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ON SOME NON-LINEAR SYSTEM OF SINGULAR INTEGRAL EQUATIONS
IN THE THEORY OF ELASTICITY

1. INTRODUCTION

Let S denote a closed Lapunov surface, and Bi - the do-
main bounded by 8. Consider the following boundary problem in
the theory of elasticity: Find the displacement vector u(x) =
= () I+ u,(x)J+ uB(x)'f: in the domain B; such that

A"ﬁ(x) + wau(x) =0 xeB, (1)

(w- constant, 4&'=(r+2u) grad.div - g.rot-rot, A pu-Lamé’s
constants) and

Tu(x,) + 6(x Ju(x,) = G(xo,u(xo)) X € Sy (2)

where T is the well known tension operator, and 6(x0) is a
scalar function,

By the potential methods this problem reduces to the so-
lution of the second kind system of non-linear singular inte-
gral equations of the form

(x,)
¢(x,) -atf[’l‘ Fo Mxyyy) + 6(xo)r(xo,y)] ¢(y)a8, =
$

= f(xo,q;(xoD x, € 8, (3)
where ¢(x_) = @(x )i+ ¢ (x))T+ (PB(XO)E is an unknown vec-

tor, the integral is taken in the sense of the Cauchy princi-
pal value, [(x,y) (the fundaméntal solution of the equation
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(1)) is a matrix of the elements

(k) eikzr § 82 ikyr ikzr
1 e e .
r‘ (X’Y) = 2 kJ T ;)E .kaaxj T - T (11;3-11’2’5), (4)
where
1 k=j )
2 2 2
& s = : T =\ (X~ ) T+ (%5-7,5 )T+ (=7 %)
kJ 0 k#j, \/ 171 27v2 37I3/
2 2
2 2 2 w 2 (A}
= A+24, VT =p, kq =7y Kk =T%
a b
. (%) . .
and T [(x,y) is a matrix of the elements
( ) (k) ar(k% ) kr
X s \X,¥ L&,r
T (x,y) = 2u—4 + -2 cos(n,x. )-3~— g___+
’ Iny A+2u Pt
(5)
thyr ik

+ cos(ny,x,) a%a' S - Oy 3%: & — (x,3=1,2,3)

f(xo,¢(xo)) is a vector with the coordinates fj(xo’¢ﬂ(xo)'
02(x,),95(x,))  (3=1,2,3). ~

N-dimensional integral singular equations were treated by
many authors. It was F.G.Tricomi who started investigations in
this field., He considered a singular equation in the plain E,
([1], [2]). Tricomi’s results were generalized by G, Giraud
([3]). G.Giraud considered the integral equation

9(x) -2 [ K(x,y)p(y)as, = £(x), (6)
$

where the kernel K(x,y) is singular, f£(x) fulfills Hdl-
der’s condition, and S 1is a closed Lapunov surface,

G.Giraud found the sclution of (6) in the class of fun-
ctions which satisfy the Hdélder condition, by the regulariza-
tion method used by Tricomi. If we apply the operator
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On some non-linear system 59

y(x) +2fH(x,y;2)p(y)ds,, (7)
S

to the both sides of (6) then we get

[1 +x2¢(x;x)] w(x)+ aef[H(X.y;x) - K(x,5) +
S

- asz(x,Z;at)K(Z,y)dSz] ¢(v)asy = £(x)+ acfH(x,y;atE)f(y)dSy (8)
S s

d(x;2) 1is the function defined by the kernels K and H.
The equation (8) is of Fredholm type if

1+ 2 (x50 £ 0 (9)

and

H(x,y;ae)-K(x,y)—fo(X.zm)K(z,y)dsz=o(r5'2) £>0. (10)
§

This equation was reduced by Giraud to a boundary problem
for harmonic functions,

In this paper we shall base on a method proposed by S.G.
Mikhlin ([4]) who comsidered the equation of the form

f (%,0)
Ag = a (x)g(x) +E[°—rx— ¢(y)dy +!F(X.y)¢(y)dy=p(X), (1)
2 2

where (r,8) are polar coordinates of the point y with res-
pect to the pole x, and the second integral above is absolu-
tely convergent.

Under some assumptions on the regularity of functions
ao(x), fo(x,e) Mikhlin connected with each operator A¢ a
function called by him the symbol of A (Sima),

Let

+0e

£(x,8) = 2{: bn(x)eine, l(12)

Ne—oo

denote Fourier series of f(x,8). (*means that the coefficent
bo(x) is equal to zero, and this condition is necessary and
sufficient for the existence of the singular integral).
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Denote
1 eie
he = 2—,;1[74’(}’)613’ (13)
T
£

then

Ap= > a,(x)h'y + Pg, (14)
framee -
oy Bl

where a (x) = —%%T——-bn(x), and Py is a weakly singular

operator, By the symbol of A we mean

. Ak in®g _
SimA = E an(x)e <A<+, (15)
N=-ce
For a weakly singular operator A SimA is defined aszero.
It may be proved that

(1) (2)> (1) (2)
Sim\ A + A =S5imA + SimA

C«) @) () (2)
Sim\A A = SimA- SimiA .

Now the problem of the regularization of the equation (11)
is reduced to determination of the symbol SimA™ from the
equation

SimA Simg* = 1. (16)

In the paper [4] 8.G. Mi kX h1lin introduced a notion
of the symbolic matrix for a system of integral singular equa-
tions

1]
2: Ajk?k = Pj(x) J=1424eeeyn (17)
k=]

(Ajk are the operators of the type (11)).
The condition

_det(“SimAjk" =0 (18)

(jok=1129'}'7n))
is necessary and sufficient for the existence of regularisa-
tor for the system (17).
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W.D. Kuprad z e in his book "Potential methods in
the theory of elasticity" chapter V has proved that for the
system (3) with the linear right side Fredholm’s theorems hold.
He made use of Giraud and Mikhlin methods. In this paper we
shall prove the existence of solution of the system (3) ad~-
mitting the following assumptions:

I. S is a closed Lapunov surface with the constants C,d
C>0, 0<6<1 such that

(nyyny) < 0¥ (x,3). (19)
II. The coordinates of the vector
T(x,09) = £4(x,y (qu‘#’g,?;ﬁ-_‘*' (%094 v‘?gv‘f;)j"‘f;(xov ¢19¢2’¢5)E

are real functions, defined on the set x €8, lq’jF? (3=12,3),
and fulfill HOlder-Lipschitz condition

Ifj(xo‘,(f’q!(f'gt(?B) - fj(xbo¢l]’ﬁ°:2’(?.5)l<
he 3
kf[r (xo.xg)+§l%-¢;l] (3=1,2,3) (20)
whereé kf>0, O<hf<’l.

III. The real function 6(xo) is defined for x e 8 and
satisfies the Hblder condition

hg
|6(x,)-6(x )| < ke~ (x,%)) (21)
where ks> 0, O<hs<1.
2. PROOF OF EXISTENCE OF A SOLUTION FOR THE EQUATION (3)
Consider the function space A of all systems

U [‘M 9‘?2"?3] (22)

6_f real functions cp1,¢2,<p3 def~ined for X € S (eaéh such
system will be called a "point"™ of A), Addition of two such
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points and multiplication of a point by a real number are de-
fined by the formulae

[0 (g st (%) 005 (x )]+ [ 04(x0) 4 ¥p (30D 495 (x,)] =

=[ P () + vq(x) 05 (x,) +tp2‘(xo),(p3(xo) + tyB(xo)] (23)

M[(Pq (50505 (xo),(pB(xo)] = [mq»l.(xo),mlp2(xo),mcp5 (xo)] . (2%)
The norm [U| of a point U is defined as
101 = maxsup |g5(x,)|  (3=1,2,3). (24)
I X€s J 0

The distance of two points U, V in the space A is de-
fined by the formulae

| (25)

The space A (with the norm | ||) is therefore a Banach
space, In the space A consider the set B of all points

U[‘?q (Xo),¢2(xo),'¢5(xo)] for which

§(u,v) = |u-v

l(Pj(XO) l(? (3319293) (26)
|0y (xod=g ) [ < = ) (3=1,2,3),

where
¢ 1is the number from the assumption II,

ky is the positive number defined in the sequel,
he is a constant with

0< hy< min(6,hp,hy). (27)

The set B 1is closed in the space A, because the 1limit
of an uniformly convergent sequence of points U(m) [Q,(]m)(xo),
q,ém) (xo)"ém)(xo):l satisfies the conditions (26).

Moreover the set E 1is convex because if O0<¥<1; U,Ve B
then U+(1-3)VeE. Let us transform E by the operation
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(x,)
w(xo)—aef[T “o [M(x5y7)+6(x,) r(Xo.y)}w(y)d8y=f(xo,¢(xo)). (28)
S

The kernel of the equation (28)
) (x,) (z,)
2o Mz, 7)+6(x ) (x,,5)=T o (x057)+T o Q(x,,7) +
+ 6(x ) M (x,,y)

is a sum of the following

(XO)F ) . 1 (x,)
T (xo,y) with the pole of order —5y———'and T .Q(}xo,y),

" (x,47)

. 1
S(XO)P(XO,y) with the pole of order —r(xo,y) , where

[__'(x,y),tl?(X> [M(x,y) denote the matrix with the elements

., (k) 1 2.2, 9r ér s q
r‘a (ng) 42—a%2‘ [(a ~b )_EX—J m + (ad+b )631{:]7;(075

T
(29)
(k,j:1,2,5)

(x) o (k) ar, (k) , ,

T,j o (x,y) =2p—-a—gx— +T}2ﬁ cosknx,xj) -a?c—k Tt o,
d 1 g 1 .
+ COS(YS{,XK) Bfa- E-d-ak a—g—.x £ (k,;]:q 2,3)
Q(x,y) 1is equal to

2(x,y) =M(x,y) =1 (x,7). (31)

By the first Fredholm Theorem [5] p.147 if the equation

(x,)
w(x,) -aesf[T O T (xy,7) + 6(x,) F(xo,y)]w(y)dsy=0 (32)
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has not non~-zero solution, then the only solution of (28) is
‘given by the formulae

-1 _ _
p(x,) = [I+ae2¢(xo;ae):| f(x°)+4N(xo, §;.af):f‘(§)dsé (33)
3
where F(x )= f(xo,¢?(xo ))
=1
[I +aczq$(xo;ac)] =
- (42 +A6) A(Azhp+hyhg) = K(AgAgrAshg)
= B(xo;ae)z% A'(A3A5+A,+A6) 1- A (a2 +Aq_) A'(A,|A3+A2A4)
- B(AqAgriohg)  B(hgAzehod,) 1= A(A54A3)
A,A are the constants dependent on the Lamé constants, A (x)

(j=1,24+..46) are defined in [5] p. 133, the resolvent
N(x,y852) _B(xo;ae)H(xo,e;ae)+o[r (xo,g)] b>0 where H{,§ ;%)

is the matrix- with the elements of order 5 = which is
' A _ r (xo,§)
the regularization matrix of (28).
‘Denote by
(k) :
My = in?xig) Bj (xo;ae)l (k,3=1,2,3)
Mp = maxsup £, (X, 01(%,) s tp (x5 (x )] (3=1,2,3)

Mg = sup |‘6(xo)l

Xp€$

j (k) )
) Nj (xopgix)dsg (k’J=,"2’5)o

MN = maxsup
kj xS

From the decomposition

3. (k) ;
L“’;j(xo) = ; Bj (xo;x)fk(:zo’q”l (xo)’¢2(xo>’¢3(xo)) ¥
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3

(k)
+a‘.’ZfNj (Xoyé;x) [fk“o%(f)’q’z(g),(?;(f)) +

k=t

= £, (%01 01 (%) 105 (x0)s 05 (%) Jasg + (34)
, (k) :
b 3 8 (ks 015 )s 2 5o 75 5 ) [ Ny Crgse)aS,  (341,2,3)
"1 3
the assumption II and (26), (27) we get the estimate

le(xo)l<'3[M3Mf14xIMN(kf+kfk?-ny)], (35)

To prove that mpj satisfy the HOlder condition we must
obtain some estimates

: . b'Vl(xo’x:)) b’12(xo’x'o) b’\3(xo’x'o>
B(xys¢) =B(xl;a) = & | boq(x ,x) by, (x,,x) B3 (X0 9%y
b3’| (xo,x'o) b32(x°,x'o) b53(xo,x’o)

where

byq(X ex) = [AE(x‘ - A (x )][A (x) + Ag (x )] +
+ [A6(x )= ag(x, )][A6(x ) + 45 (x, )]
ban(Xexp) = [Az(x) - As(x, )] Agx,) + [Ag (x ) - A5(x J]A5 (xp) +
+ [ Ay (xy) = by ()] g (3 )+ [Bg () -Ag (xp)] Ay (=)
b5 (xgaxp) = [ Aq(x,) = &y (x,)] g (2 )+ [Ag (2] ) =45 (%) | 44 (x )¢
+ [ Ay (x))~hp (x, )] Ag (3 )+ [Ag (x4 )-Ag (x,)] 45 (%)
b1 (xo’x‘o) = b12(xo,x6)

by, (x,,%,) = [A3 (x4 )-A5 (x, )] [AB (x)) )+hz (x, )} +
+ [Au(x&) - A4(xo)] [’Aq_(x;)) + A4(x°):[
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A (xy )=y (x))

J.Chma.j

Do (H0%,) = [Aq(xg)-hg ()] Az (0 )+ [ A5 (30 )45 (x7))] Aq (3, )

+ [A2 (x.Q)-A.2 (xa )] 1&4(xO )+[A4(xo~)-A4(x())] A, (x

bB’I (xo,xg) = b’IB(xo'XIo)

b32(xo,x6) = b25(xo,x'o)

o)

[+]

by (xg0xy) = [ A (xp)-84 (x)] [ 84 (=) 484 ()] +
+ (8, ()-8, (x )] [ Ao (%2 )45 (x ) ]

A,I(x )-A,l(x ) = a ,](x )[cos(nx 1 X5) - cos(nx, 1Xo) |+

- am(x )[cos(ns{ 3%q) -
Ay (x )=y (x) = 32’1(X )jcos(n, ,x5) =
(5
- a22(,x°) rcos(nx yXq) =
L )
AB(XO)~A5(X6) = aqﬂ(xo):Fos(nXo,xa) -
- a,]B(xo) rcos(nx ,x,l) -
i )

A4(xo)-A4(x6)

- a23(X°)

{l

A5(xo )—A5(x6) a,l2(x°)

- a3 (x%)
2 (x°)
- 325 (XO

But

a21(X0).cos(nxb,X3)

[cos (nxg yXq)

rcos(nx, ’XB)
i o
[cos(n, ,x,) -
L 0

-cos(nj'{ ,x3)
i o

)rcos(rssc ,x2) -
L o

cos(nx X4
cos(nx, 1%5)
1

]
]
] +
.,os(nx, ' X ]
cos(nx, s X )] +
cos(r& ,x,])

]
cos(nX 1 %3 ] +
c:os(nX X, ]

COS(HXO’XB):I +
cos (nx,o,x2 )]

cos(r&,o,XB)] +
cos (n.x,o,xa)]

cos(ny ;) = cos(ny, ,x;)[<(my yny, ) <C28(x0sx,) (3=1,23)
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Hence

(k) (k) ’ ' P ' )
By (x,3%) - B (xy3) | < Cy+02% (x,%) (ky3=1,2,3) (36)

where O, is the constant dependent on Lamé’s constants.
By [6] and theorem 4 in [5], p.111, the functions

3, r (k) -
D, (x,52) = ;’fNj (xg 6520 (§)aS (3=1,2,3) (37)
S

satisfy the condition

h
| D (xg52) - Dy(x52) | < Ik, (k)T (% ,%0) (3=1,2,3) (38)

i.e. the H8lder condition with the exponent hy and the
coefficient being proportional toc that of the functions fk(eL
From the decomposition

3 (k) (k) -
vy ()= (xg) = Z[Bj (x,52) = By (xg;af)} T (x)) +
= (39)
(k) i=1,2
+2 5 (x [f (x,)-F) (% )]+ae[D (x43)-D4 (x ,ac)] (3=1,2,3}
the assumption II and the inequalities (36), (38) we have
ij (x4 )=y; (x’o)|< 3 [01 CMp + i (M |22 kN)‘(":+k,?):l Y (x,,%,)
(40)
(3=1,2,3).

A point V[yq(x )sys (% ),y,(x )] belongs to B if the
»follow1ng inequalities are satisfled
B[MBMf +1oe] My (ot e+ )] <9 (
41)
5[C40Mp + kp (M+1] k) (14kg) ] < Ky

But these inequalities are fulfilled if k¢, are suffi-
ciently large and kf such that

+lalk
kf<iMBTN-. (42)
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Lemma 1,

The transformation (28) of the set E is continuous in
the space A.

Proof. Let U(m)[ (W ix ), 9i%(x,), cp(m)(x ;)] ve a con-
vergent sequence of points in E to a p01nt U[q:,] (xo),cpa(xo),
qa(xo)] , that is

lim_d'(U(m),U) =0 (43)

M >

(m)[ (m) (m) (m)
and let V ¥q (x'o),lt-’z (Xo)v‘f’3 (XO) y and V Wq(xo),wa(xo),

lp (x )] denote the image of u(m) ana U by the transforma-
.tlon (28),

We have to prove that
(m)
1im6\V.

m-e—e2

,V):O. (444)

By the definition of the. transformation (28) and by (33)

we get

( ) (m) (m) (m)
5 (£)-yy(xg)= ZB (xo,ae)[ ( Xg19q ()90 (x,)595 (x ))
-t (xo,¢1(x )y 0o (%) 405 (x, )) + (45)

(m) (m)
+x3fNa (Xo,é x)[k §"P1 (é) (92 (f) <P3 (f))

s

(60 ()05 (85 (8))] 138, (521,2,).
From the assumption II and (26), (27) we have
(m) (m)
(é%, (€), ?2 (g) q’3 (é) <0,<p1 (x4),0p (x5), <p3 (x,

gconst.r (xo,g) (k=1,2,3)

‘fk@o,% (x40 (2085020 ) =16 101 60,260,250

h
<const. r (P(xo,é) (k=1,2,3)

)
(46)

(47)
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(m) (m) (m)

£, Xordq (X)atp (2,)405 (x, 1) = 2 (s @1 (x0) 05 (x,) 5 85 (x,)) | <

(43)

maxsup (¢
J X€S

(k,j=1,2,5).

Denote by 6(x°,£) the subset of S8 contained in the ball
t(x°%,€) with the center in x° and with the radius ¢. Let
X e 6(x°,a). We can write (45) in the following way

(m) : 3, (k) (m) (m) (m)
‘*'j (xo)-uj(x°)=;Bj (xo;az) l:fk(xo"f"l (xo),cp2 (xo),cp3 (xo))+

- Z\fk(xo,(?,](XO))(Pg(xo),(?}(Xo))} + (49)

(m) =~ (m) = (m)
v ) f (xo,e,ae)[f (¢, 7y ($) 95 (), (S)) +

6(x%€) ( ) ( ) (
m m
- fk< Ko P9 (x )’CPQ (x )"PB (x ))] dSe +

*foI‘I (Xoyf’x)[ (01‘P1(xo)’¢2(xo)94’5(x0)) +
)

- fk(s.¢1($>,<r2(e),¢5(€))]dse *

-~ (m) (m) (m)
+xi [fk (xo’q”l (xo),cp2 (xo)"PB (xo)> ¥

k=1

- T (x o’(Pﬂ(x )92 (x40 95 (x, ))U (k) (x orfi2)dS, +

6(xe)
; (m) (m)
\5-6{:(')
- fk(e ?1(6)"?2(6),(?3(9))] dsg (3=1,2,3).

m
Since ¢. (xo) tends uniformly to (pj(x) for x €5 and
(46), (47),(48) by (49) for ¢—0 it is evident that wgn) (x,)
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tends uniformly to q:a. (xo) for X € S and that completes the
proof of the continuity of the transformation (28),

Lemma 2.

The seb {wj(xo)} (3=142,3) 1is compact.

Proof, The functions wj(xo) (j=1,2,3) are uniformly
bounded and uniformly continuous for X € S because they ful-
£ill the H8lder conditior with the same exponent and cons-
tant., So the set {wb(xo)} is compact by virtue of the theo-
rem of Arzela, -

So, all the assumptions of the Schauder Theorem [7] are
satisfied. Thus this theorem implies that there is at least
one point U*[¢q(xo),¢§(xo),¢3(xo)] invariant for the trans-
formation (28). Another words, there exists a function ¢ﬁxb)=
= qq(xo)f + @ (x, )T + ¢%(XO)E which is a solution of the sys-
tem (3). Thus we have proved the following theorem,

Theoren

If I,IT,IIT hold and +%the constant kf is sufficiently
small and satisfies the inequality (42), then the system (3)
has at least one solution @(x) = ¢1(xo)fq-¢2(xo)§4- ¢3(XO)E
which satisfies the HOlder condition with +the exponent h¢
from (27).

Remark
It could be proved that each solution of the system (3)is
also a solution of the problem (1),(2).
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