dvy +

V=T (Xg,€)
- ["(k)(X,y,z)cos(ny,xs)clSy (22)

6 (Xg4€)
where 6 \xo,f,) denotes the surface of the sphere 'L'(xo,é)
By virtue of the relation (22), we have

3 far(e) (x5 2) v, - a2r(k)

INEXA ) av
ax 0xg dx 8x J
Y -T(XO)C)
(k)
- fﬁﬂ_gs}%-zl cos (ny,xg) dS, . (23)
6(xa,6)

Since the centre X, of the gphere lies outside the do-

mains of the integration, in view of Theorem 1 and formula

(10), the derivative (23) tends uniformly in a certain neigh-
bourhood of the point x to the limit

0
/82F(k)(x'y’o) av _/ art )( X,3,0) cos(n_,x_) dS_ =
axsaxl J 8xl s v
V=T(xp,¢) 6("0 y€)
_.9%  [rx)
= T, (x,5) dv,, when z—0. (24)
4
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8 J.Chmaj

The integrand in the second term of the sum (21) has a
weak singularity. Repeating the argument of the proof of The-
orem 1, we find thav

when z—0.
This result and (24) imply the thesic of the theorem.
Corollary.
The functions Uk(x) have the second derivatives given by
the formula

7?%7?%" ey B Ox. 8 ME) (x,y) avy +

szl [$6) -¢(x J_XH(( E;XX L oav, . (26)

¥
The last relation and the formula (’I '78)_ in the book [’l]

for 1) imply the Poisson’s Egquation
¢ =
A*U(x) +0%0(x) = -§(x) for xeV. (27)
3. EXISTENCE AND UNIQUENESS OF THE SOLUTION
OF THE PROBLEM (1), (2)
We seek a vector-function u(x) (i.e. & solution of the

problem (1), (2}) as the sum of the potential of spatial char-
ge and the potential of surface distribution
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Nenlinear boundary value problem 9

u(x) mj'“ x,3)F(y,u(y)) avy fr(x.m y) as,, xé‘é)‘

We assume that the density Lf(y) satlsfles the Holder con-
dition on the surface S. If we demand that the vector-func-
tion (28) satisfies the boundary condition (2) we obtain the
nonlinear strongly singular integral equation

27 g(x,) +f[’l‘(x°) M (x,9) + 6(x,) T (x,,3)] ¢(3) a5, +

f[m O 1 (g3) + 6 (xg) Plrgss)] Flysuls)) @
= 6(x; —1,fr x459) Fl3,u(y)) av, +
+fr (xp0) 9(3)85,),  xe5.* (29)
To prove the existence and uniqueness of the system (28),

(29) we apply the Banach’s Fixed Point Theorem ([#] p. 37).
Consider the space /A the points of which are all systems

U =[u,](x), ug(x)’ u}(xj9 ‘fq(xo)v ‘?g(xo)’ ‘f}(xo)]s

of six real functions defined and continuous for XeV+S, X, € S
and satisfy the inequalities

(o) [< 6 s |95000)- 05000 | < kgl f 7, (30)

where ¢ and k? are arbitrarily fixed positive coefficients.
The exponent h? is fixed but satisfies the inequality

| |<R

0 <hy<min (X,hs,h;). (31)
The distance & ( 1,U2) between two points U, and U,
is defined by

* 28 py,y) is defined in [1] ».28.
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8(u,,U,) = max su u(q) X)) - (2) X))+
(0q:02) 3 xeves 3 () uJ().I
(1) - ¢f2)
S AULERUNE

+ mgx H [@gq)(xo) - ¢§2)(XO)J , (32)

where HEQJ(XO)] denotes the Holder coefficient, in an exact
meaning '

at the exponent hq) of the function ?j(xo),i.e.the
upper bound of the following quotient

H [Qj(xo)] = sup léj(xo) - ¢3(X;)]

: I ot
X 1% € 8 'x /I f

The space J\ 1is metric and complete.

Consider the functional transformation in the space A

80 = -4 f Pes)zaae)er, + [Tlan) b s, (33)
4 : 4

y .
A 1 (XO) A : 1
bix, ) g/ [27° Mgy + 6 (P4 08, = B £(x,),
; (54)
where

£(x,) =__2ﬁ,/[T(xo)P (x.3) +

V |
#6 (x,) T (33| Pl u(3))ary, + Glx,0(x,))  (35)

W) = =g [ M) ¥ (,um))avy + fTlx5,9) ¢ly)as; . ()
. 4 S

The kernel of the integral equation (34) has the strong
singularity. In [1] on p.103-161 W.D. Kupr ad z e proved
that for the integral equations of the type (34) with the linear
right side Fredholm Theorems hold true, He based on the regu-
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Nonlinear boundary value problem 11

larization method proposed by G. G iraud ([5]), andthe
definition of the symbolic matrix which is given by 8S.G.
Mikhlin in the paper [6].

Since the homogeneous equation

‘l’}’(xo) "'%f/[T(XO) P(xo,y) + G(XO) P(xofy)J ‘/{;(y)dsy = 0,
S

possesses only zero solution, then the equation (34) has the
unique solution (we assume that the vector-function f(xo) sa-
tisfies the Hdélder condition), which is of the form '

blx) =2 Blxg)2(xg) +3x [ Wlxue(g)asy,  (59)
S

where the elements of the matrix resolvent N(xo,g) have the
singularity 1—_1—FT, the matrix B(xo) is defined .in the
%5
o

paper [7].

In formulaes (33), (34) there are the potential of spatial
charge and the potential of surface distribution, In this pa-
per we are going to base on the two theorems, which can be
proved similarly as the well known theorems relative to the
Newton’s Potentials.

Theoremn 3,

If the functions Fk(x,uq(x),uz(x),uB(x)) for xeV are
bounded and integrable then the functions

3
U (x) =%y-k§1/rj<k><x,y)Fk(y.u1(y>,ua(y),u5<-y>)avy (38)
=y

3
qu(x) = ZW Z /Tgx) r‘(k)(X,y)Fk(y,uq(y),uz(y),uB(y))dVy ’

k=1 (39)

satisfy the inequalities
| Uj(x)i < pM (40)
o590 < 52k )
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12 J.Chma}

and the Holder conditions

| 400 - 5,00 < sty [ ()
\TJU(X) - TjU(x)[ s:anf‘xx‘ 8, (43)
where MF = m]a;c Xes'\LfIES le(X1u1 (X)yug(x)’u5(x)) } r P11yPosdqy4p
are positive numbers which aren?t depend from the function
Fis & is a positive number and satisfies the inequality
0 <08 <1.
Theoremn 4,

If the functions ¢, (x ) for x_ ¢ S are bounded and in-
tegrable then the functions

3
k
V(o) = Z/r"g N(x003) gycl)as, (44)
k=1
TS
satisfy the inequalities
lvj(xo)! < Pz @ | (45)
and the Holder conditions
8
l Vj(x'o) - Vj(xé). ‘ <'q39' Xoxc/)‘l , (46)

where 0< 8<1, Pz,43 are positive numbers which aren't
depending on the function ¢, (x,).

Now, we present some definitions

Mp = max  sup B(.k)(x )I y My = max sup N(..k)(xo, §)d85 l
Jsk X € S J o Jsk x €8 J
S

(the integrals f Ngk)(xo,g)ds5 are taken in the sense of the

S
‘Cauchy principal value), MG = max sup Gk(xo’u’l’ Uy, u3) .
‘ k X &S .
0
M, = sup Id(xo) .

xoeS
- 40 -



Nonlinear boundary value problem i 13

We shall prove the following lemma

Lemma 1.

If the numbers MF’ MG’ kG are sufficiently small, the
number is sufficiently large, then the transformation (33),
(34) associates with every point of the space A a point of
the same space.

Proof. We first prove that the functions f,(x ) sa-
tisfy the Hlder condition. In view of the formula (35) we
can write

£5]

- T o)r (S)(XO,Y):]' s(b’,u,,(:y),u2-(y),112(;y),u5(y))dvy +
3
+-%?-[d(§)- d(xo)]:E: PﬁS)(;,y)Fs(y,uq(y),u2(y),u5(y)) dvy +

5=1
4

3
N c<xo>jg€/qrgs)<g,y)-rﬁs)<xo,y>]ﬁs(y,u1(y),u2<y>,u3<y>>aVy+
5=1
v

+ Gk(‘; "zq(é)’ﬁ2(5)7ﬁ5(s)) - Gk(xoaﬁq(xo)sﬁg(xo)vug(xo))o (‘*7)

To estimate the righ side we prove two inequalities. By
virtue of (36), we have

; : 15 [n(s)
mp-m%h~W2/FKGM+
5=
Y

- Fl({s)(xo»y)]Fs(y9u1(Y)’ug(y)suB(}’)) dVy +

3
+Z [Pés)(;,y) —rlgs)(xo.y)J go(3) a8y . (48)
5=1
5
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On the basis of the inequalities (42),(46), this implies
that

‘ ﬁk(é)'ﬁk(xo)lg’(q1MF + q§9) ]xog_'e‘ (49)

This inequality and the assumption III imply the second
inequality

IGk(%7ﬁ1(§)9ﬁ2(§)9ﬁg(§)) - Gk(xo,ﬁq(xo),ﬁé(xo),ﬁs(xo))| =<

h
< kg (W3aMp+3a56) |x, 5] G, (50)
Hence and from the inequalities (31), (40), (42),(43),as-

sumption IV, finally, we have the cconditions

| £ (5) £, (x,)] < [szF+P1Mde+q1MaMF+kG(1“'3‘11“’11?*5‘139)] Ix05| (hv)'
5

Now, in view of the formula (37) we can write the inequa-
lities

A

3
FIUN %ZlBgik)(xo)fk(xo).l *

2 )¢
rh |N(K ) [2e(8) - 2 (x,)] asy | +

(52)

2 (x)
e e | [P
k=1
S

From here and from the inequalities (40), (#1), (51) we
obtain the inequalities

A

§3(x5)|< %5 {02[‘15 M Pk + 0 g Mokl (1430 g 3059) | +

+ (Mg+d) (PoMp+ Mg Mg+l ) } . {53)
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Nonlinear boundary value problem 15

To prove, that the functions % j(xo) satisfy the Hélder
condition we estimate the following expressions

3
§50xg) = 50x0) =27 3 B x) - I (x)] £lx,) +

v 3 37805 () [ (xg) - £, ()] B[P (o) - D5(5)] o
k=1
where
S (k)
Dj(xo) =Z/NJ (Xu’é)fk(ﬁ)dsj . (5%
k=1
S

By virtue of the inequality (541) from this paper and (26),
(28) from the paper [7], we have ‘

A ’ 3
| %(xo) - L{:j(xo) |< {c3crfF(p2+p1Md)+050MG +

oA
+ (Mg+k )[q2 Vi P M+ M Mtk 1+5q1MT+3q59 ]} XOXOI » (56)

where the positive numbers 05’ kN depend on the Lame’s con-
stants and the c¢onstant w .

From the formula (33) and the inequalities (40),(45),(53)
it follows

Iu x)l < pllg+ —%— p5{C2[q2M +P gk +Q Mgtk (143 41 +5q59)]+

+ (Ml ) (Dol DM Myl )} . (57)

On the basis of the inequalities (53), (56), (57) it im-
plies, that the transformation (33), (34) associates with eve-
ry point of the space I\ a point of the same space and this
is the sufficlent condition, if the following system of the
inequalities is fulfiled

MF(a1+82k6+33Md+a4kG?)+a6kG+a7MG < R,
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10 J.Chmaj
My (b, +bokg +ol 6+b4kG)+kG(b5+b69)+b,7MG <9, (58)
MF(c1+c2kd+c3M°+c4kG)+kG(05+c6?)+c7MG<1{

where the positive numbers EFERRRFLLD b’l’“"b?’ CqseeesCr
depend on the Lame's constants and the constant w.

We take the number 9 equal to Qo 8O thaF_t for the suf-
ficiently small numbers M MG’ and kG< g-cz—qg the second
inequality (58) is fulfiled. The remaining inequalities are
fulfiled on the basis of the assumptions for numbers l\lx’]_;.,l\llc.‘,kG

Thus, lemma 1 is proved.

Lemma 2 {Hadamard's Lemma)

If the functions Gk(x u,],u2,u3) satisfy the assumption
III, then the differences AGy =Gy (x, sl s0s, 5) Gk(x WqslUn, 3)
can be written as the sum the products

AGy = g}’(:,l)(x’% 1T, 03) (Tg-ug) + g}({’l)(x’u1 sy Tp,T5) (Tpmup )+

+ glg)(x,uq,u2,u3,ﬁ5)(65—u5) ) (59)

where all of the functions gl({s)(x,t,l,tg,t5,t4) satisfy the
Hélder-Lipschitz condition

Ig( )(x sty tj,tq_)-gl(cs)(x tﬂ’tz’tB’tﬁ-)l ¥ (Ixxl th -t l) (60)

The proof of this lemma is similar as the proof of the
lemma 1 in the paper [8] on p.106.

set us Uy = [ul" ()" o) ud V)08V ey,
93 )]s Uy = [udP) () ,ud?) () uf? () (), 95 x,),
“F(2)(Xo)] be points of the space A . Let U’X’U2 be the ima-

3
ges of the points U,,U, after the transformation (33),(34).

Lemma 3.
Let Ol be the number

(), ¢f
)(x), 912
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Nonlinear boundary value problem 17

o = max { g [Aqrhgkgrh sk, +A, Mk (Ac+hcliprh, 95)]
F
AskG+kG(A9+A10MF+A1190)}, (61)

where the positive constants A1""’A11 depend on the Lame’s

constant w ., If the numbers kF,kG,ka are sufficiently small

so that the linequality
K< 1 (62)
and the inequalities (58) are fulfiled, then

8 (04,0, < (u,,0,) . (63)

Proof. Wefirst prove some inequalitiés. From the
formula (36) we have

3
W60 = - 45 21 fr' eV V) w)) ¢
K=
12

- 7o) PN, +

, .
+ Z ng)(X.y)[(Pl(c'l )(y)_ (Pl((2)(y)] dSy . (64)

k=1
S

By virtue of the assumption II and the inequalities (40),
(45), we obtain '

l\_x‘_(j")(x)-i_x:(ia )(3)|$3p1k.F. m;.x sup lul(: )-u£2)|+3p3 m;x suplq?]("' )-t{’(f)}.(65)

From the formula (34) we have

A ‘ xo) A a
$Mx - 1k f [r( P xy00 1#80x, ) 09)] [ 0004 ) s =
S

== T(x,), (66)

where
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_ (x,)
T(x,) = 1 f [0 (xgoy 26y I ) Pl D)o (00 e,

v 6(x,, i) - o(x,,5®)(x,)), (67)

We shall prove that the functions fk(x ) satisfy the

Holder condition. Now, we are going to investigate the dif-
ferences

§k(5) - fk(xo) = Jéq) + J§2) + JéB) + J£4), (68)

where

s o () (o),
3 =2 3 804 -1, 0 1 [E, el V), el D),

s Y

D)) - 700,060, 6)) Jar,

32 < g 6(4)-(x, Z/r(s)(g.n[r‘ g Vel «

- rs(y.uﬁ‘?’<y)..u§2’<y),u§2)<y>)]dv,

3
LR YIER)) [[r§5>(5.y>-r§5’(x°.y>] (7, Gl ),
§=f
| J |
w{0r)) < 7 el )aulB6),082 ) Jav,
3t < Lo 8,80, 50 - 6,4,83)04),53)06),52 ) ))] +
[ o5 0 0T, 2, ) (g 82 0, 0,82 3, 0,55, 00 .

In view of the assumptions II, IV and +the inequalitieg
(40), (42), (43) we get
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Nonlinear boundary value problem 19

|J1£1)1<3q2kF m§x sup lug - ug ‘ lxog‘ (69)
|J§2)|s,5p1kdkF m§x sup lugq) - ugz) |lxo§|hG (70)

[377]< sagig mex s [uf) - w2 [x,8] . (70

To estimate Jl((4) we apply the lemma 2, From the formula
(59) it follows

.3
i) =35 [ ()-8 ][N )2l (1)]+
s=1

+37 g ) [N (5)-a@) (5@l ()5 iz, )], (72)
s=1

where

etV (x) = gl (x5l (x),2{?) (x),802) (=), 5P (x))

1]

g2 (x) = ) (x50 (x), 80" (x),82) (x), 82 (x))
&2 (x) = &2 (x,1{V (0,0 (), 5§ (x),5{2) () .

The inequalities (31),(49),(60) imply

o086 )| < gleeeghyrosg) | ()
where the positive numbers €4185,8 3 depend on the Lamé’s
constants and the constant @ . The functions 8 are bounded

| 885 (x,) | <X - (74)

In view of the assumption II, the formula (36) and the
inequalities (42),(46) we get
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@M ()23 ()2l ()2 (x,))] <

<3q1kF m§x sup‘ugq)—u§2)‘lx§|+5q3 mgx supl qu)- ng)llxosle.

(75)

By Vvirtue of the formula (72) and from the inequalities
(65),(73),(74),(75) we have

|J§4)‘< {9kF[pqﬁG(e1+e2Mf+e39o)+qﬂkG] mgx sup |u§1)—u§2)| +

/ he
+9[p3kG(e1+e2MF+e590}+q5kG] mgx sup|<?§1)—?§2)ﬂ‘|xo§l . (76)

Finally, from the definition of the exponent hq and from
the inequalities (69),(70),(71),(76) we have

| £ (§)-Fp(x,) | <

+

, 9 ' (1)_,(2)
<{31‘F[q2+p1k6+q1Md‘f3q1kG+3p1kG(e1+e2MF*e3?o)] max sup luj Y

i A he
+9 [PBRG(e1+e2MF+eB?o )+q3KG:| m;x sup l ?g’l) - Lpge)l} Ixo§| . (77)

Hence, since the functions fk(xo) satisfy the HOlder con-
dition, the integral equation (66) has the unique solution

Q(")(xo)— 4(2)(;(0) =k B(xo)‘f(xo)+—}j—‘/N(xo,5)f(§)dsg' .(78)
S

According to the assumption III, the inequalities (40)
and the formula (67) we get the estimate

|?k(xo )|‘<3p1k.5.(1+3kG) mg.x sup |u§'1 )'u§2)|+9p3k(} mg.x sup ‘({)51 )"93(2)'(79)

From the formula (78) we have
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3
| 457004 5700, e 33125005 Bt +
=1
ZI N0 g [E (5)-E (x, sy |+ 4 z|fk<x || 559 x, 9>ds5|.
S

" From the inequalities (77),(79),(80) it follows

H (1)(x )- (fgz)(xo)ls %TRF{p1(MB+MN)(1+3kG)+c2 {q2+p1k6+q1Md+3q1kG +

+3p1le(e,:+e2MF+e3?o ):l}mix sup Iul({'1 )-ul({z) l +

+ _g%{pBKG(MB*’MN )+C2 [p (e +e MF+6390 )+q3kG]} nix sup I"P _ ?kZ )l
From the equation (33) we have

3
D@4 = - 42 3 [ [l V@)Dl ey +
k=1

v
- 7 5B, 00,0 Jar, 4

3
+Z/r'§k) (x,y)[f( l(cq)(y)-(f"l(f)(y)]dsy. (82)
S

k=1

According bto the assumptlon II, +the inequalities (40},
(45),(81) we obtain

+3p1k/G(e,|+e M +e3§) )]} max sup u1£1) (2)[

81 ! . 1 2) /a2
+7I_p3{p3kG(MB+MN)+Cz[p3kG(e1+e2MF+e3? )+q3xG]}mix suPILPI(c )"‘fl(c )‘.\8;)
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Now, we estimate the HOlder coefficient H[:Q§1>(xo) +
an)(xo)]. From the formula (78) we have

3
19§, -4, -6 0 42, - 2 [<k’<x°>-n§“)(x;>]fk<xo>+
k=

+ %i ng)(xg)[t.‘k(xo)-f-k(xlo)] [D (x )—D (x ] ’ (84)
Ke1
where
L [(x) 7
DI R C M LEN (85)
X =1

Consequently, we obtain the inequalities
3 .
5N 5 - 5(2) a k) 7
1[40 0x0)- 47 ) Je B 3, 0 ] et | ¢
k=1

- PERCAECRCRIEE SR R

By virtue of the inequalities (26), (28) from the paper
[7] and the inequality (79), it follows

H[ng) (x,) Js 050 (87)
H[ﬁj(xo?] < 3pkykp(143k,) mix sup| uéq)—uéa}l +
+3Pzkyke mix sup Leﬁq)-(fﬁz)l.. (88)

Finally, from the inequalities (77),(79),(86), (87), (88)
we have '

H[ng)(xo)- %gE)(XO)]S-%%{?BCquF(1+5kG)+MBkF[q2+qu3+q1Md+‘

- 50 -



Nonlinear boundary value problem 23

+3q1 G‘+5P1 G’ e +e2MF+e5?O 5 p1ka ’|+5kG)}mix Sup‘ (’])_u(Z)I

+ %%{C;CP5KG+5MB [P;kIG ( eq"'egM'F"'ea % )+q§kG] +

+-}p5kaG}mix suplch({’l)_ —tfl({2)| . (89)
Let us denote

= 3p, +'2’.M'[P’1(2 p+2My+5C5C+k §)+5 (2C5+3My )]

Ay= W[p,‘ (Rgr2My+3C5Crly ) +a1 (20+3p) |, A5 =By P4(20,+3My),
4 ‘%T Q1(202+3 ): %‘%‘Pr] 1(2+5M 6 _?lp1e2(2+5 )’

A, =%,|Z p1e5(2+5MB),
A 27 (3p2+1)ip (M +M )+C ol ]+p C+ zky ) +3M5q
g =of|(2p5+1)[P5 393 |*P3 Sy )+3Mgas 1
Ay =27 pre. [Co(B3pa)+3M], A =3L presTCo(3patt)+3M
9 =77 P3 1[2 Pz+l)+2Xpp  Sq0 = 2% P3 2[2 Pz B]’

=27
Ay = 5f Pze3[Co(3p3+1)+3Ug].

Then, in view of the inequalities (81), (83), (89),the de-
fition (32) and the assumption respectively the numbers kp,
kq,¥; it follows the lemma is true.

We conclude from the lemma 1 and 3, by the Banach’s Fixed
Point Theorem, that the system of the integrdl equations (28),
(29) has the unique solution u®(x), q)*(xo) in the space A.

Remark., The solution u”(x), lf*(xo) can be appoint by the
iterative method in the space /A .

From the integral equations (28),(29) it follows that the
vector-function u*(x) satisfies the boundary condition (2)
in all points of the surface S. Owing to the continuity of the
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vector-function F(y,u*(y)) the integral‘/f(x,y)F(y,u*(y))dvy
satisfies the Holder condition. 1 '

Hence, the vector-function F{y,u*(y)) satisfies the H81-
der condition for ye V. According to the corollary from the
theorem 2, the second derivatives of the vector-function
u*(x) exist and u*(x) satisfies the equation (1) for xe V.

Finally, we can formulate the theorem '

Theoren 5.

If the assumptions I-IV are fulfiled and the numbers MF’
MG’kF'kG'ké are sufficiently small, then there exists only
one regular vector-function in the form of the sum (28) which
satisfies the equation (1) and the boundary condition (2).
This solution u(x) can be appoint by the iterative of the e-
quations

u (1) () =-11WfF(X.y)F(y,u(m)(y))dVy +fr(x,y) ‘(’(mﬂ)(y)dszy
v 5

2T¢ (m-i-’])(xo) +/[T(Xo) P (xo’y)_‘_ d(xo) r (xo,y) ] ‘(,(m'*q)(y)dSy:

S
=13;/IT(XO)F(XO.y)+61xo)F(xo,y)]F(y,u(m)(y))dVy+G(xo,ﬁ(m)cxon,
wheIL
w0 () = - [P )™ )ary + [Pixg,9)¢0) () as, .

14

As u(°>(x), $(°)(xo) we take an arbitrary peint <from
the,space]&.

The autor wishes to express his deep gratitude to Profes-
sor Janina Wolska-Bochenek for the scientific guildance and
for suggesting the subject of this paper, which is the first
part of the author’s doctoral dissertation,
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