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1. INTRODUCTION 

Let V be a domain in E^ bounded by the closed Lapunov 
surface S. Consider the fol lwing boundary value problem in 
the theory of e l a s t i c i t y . Find the displacement vector-func-
t ion u(x) = ^u^(x), u 2 ( x ) , u^(x)J in the domain V, such 
that 

A*u(x) + c j 2 u ( x ) = F(x ,u (x ) ) for x eV (1) 

and 

Tu(xo) +<i(x0) u(xo ) = G(xq , u(xQ)) for xQe S (2) 

where A*s (X + 2 fi) grad div - (irot ro t , u i s a r e a l cons-
t an t , X , jU are the Lame's constants, T = 2 p. + X ndiv + 
+ (U [n*rot] , n = [n^, n 2 , n^J i s the unit normal vector, 
F (x ,u) = [ f i ( x , u 1 , u 2 , u 3 ) , F 2 ( x , u 1 , u 2 , u 3 ) , F ^ x , ^ . U g . u ^ ) ] , 

G(xQ,u) = [ G 1 ( x 0 , u 1 , u 2 , u 3 ) , G 2 ( x 0 , u 1 , u 2 , u 3 ) , 
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2 J.Chmaj 

The boundary value problem of the type (1), (2) was trea-
ted by W.D.K u p r a d z e in the monograph "Potential met-
hods in the theory of elasticity" [l]. He considered the li-
near problem (i.e. the vector-functions F and G weren't 
dependent on the displacement vector-function u). 

In this paper we shall prove the existence and uniqueness 
of the solution of the problem (1), (2) by the potential me-
thod. 

We shall admit the following assumptions 
I. S is a closed Lapunov surface with the constants 

C > 0, 0 < X s £ 1 such that 

( V V s 5 0 I V o f . ^ 

/ \ * 

II. F^x.u^jUgjUj) are real functions, defined on the 
set x eV, |ug| « R and fulfil the Holder-Lipschitz conditions 

h 3 

F;j(x,u1,u2,u3)-Fd(x',u'1,u^,u'3)| ̂ Kp|xx'| F+k p ^ | u
s" us| » 

s=i 
where R, K̂ ,, kj, are positive constants, and 0 < h^ < 1 . 

III. G^(x0,u^,u2,u^) are real functions, defined on the 
set x q6 S, | ug| ^ R and fulfil the Hiilder-Lipschitz condi-
tions 

hG 3 
¡G.(x o,u 1,u 2 >u 5)-G.(x^u^4,u^) |<kG(|xox^| +X!I us- uLP- { 5 ) 

We shall take the additional assumption, that the func-
tions G^ are differentiable with respect to u^, and their 
derivatives fulfil the Holder-Lipschitz conditions 

^T k
Gd ( xo' u1' u2» u5) - " a ^ V ^ i ' ^ ' S ) I * kG< I Vol 1 1 ( 1 + 

+ Z I U s - S s | ) ' ( 6) 
s=i if 

In this paper the lower and upper index always takes values 1 or 
2 or 3. 
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Nonlinear boundary value problem 3 

where k̂ ,, k^ are positive constants, and 0 < h^ < 1. 

IV. The real function 6 (x v i 
satisfies the Holder condition 

IV. The real function d (^Q) is defined for x^6 S and 

.h, 
|tf(x0) -<j(x;) i ^ k , |xox;| (7) 

where k^ is a positive constant, and 0 < h^ C 1. 

2. POISSON'S EQUATION 

The fundamental solution of the equation 

P 

A u(x) +CJ u(x) = 0 

is the matrix P (x,y) with the elements 

eik2: ,, _ 3 2 {e 1 e i k2 r \ * 

(here i 2 = -1 ) 

where 

4 w 

1 k=d 

0 kji'j, 
=V(x 1-y 1)

2 + (x2-y2)
2 + (x,-y,)2' , 

2 i o v2 , 2 co2 ,2 Co2 a = A + 2 n f b k ^ = —g- , k 2 =—g- • 

In the monograph [l], it was proved, that the potential 

UW = w f f ( y ) r ( x » y ) d V y ( 8 ) 

satisfies the Poisson's Equation 

In the next we shall take the real part of T 
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4- J. Chmaj 

A*u(x) + co2u(x) = - <j> (x), (9) 

where i|> (x) is a differentiable vector-function in V. 
Now, we prove that the potential (8) satisfies the equa-

tion (9), when f^x) fulfils the Holder condition. We shall 
base on the method used b y W . P o g o r z e l s k i in [ 2 ] . 

Derivatives have singularity like — ^ , 
„ , . r ( x » y ) 3u,(x) 

and thus, the derivatives — are the absolutely conver-
s 

gent integrales 

( 1 0 ) 
S J s 

2.1. INVESTIGATION OF THE SECOND DERIVATIVES 
OF THE POTENTIAL U(x) 

Let us denote by r(x,y,z) the square root 

/ 2 2 2 2' r(x,y,z) =T/(x1-y1) + (x2-y2) + (x^-y^) + z . 

Let r(x,y,z) .be the matrix of the fundamental solution, 
where we introduce r(x,y,z) instead of r(x,y). Consequently 

0 0 
dV , X e V, - ~ < Z . «7 

We shall prove the follwing theorem 
T h e o r e m 1. 
If the functions a r e bounded and inte-

grable, then 
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Nonlinear boundary value problem 5 

\( xiZ) » ^ e n z — 0 . s 

P r o o f . Let t(x,E1-) denote a sphere of the radius Ê ., 
with the centre at a point x e V. We decompose W^Xjz) into 
the sum 

Wk(x,z) = Wj(x.z) + Wl~X (x,z), (11) 

where X denote the region equal to the product of X (x.E^) 
and V, and V-l denote over the exterior region. In view 

3r(k)fx of the weak singularity of the function >J', we have 

for every x and z s 

|W^(x,z)| <M f0 1E t , (12) 

where My = max sup j(y)| » C^ is the positive number de-
pendig on the Lame's constants and the constant co . Now, for 
an arbitrary positive t we can choose the radius 

fit ' ^ 

such that 

|WJ (x,z)|<-^. (14) 

for every x e V and - ~ < z < + . 
The function is continuous at z = 0 (uniform-

ly with respect to the point x), since x is placed outside 
the region of integration V-t (x,B ). Consequently, having 
fixed the sphere X we can choose v̂ (fc) depending only on t, 
such that 

!wJ-T(x,z)-wJ-T(x,0)| < , when |z| < ^ (t) . ( 1 5 ) 
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6 J.Chmaj 

We have 

3Uk (* ) , , 
Wi(x,2 ) Wj(x,0) 

W ^ x . z ) - W^-X(x,0) (16) 

In view of the inequalities (14) and. (15), we obtain 

3U, (x ) 
3x ~ M x ' z ) < fc > w h e n M m ( 0 . ( 1 7 ) s 

This completes the proof. 
T h e o r e m 2. 
I f the functions ^ ( x ) for x&V satisfy the Holder 

condition 

I f j W - ^ a ( y ) | < k t |xy| (18) 

where 0 ky > 0 , then the functions V/jc(x,z) have 
derivatives with respect to the coordinates of the point x 
for xfcV and z ^ 0, which, in a suff ic iently small neigh-
bourhood of every interior point xQ, tend uniformly to the 
l imit 

, r ( k ) ( x , y ) dV + 
a y * . * ) — K x i _ a _ 2 _ f 

3*1 — ' W 3x 9x. J " s I V 

r / t f b ) - f W ] 1 ^ ^ 1 ^ . 
J s i 

when 2—0. (19) 

P r o f . For z £ 0 the function Wfe(x,z) has,at every 
interior point x eV, derivatives with respect to the coor-
dinates of x given by the regular integral 

3 w * ( x > z ) 1 / > ( y ) d V 
a v j l f v ) y 

(20) 
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Nonlinear boundary value problem 7 

We decompose the last integral into two terms 

a V x ' 2 ) f ar(k)(*.y.») dV + 

ci i 
dx, ^^ dx, J dx„ y X J- y S 

+ 41 /[f(y) -^(x)]
32r(k)(X>y,s) dVy. (21) 

J 3x dx. ¡r 9 xs 9 xi 

Prom the Green's Theorem, we have 

rarW(x>y>2) àv _ f ar(k)(x,y>2) dV + 

9 x s 
V S ^t(*„£) 

- / r^)(x,y,z)cos(ny,xs)dSy (22) 
tf(X0,£) 

where tf ^xQ,£) denotes the surface of the sphere t(xo,6). 
By virtue of the relation (22), we have 

3_ /,ar(t)(*.j.») d V = d V + 
ci J 3 X

S
 y„ / 9x, / 3x„ j dxjdx-, 

•1 f-Tfx^t) 8 1 

Since the centre xq of the sphere lies outside the do-
mains of the integration, in view of Theorem 1 and formula 
(10), the derivative (23) tends uniformly in a certain neigh-
bourhood of the point xq to the limit 

cos(n
y.xs) cLS = f 32r(k)(x,y,0) dy _ f 3r(k)(x,y,0) 

J 3xs3x1 ^ J dx1 

lK(*o,0 <r(x0,6) 

= d V y w h e n (2^) 
V - 35 -



8 J.Chmaj 

The integrand, in the second, term of the sum (21) has a 
weak singularity. Eepeating the argument of the proof of The-
orem 1, we find that 

_ (?) + 

V 

-tw]*^»,. 
when z — 0 . 

This result and (24) imply the thesis of the theorem. 
C o r o l l a r y . 
The functions ^(x) have the second derivatives given by 

the formula 

V 
The last relation and the formula (1.78) in the book [l] 

(for = 1) imply the Poisson's Equation 

A*U(x) +co2U(x) = -\jr(x) for x e V . (2?) 

3. EXISTENCE AND UNIQUENESS OF THE SOLUTION 
OF TEE PROBLEM (1), (2) 

We seek a vector-function u(x) (i.e. s solution of the 
problem (1), (2)) as the sum of the potential of spatial char-
ge and the potential of surface distribution 
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Nonlinear boundary value problem 9 

u(x) = - is J r(x,y)F(y,u(y)) dVy + y*r(x,y)tf(y) d s
y . 

V 5 
We assume that the density ij> (y) satisfies the Holder con-

dition on the surface S. If we demand that the vector-func-
tion (28) satisfies the boundary condition (2) we obtain the 
nonlinear strongly singular integral equation 

f ( x ) 23T(f(xo) + / [T 0 r(xQ,y) + 6 (XQ) V (Xq ,y)] ̂ (y) dSy + 

J[T ( X o )r(x o,y) +tf(x0) r(x0,y)] P(y,u(y)) dVy = 

" = G(xq, - ^ ^ ( x ^ y ) E(y,u(y)) dVy + 

(xQty) y(y)dSy), x o f S (29) 

S 
To prove the existence and uniqueness of the system (28), 

(29) we apply the Banach's Fixed Point Theorem (|V] P» 37). 
Consider the space 7\. the points of which are all systems 

U =[Ul(x), u2(x), u3(x), if1(xQ), f2(x0), f3(x0)] , 

of six real functions defined and continuous for xfcV+S, xQe S 
and satisfy the inequalities 

|u.(x) | < E, |<fd(*0)|<? , |4,j(xo)-<fo(xo)|< S K * ^ ' (30) 

where g and k̂ , are arbitrarily fixed positive coefficients. 
The exponent h^ is fixed but satisfies the inequality 

0 < h f < min (*,htf,hG) . (31) 

The distance <5 (U^,U2) between two points U^ and U2 

is defined by 

T ^ x V ( x , y ) is defined in [ 1 ] p.28. 
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10 J.Chmaj 

¿(U^Up) = max sup u(1)(x) -uf^ix) 
' j xev+s 3 a • 

+ max sup 
à xoe s 

+ max 
a 

h[^ 1 )(* 0) - ^ 2 ) ( X 0 ) ] , (52) 

where H[ifj(x0)] denotes the Holder coefficient, in an exact 
meaning (at the exponent h^) of the function ,i.e.the 
upper bound of the following quotient 

xo'xofc S o o 

The space A is metric and complete. 
Consider the functional transformation in the space A 

u(x) = r(x.y)F(y,u(y))dvy + $>(y) dsy (33) 
V V 

where 

iff [T<Xo> r ( x f t , y ) + 

+ *(x0> r(xo,y)]F(y,u(y))dVy + G(xo,u(xo)) (35) 

u l(xo) = -^r/r(x
0'y)I,(y'u(y))dVy+ f(y)ds

y. (36) 
K 5 

The kernel of the integral equation (34-) has the strong 
singularity. In [l ] on p.103-161 W.D. K u p r a d z e proved 
that for the integral equations of the type (34) with the linear 
right side Eredholm Theorems hold true. He based on the regu-
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Nonlinear boundary value problem 11 

larization method proposed by G. G i r a u d ([5])» and the 
definition of the symbolic matrix which is given by S.G. 
M i k h l i n in the paper [6], 

Since the homogeneous equation 

<M*0) + 4 f / [ t ( X o ) + ^ o ) r(xo'y)] ̂ d S y = 0, 
S 

possesses only zero solution, then the equation (34-) has the 
unique solution (we assume that the vector-function f(xQ) sa-
tisfies the Holder condition), which is of the form 

|(xQ) =^B(x0)f(x0) +4ryH(x0,5)f(§)dSJ , (37) 
S 

where the elements of the matrix resolvent N(Xq,£) have the 
singularity — » the matrix B(x ) is defined in the 

lxo$l 
paper [ 7 ] . 

In formulaes (33), (34-) there are the potential of spatial 
charge and the potential of surface distribution. In this pa-
per we are going to base on the two theorems, which can be 
proved similarly as the well known theorems relative to the 
Newton's Potentials. 

T h e o r e m 3. 
If the functions Pk(x,u^ (x) ,u2(x) ,u^(x)) for xev are 

bounded and integrable then the functions 
3 . 

V x ) /nj(k)(x,y)Pk(y,u1(y),u2(y),u3(y))dVy (38) 
»-1 / 

3 . 

T.U(x) = ^ W Y M X ) P(k)(x,y)Fk(y,u1(y),u2(y),u5(y))dVy , 
k-1 / (39) 

satisfy the inequalities 
|uá(x)|<PlMp (40) 

|TdU(x) | < pglíp (41) 
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12 J.Chma;; 

and the Holder conditions 

y x ) - u . ( x ) XX (42) 

T.U(x) - T .U(x') 
<J U 

xx e , (45) 

where Mj, = max x fcSup | F j J x . u ^ x ) ,u 2 (x) ,Uj(x)) [ , P1 , p2 , q 1 , q2 

are posit ive numbers which a ren ' t depend from the function 
F .̂, 0 i s a posit ive number and s a t i s f i e s the inequality 
0 <8 <1. 

T h e o r e m 4. 
If the functions fk^o^ i o r x 0 f c ® a r e 1ooun( ie (i arL¿ in-

tegrable then the functions 

K = 1 

M 

sa t i s f y the inequa l i t i e s 

V * o ) p5 9 m 
and the Holder conditions 

V * 0 ) - v * ¿ > «s-q^çl x .x / 0"0 (46) 

where 0< 6 < 1 , P j f l j a r e posi t ive numbers which aren ' t 
depending on the function f " 

Now, we present some def in i t ions 

Mg = max sup 
j , k xoe S 

BÍ k ) (x ) a v o' 
, MJJ = max 

S e P S l / N J k ) ( x o ' ^ d S i 
o 

(the integrals dSj are taken in the sense of the 

Cauchy pr incipal va lue) , Mg = max sup Gk^ xo , u1' u 2 ' 
k xQ t S 

M, = sup d (x„) I . 
' x / s 1 
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Nonlinear boundary value problem 13 

We shall prove the following lemma 
L e m m a 1. 
If the numbers M^, MQ, kg are sufficiently small, the 

number y is sufficiently large, then the transformation (33), 
(34-) associates with every point of the space .A a point of 
the same space. 

P r o o f . We first prove that the functions fjj(x0) sa~ 
tisfy the Holder condition. In view of the formula (35) we 
can write 

5=1 J 
(x ) V 

- Tk
 0 r (s)(x0,y)l?s(y,u1(y),u2(y),u2(y),u3(y))d¥;y + 

3 

s-i J 

¿ / f i s ) ( ^ y ) - ^ s ) ( x 0 , y)]Ps(y,u1(y),u2(y),u3(y))dVy + 
s=l J 

+ Gk(^ ,-a1(^),u2(^),u3(^)) - Gk(xo,u1(xo),u2(xo),u3(xo)). (47) 

To estimate the righ side we prove two inequalities. By 
virtue of (36), we have 

K 

S = l J 
5 
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On the b a s i s of the i n e q u a l i t i e s ( 4 2 ) , ( 4 6 ) , t h i s implies 
t h a t 

, _ _ , , , e 
+ ^ K M • 

This inequal i ty and. the assumption I I I imply the second 
inequali ty 

« ^ ( l + J q - i V ^ q ^ ) | x 0 $ | G ' (50) 

Hence and from the i n e q u a l i t i e s ( 3 1 ) , ( 4 0 ) , ( 4 2 ) , ( 4 3 ) , a s -
sumption IV, f i n a l l y , we have the condit ions 

(51) 

Now, in view of the formula (37) we can wri te the inequa-
l i t i e s 

l - f d M « ^ S H k ) ( x o ) f k ( x o ) | + 
k=l 

+ - f k K ) ] d S y I + 
k—1 

"s 

+ " i r £ | f k M | f ^ V ^ I ' (52) 
k=i J S 

From here and from the i n e q u a l i t i e s ( 4 0 ) , ( 4 1 ) , (51) we 
obtain the i n e q u a l i t i e s 

+ (Mb+% ) (P2MF+p1MdMp+I^,) (53 ) 
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Nonlinear boundary value problem 15 

To prove, that the functions j(x
0) satisfy the Holder 

condition we estimate the following expressions 

k=i 

where 

5 
By virtue of the inequality (51) from this paper and (26), 

(28) from the paper [ 7 ] , we have 

| i j(xo) " -ir{C30liF(P2+PlMtf)+C3CIMG + 

1 ll<p + ( | V o I . (56) 

where the positive numbers C^, k^ depend on the Lame's con-
stants and the constant u . 

From the formula (33) and the inequalities (40),(45),(33) 
it follows 

|u.j(x) | < P ^ p + ^ J P3|c2[q2MF+p1Mpk(i+q1MGM;F+kG.(l+3q1HF+3q39)] + 

+ ( M ^ ) (p2lip+P1Md M5,+Mg ) . . (57) 

On the basis of the inequalities (55)» (56)» (57) it im-
plies, that the transformation (33)» (34) associates with eve-
ry point of the space A. a point of the same space and this 
is the sufficient condition, if the following system of the 
inequalities is fulfiled 

MF(a1+a2kd+a3Ma+a4kG^))+a6kG+a7MG < R , 
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MF(b1+b2kd+b3Me+b4kG)+kG(b5+b69)+b7MG < 9 , (58) 

Mp(o1+o2k<f+c5MjJ+c4kG)-+kG(c5+c6^)+c7MG< k^ , 

°7 where the positive numbers c^ , . . . , 
depend on the Lame's constants and the constant cj . 

We take the number q equal to so that for the suf-
f i c i ent ly small numbers Mj,,Mg, and kG < gg ̂  the second 

inequality (5S) is f u l f i l e d . The remaining inequalities are 
f u l f i l e d on the basis of the assumptions for numbers Mp,!^^. 

Thus, lemma 1 is proved. 
L e m m a 2 (Hadamard's Lemma) 
I f the functions G^.(x,u^,u2,Uj) satisfy the assumption 

I I I , then the differences AG^ = G^(x,u^ ,U2,U2)-Gic(x,u/l J ^ J U ^ ) 

can be written as the sum the products 

AGk= g^ ) (x ,u 1 ,u 1 ,u 2 ,u 5 ) (u 1 -u 1 ) + g^.1^(x,u1 ,u2>u2,u3) (U2-U2) + 

+ gp^(x,u1 ,u2 ,u5 ,u3 ) (u5-u3 ) , (59) 

where a l l of the functions (x,t^ ^ j t ^ t ^ ) satisfy the 
Holder-Lipschitz condition 

I g ( s ) ( x , t v t 2 , t 3 , t 4 ) - e ( s V . V ^ . t ; ) ^ k'G( |xx ' | "G
+ ¿ | t . - t ' . j ) . ( 6 0 ) 

H 
The proof of this lemma is similar as the proof of the 

lemma 1 in the paper [8 ] on p.106. 

Let us ^ = [ u ( ' l ) ( x ) , u ^ ) ( x ) , u ^ ) ( x ) , 4> \1) (xq ) ) (x q ) , 

( f j l ) ( x 0 ) ] , U2 = [ u ( 2 ) ( x ) , u | 2 ) ( x ) , u ( 2 ) ( x ) , c f ( 2 ) ( x o ) , c f | 2 ) ( x o ) , 

( 2 I \ "T -A A A 

f j ; ( V J P0:i-n'ts o f space A . Let Û  ,U2 be the ima-
ges of the points U^,U2 after the transformation (33),(34-). 

L e m m a 3. 
Let OL be the number 
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Nonlinear boundary value problem 17 

a = max | kp [A1+A2kG+A5kò+A4M<5+kjn(A5+A6Mp+A790)] , 

A8 VkG(A9+A10VA11 So )} » (61 ) 
where the pos i t ive constants A ^ , . . . ^ ^ depend on the Lame's 
constant cj . I f the numbers kF>kG,k'G are s u f f i c i e n t l y small 
so that the inequali ty 

CL< 1 (62) 

and the i n e q u a l i t i e s (58) are f u l f i l e d , then 

8 ( n 1 § u 2 ) < a 5 ( u v u 2 ) . (63) 

P r o o f . We f i r s t prove some i n e q u a l i t i e s . From the 
formula (36) we have 

û(1>(x)-ïï<2>(x) •-W E / r ^ ^ x . y ^ C y . u ^ C y j . u ^ ) ^ ) , « ^ ^ ) ) > 
K=1 J 

V 

- F k (y .u( 2 >(y) f 4 2 ) (y) ,4 2 ) (y) ) ]dV y + 

3 C 

k=lJ 
S 

By v ir tue of the assumption I I and the i n e q u a l i t i e s (4-0), 
(4-5), we obtain 

| u<1 ̂ x ) - ^ 2 )(x)|^3P1kF max sup ju^1 }-u£2 ) |+3p3 max sup | if ^ i f^ j . (65) 

From the formula (34) we have 

S 

= 4 . f ( x ) , (66) 23T v o ' v ' 

where 
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f ( x ) 

7(x0) - - w / [ T °  r ( x 0 > y ) + « ( x 0 ) r ( x 0 ' y ) ] [ F ( y > * ( 1 ) ( y ) ) - F ( y . * ( 2 ) ( y ) ) ] d v y + 

v + G(Xo,Ï(1\Xo)) - G(xo , î i ( 2 ) (xo ) ) , (67) 

We shall prove that the functions f i j ( x 0 ) sat is fy the 
Holder condition. Now, we are going to investigate the d i f -
ferences 

te » ) 

where 

W = i x i f i $ ¥ s ) ( t > > o ) r ( s ) ( x 0 . y ) ] [ P s ( y , u ^ ( y ) , u ^ ) ( y ) , 
S'l«' V 

4 l ) ( y ) ) - F s (y ,u1 ( 2 ) (y ) ,42 ) (y ) ,u(2 ) (y ) ) ]dV y 

S"1 / 

- F6 (y ,u^2 ) (y ) ,42\y) ,42>(y ) ) ]dV y 

S'U 
V 

In view of the assumptions I I , IV and the inequalities 
(40), (42), (43) we get 
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1 4 S U P | U Ì 1 ) " | Xo$ 

1.(2) 

19 

(69) 

max sup | uj 1) - u( 2) | (70) 

J 

To estimate J j ^ w e aPPly the lemma 2. From the formula 
(59) it follows 

S = 1 

S = 1 

where 

s i 2 ) W = S( 2)(x,u( 1)(x),u| 1)(x)4 2)(x),u( 2)(x)) 

= gp }(x,tl( 1)(x)4 1)(x),4 1)(x),4 2)(x)). 

The inequalities (31)>(49)»(60) imply 

| 4S)(^)-siS)(xo)|^(e1+e2Ve3?o)|xo5l^ 
where the positive numbers e^,e2,e^ depend on the Lamé's 
constants and the constant co . The functions are bounded 

4 S ) ( x o ) | < k G ' (74) 

In view of the assumption II, the formula (36) and the 
inequalities (42),(46) we get 
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«Jq^kj, max sup Ixd+Jq^ max sup f x 0 $ J8« 

(75) 

By virtue of the formula (72) and from the inequali t ies 
( 6 5 ) , (73 ) , (74) , (75) w e ^ v e 

| J k 4 V ' 9 kp[p1k 'G^e1+ e2%+ e3?o^+ < l1kG] m£?x s u p | + 
I 0 

+9[P3k'G(e1+e2MF+e3^o)+q5kGJ max sup | cj> . | * 0 ? . (76) 

F inal ly , from the definition of the exponent ĥ > 3nd from 
the inequali t ies ( 6 9 ) , ( ? 0 ) , ( 7 1 ) , ( 7 6 ) we have 

I W - W I * 

<[3lcp[q2+P1k<j+41Mdt3q1kG+3P1^(e1+e2MF«3?o)] max sup } 

+9[p3l4(e1+e2MF+e3^)+<l3J^] max sup | »f ^ ) - If ̂ )|| | x ^ . (77) 

Hence, since the functions f ] j ( x 0 ) sat isfy the Holder con-
di t ion, the integral equation (66) has the unique solution 

* < 1 > ( * 0 M < 2 > ( * 0 ) B ( x o ) f ( x o ) + ^ f N(xoi5)f(J)d^.(78) 

{ 
According to the assumption I I I , the inequalit ies (4-0) 

and the formula (67) we get the estimate 

|fk.(xo)|«3P1kF(-1+3kG) max sup |U(1 ^-u^2 ^ | +9P3kG max sup j if j ^ - f / 2 

From the formula (78) we have 
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k-i J k=l J (80) 
S 5 

From the inequalities (77),(79),(80} it follows 

I $ y(x0 )- $ f
 }(xo )|« fy kFk(MB+MN)(l+3kG)+C2 [q2+Pl V < l l V ^ k G + 

+3P1^(e1+e2MF+e3yo)] max sup |Ujj. ' + 

2? 
2X 

P3kG(MB+MN)+C2[P3^(e1+e2MF+e3?o)+q3kG]|maX sup |f ̂  ( 8 1) 

Prom the equation (33) we have 

3 

- V y' u$ 2 )( y )' u2 2 ) ( y )' u3 2 ) ( y ) )] d Vy + 

K = 1 J 
(82) 

According to the assumption II, the inequalities (40), 
(45),(81) we obtain 

^ j f P 1 + P l (Mb+Mn )( 1+3kG )+C2 [q2+Pl + V V 3 q - : 'S 

+3Plk'G(e1+e2MF+e3fo)]. (1) (2)1 max sup '-u^ ' | + 

81 
+-2TP3' P3kG(MB+MN > C 2 [p3k'G(ve2MF+e3<?o s u p ^ 1 1 ^ 2 

=3) 
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Now, we estimate the Holder coeff ic ient H£<f("^(x ) + 
- ^ ( 2 ) ( x 0 ) ] . Prom the formula (78) we have ^ 

p S 1 H > H » i 1 ' < < > > h t i ' ^ . * j " c < , > ] ' k ( « o > ' 
K-1 

+ h t B j k : a r P A ^ ^ o ) ] • «*> 
K-1 

where 

K - 1 J 
S 

Consequently, we obtain the inequa l i t i e s 

+ h X I ^ V 0 ) | H [ ^ x o ) > h ' ( 8 6 ) 
K=1 

By v i r tue of the inequa l i t i e s (26), (28) from the paper 
[ 7 ] and the inequal ity (79), i t fol lows 

H[B( k ) (x 0 ) ]$C 3C (87) 

H[D j ( x o ) ] « 5P lkNkF( l+3kG) max sup | u ^ - u ^ j + 
k 

+5p3kNkG max sup • (88) 
k 

F ina l l y , from the inequa l i t i e s (77) , (79) , (86) , (87), (88) 
we have 

H [ t f Î (X0>- U | c 3 C p 1 k p ( l + 3 k G ) + M B k F [ q 2 + P l k ( i + q
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+3q1k'G+3p1k^,(e1+e2Mp+e3ç0)+ J P ^ k ^ ^ k ^ j m a x sup |u£1 

' G3 CP3V 5 MB[ p3 kG ( e1 + e2% + e3?o) + < l3 kG] + 

+ y P^kNkG j max sup | - | . (89) 

. 27 +
 "2T 

Let us denote 

i _ 27 
~ ~2T~ 

A1 = + 4 r [ P l ( 2 V 2 % + 3 V + k N ) + M 2 V 5 V ] ' 

A 2 = l f [ P 1 ^ M B + 2 M N + 3 C 3 C + k N ) + < l ^ 2 C 2 + 5 M B ) ] ' A 3 = " i r P 1 ( 2 C 2 + 3 M b ) , 

A4 =lf 1 I ( 2 C 2 + 5 V ' A5 =|fPiei(2+3MB),A6 -H- P le 2(2+3M B), 

A7 =^-P^ 3(2 +3M b), 

(3P3+1) [p3(MB+MN)+G3q3]+p3(C3C+ ^kN)+3MBq3j, 

A9 = 1? P3e1[c2(3p3+1)+3MB], A 1 q =#P 3e 2[G 2(3p 3 +D +3M B], 

A11 = §T P3e3[C2(3p3+l)+3MB]. 

Then, in view of the inequalities (81), (83), (89),thede-
fition (32) and the assumption respectively the numbers k^, 
kg.lcQ it follows the lemma is true. 

We conclude from the lemma 1 and 3, by the Banach's Fixed 
Point Theorem, that the system of the integral equations (28), 
(29) has the unique solution u*(x), f*(xQ) in the space A . 

Remark. The solution u*(x), c a n aPP°int by the 
iterative method in the space 2V . 

From the integral equations (28),(29) it follows that the 
vector-function u*(x) satisfies the boundary condition (2) 
in all points of the surface S. Owing to the continuity of the 
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v e c t o r - f u n c t i o n F ( y , u * ( y ) ) the i n t e g r a l / r ( x , y )]?(y , u * ( y ) )dVy 

s a t i s f i e s the Holder c o n d i t i o n . V 

Hence, the v e c t o r - f u n c t i o n F { y i U * ( y ) ) s a t i s f i e s the H6l-

d e r c o n d i t i o n f o r y 6 V. According t o the c o r o l l a r y from the 

theorem 2, the second d e r i v a t i v e s of the v e c t o r - f u n c t i o n 

u * ( x ) e x i s t and u*(x) s a t i s f i e s the e q u a t i o n ( l ) f o r x t V . 

F i n a l l y , we can f o r m u l a t e the theorem 

T h e o r e m 5-

I f the assumptions I - I V a r e f u l f i l e d and the numbers M^, 

M g j k p j k g a r e s u f f i c i e n t l y s m a l l , t h e n t h e r e e x i s t s only 

one r e g u l a r v e c t o r - f u n c t i o n i n the form of the sum (28) which 

s a t i s f i e s the equat ion ( 1 ) and the boundary c o n d i t i o n ( 2 ) . 

T h i s s o l u t i o n u(x) can be appoint by the i t e r a t i v e of t h e e -

q u a t i o n s 

u ( m + 1 ) ( x ) = - ^ r y ' r ( 3 c I y ) P ( y , u ( m ) ( y ) ) d V y + ̂ ( x . y ) cf ( m + 1 ) (y)dSy 

V 5 

2 * f ^ m + 1 ) ( x o ) + y [ T ( X ° } r ( x 0 , y ) + tf(x0)r ( x o , y ) ] < f ( m + 1 ) ( y ) d S y = 

-S 

v 
where 

u W ( x ) r / r ( x o , y ) 5 - ( y , u W ( y ) ) d V y + j r { x Q , y ) <pW ( y ) d S y # 

V s 

As u ( ° ^ ( x ) , w e take an a r b i t r a r y p o i n t from 

the space A . 

The a u t o r wishes t o e x p r e s s h i s deep g r a t i t u d e to P r o f e s -

sor Janina Wolska-Bochenek f o r t h e s c i e n t i f i c guidance and 

f o r s u g g e s t i n g the s u b j e c t o f t h i s paper , which i s the f i r s t 

p a r t of the a u t h o r ' s d o c t o r a l d i s s e r t a t i o n . 
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