

Wojciech Zakowski

ON SOME PROPERTIES OF THE CAUCHY TYPE INTEGRAL
 IN THE EUCLIDEAN SPACE E_3 ,

The paper considers the properties of the surface singular integral (6). This integral appears in the theory of holomorphic functions in the space E_3 . It is proved that if the column $q(Q)$ satisfies the Hölder condition with the constant K and exponent $h \in (0,1)$ then the column $F(P)$ defined by the equality (21) satisfies the Hölder condition with a constant directly proportional to K and with the same exponent h as in $q(Q)$. The case when $h=1$ is also discussed, and some conclusions are drawn.

1. INTRODUCTION

Consider a bounded region D^+ in the Euclidean space E_3 ; the boundary S of this region is a closed Lapunov surface. Let D^- be the unbounded region, complementing the set $S+D^+$ to the space E_3 .

We introduce the following notations (cf. [1]):

$$D(X, Y, Z) = \begin{vmatrix} 0 & X & Y & Z \\ X & 0 & -Z & Y \\ Y & Z & 0 & -X \\ Z & -Y & X & 0 \end{vmatrix}, \quad D^*(X, Y, Z) = \begin{vmatrix} 0 & X & Y & Z \\ X & 0 & Z & -Y \\ Y & -Z & 0 & X \\ Z & Y & -X & 0 \end{vmatrix} \quad (1)$$

and

$$M(A, Q) = -D^* \left(\frac{\partial}{\partial \xi}, \frac{\partial}{\partial \eta}, \frac{\partial}{\partial \zeta} \right) \frac{1}{\varphi(A, Q)} \cdot D(\cos \alpha, \cos \beta, \cos \gamma) \quad (2)$$

where $\rho(A, Q)$ denotes the distance of the point $A(x, y, z)$ from the point $Q(\xi, \eta, \zeta) \in S$ and $[\cos\alpha, \cos\beta, \cos\gamma]$ is the unit vector of the normal to the surface S in point Q , oriented externally with respect to the region D^+ .

Let $q(Q)$ be the column

$$\begin{vmatrix} q_1(Q) \\ q_2(Q) \\ q_3(Q) \\ q_4(Q) \end{vmatrix} \quad (3)$$

the elements of which are defined and continuous on the surface S . The surface integral

$$\frac{1}{4\pi} \int_S M(A, Q) q(Q) dS_Q, \quad (4)$$

defined in every point A of the set $D^- + D^+$ will be called the Cauchy type integral in the space E_3 . It is known, [1], that the column $p(A)$, defined in the set $D^- + D^+$ by the equality

$$p(A) = \frac{1}{4\pi} \int_S M(A, Q) \cdot q(Q) dS_Q \quad (5)$$

is holomorphic in this set, i.e. it satisfies in it the elliptic system of equations

$$D\left(\frac{\partial}{\partial \xi}, \frac{\partial}{\partial \eta}, \frac{\partial}{\partial \zeta}\right) p(A) = 0.$$

Furthermore, if the column (3) satisfies on the surface S the Hölder condition, then for each $P \in S$ there exists a singular integral in the sense of Cauchy principal value

$$\frac{1}{4\pi} \int_S M(P, Q) \cdot q(Q) dS_Q \quad (6)$$

and it is expressed by an absolutely convergent integral

$$\frac{1}{4\pi} \int_S M(P, Q) q(Q) dS_Q = \frac{1}{2} q(P) + \frac{1}{4\pi} \int_S M(P, Q) [q(Q) - q(P)] dS_Q. \quad (7)$$

We prove that then there exist boundary values of the column $p(A)$ defined by the equality (5), namely

$$p^+(P) = \lim_{D \ni A \rightarrow P \in S} p(A), \quad \text{and} \quad p^-(P) = \lim_{D \ni A \rightarrow P \in S} p(A)$$

connected with the singular integral (6) in the following way.

$$p^\pm(P) = \pm \frac{1}{2} q(P) + \frac{1}{4\pi} \int_S M(P, Q) q(Q) ds_Q. \quad (8)$$

The formulae (8) are analogous to those of S o c h o c - k i - P l e m e l j [2] which are of essential importance in the boundary problems for a complex variable function.

2. PROPERTIES OF THE MATRIX $M(P, Q)$

The kernel $M(P, Q)$ of the integral (6), defined by the equalities (1) and (2), may, after easy calculations, be expressed in the form

$$M(P, Q) = \frac{1}{\varphi^2(P, Q)} M^0(P, Q) \quad (9)$$

here

$$M^0(P, Q) = \begin{vmatrix} \vec{s} \cdot \vec{n} & w_x & w_y & w_z \\ -w_x & \vec{s} \cdot \vec{n} & w_z & -w_y \\ -w_y & -w_z & \vec{s} \cdot \vec{n} & w_x \\ -w_z & w_y & -w_x & \vec{s} \cdot \vec{n} \end{vmatrix} \quad (10)$$

where \vec{n} is the unit vector $[\cos\alpha, \cos\beta, \cos\gamma]$ introduced above, \vec{s} - the unit vector of the vector \vec{PQ} , $\vec{s} \cdot \vec{n}$ - the scalar product, and $[w_x, w_y, w_z]$ is the vector product $\vec{s} \times \vec{n}$.

Since $\det M^0(P, Q) = 1$, then in view of the equality (9) we have

$$\det M(P, Q) = \frac{1}{\varphi^2(P, Q)}. \quad (11)$$

We shall now consider some properties of the matrices (9) and (10). Substituting into (7) the column $q(Q)$ with elements $q_1 = 1$ and $q_2 = q_3 = q_4 = 0$ we obtain

$$\frac{1}{4\pi} \int_S M(P, Q) \cdot \begin{vmatrix} 1 \\ 0 \\ 0 \\ 0 \end{vmatrix} dS_Q = \begin{vmatrix} 1 \\ 0 \\ 0 \\ 0 \end{vmatrix}$$

i.e.

$$\frac{1}{4\pi} \int_S \frac{M_{ik}^0(P, Q)}{\varphi^2(P, Q)} dS_Q = \frac{1}{2} \delta_{ik}, \quad (12)$$

where $M_{ik}^0(P, Q)$ is the element of the i -th line and the k -th column of the matrix (10), and δ_{ik} - the Kronecker delta.

The elements $M_{ik}^0(P, Q)$ obviously satisfy the condition

$$|M_{ik}^0(P, Q)| < 1. \quad (13)$$

Next, we shall show that for every three points P_1, P_2 and Q , ($Q \neq P_2$) of the surface S the following inequality is fulfilled

$$|M_{ik}^0(P_1, Q) - M_{ik}^0(P_2, Q)| \leq 2\pi \frac{\varphi(P_1, P_2)}{\varphi(Q, P_2)} \quad (14)$$

$$(i, k = 1, 2, 3, 4).$$

Assume that points P_1, P_2 and Q do not lie on the same straight line and consider two cases: $i=k$ and $i \neq k$.

If $i=k$ then $M_{ik}^0(P, Q) = \cos(\vec{PQ}, \vec{n})$ thus, denoting $\theta = \angle(\vec{P_1Q}, \vec{P_2Q})$, we get

$$|M_{ik}^0(P_1, Q) - M_{ik}^0(P_2, Q)| < \theta < \pi \sin \frac{\theta}{2}. \quad (15)$$

Since

$$\frac{\varphi(P_0, P_2)}{\sin \frac{\theta}{2}} = \frac{\varphi(Q, P_2)}{\sin \delta},$$

where $\delta = \angle(P_0Q, P_0P_2)$ and P_0 denotes a point at which the bisetrix of the angle θ in the triangle QP_1P_2 intersects the side P_1P_2 , so, on account of the inequality $\varphi(P_1, P_2) > \varphi(P_0, P_2)$ we have

$$\varphi(P_1, P_2) \sin \delta > \varphi(Q, P_2) \sin \frac{\theta}{2},$$

i.e.

$$\sin \frac{\theta}{2} < \frac{\varphi(P_1, P_2)}{\varphi(Q, P_2)}. \quad (16)$$

Now, taking into account the estimates (15) and (16) we get the inequality (14).

If $i \neq k$, then $M_{ik}^0(P, Q)$ is equal (with an accuracy to one sign) to one of the coordinates of the vector product $\vec{s} \times \vec{n}$. Let $\vec{s}_1 = [\cos \alpha_1, \cos \beta_1, \cos \gamma_1]$ and $\vec{s}_2 = [\cos \alpha_2, \cos \beta_2, \cos \gamma_2]$ be the unit vectors of the vector $\vec{P_1Q}$ and $\vec{P_2Q}$, correspondingly. Consider the case when $M_{ik}^0(P, Q) = W_x$; the remaining cases are considered analogously. Since

$$\begin{aligned} W_x(P_1, Q) &= \cos \beta_1 \cos \gamma - \cos \gamma_1 \cos \beta \\ W_x(P_2, Q) &= \cos \beta_2 \cos \gamma - \cos \gamma_2 \cos \beta, \end{aligned}$$

then the following inequality holds true

$$|M_{ik}^0(P_1, Q) - M_{ik}^0(P_2, Q)| \leq 2\theta$$

where θ denotes as above the angle between the vector $\vec{P_1Q}$ and the vector $\vec{P_2Q}$. Hence, in view of (15) and (16) we obtain the inequality (14).

If the points P_1, P_2 and Q lie on the same straight line, then either the left-hand side of the inequality (14) equals zero, or it is not greater than four, and, moreover, $\varphi(P_1, P_2) > \varphi(Q, P_2)$ and consequently also in this case the inequality (14) holds true.

We shall next prove that for every $P \in S$ and for every $\varepsilon > 0$ the following inequality is satisfied

$$\left| \int_{S_\varepsilon} \frac{M_{ik}^0(P, Q)}{\varphi^2(P, Q)} dS_Q \right| \leq 8\pi, \quad (17)$$

$$(i, k = 1, 2, 3, 4),$$

where S_ε denotes the set of all points of the surface S which do not lie inside the sphere with the centre P and radius ε .

Note that

$$\int_{S_\varepsilon} \frac{M^0(P, Q)}{\varphi^2(P, Q)} q(Q) dS_Q = \int_{S_\varepsilon \cup \delta} \frac{M^0(P, Q)}{\varphi^2(P, Q)} q(Q) dS_Q - \int_{\delta} \frac{M^0(P, Q)}{\varphi^2(P, Q)} q(Q) dS_Q, \quad (18)$$

where δ denotes that part of the surface of the sphere with centre P and radius ε which does not lie in the region D^+ . Let $q(Q)$ be a column with the elements $q_1 = 1, q_2 = q_3 = q_4 = 0$. Obviously, this column is holomorphic in the whole space. Thus we can make use of the analogue of the Cauchy integral formula ([1], p. 170); hence we have

$$\int_{S_\varepsilon \cup \delta} \frac{M^0(P, Q)}{\varphi^2(P, Q)} q(Q) dS_Q = 4\pi q(P).$$

Thus, in view of (18) we obtain

$$\int_{S_\varepsilon} \frac{M_{ik}^0(P, Q)}{\varphi^2(P, Q)} dS_Q = 4\pi \delta_{ik} - \int_{\delta} \frac{M_{ik}^0(P, Q)}{\varphi^2(P, Q)} dS_Q. \quad (19)$$

$$(i, k = 1, 2, 3, 4)$$

Because for every $Q \in \delta$ we have $\varphi(P, Q) = \varepsilon$ therefore, taking into account the inequality (13), we finally get

$$\left| \int_{S_\varepsilon} \frac{M_{ik}^0(P, Q)}{\varphi^2(P, Q)} dS_Q \right| \leq 4\pi + \frac{1}{\varepsilon^2} \cdot 4\pi \varepsilon^2 = 8\pi,$$

and this completes the proof.

3. PROPERTIES OF THE SINGULAR INTEGRAL (6)

Let K be a positive number, and let $h \in (0, 1]$. Denote by $H(K; h)$ the set of all columns (3) with elements defined on the surface S and satisfying on it the following inequalities

$$|q_i(P)| \leq K, \quad |q_i(P_1) - q_i(P_2)| \leq K \cdot \varphi^h(P_1, P_2) \quad (20)$$

$(i = 1, 2, 3, 4).$

Theorem. If $q(Q) \in H(K; h)$, $0 < h < 1$ and

$$F(P) = \frac{1}{4\pi} \int_S M(P, Q) q(Q) dS_Q \quad (21)$$

then $F(P) \in H(C \cdot K; h)$, where C is a constant not depending on the column $q(Q)$.

Proof. On account of the inequality (7) and the first of inequalities (20) we have

$$|F_i(P)| \leq C_1 \cdot K, \quad \text{for } i=1, 2, 3, 4, \quad (22)$$

in which the constant

$$C_1 = \frac{1}{2} + \frac{1}{\pi} \int_S \frac{dS_Q}{\varphi^{2-h}(P, Q)},$$

does not depend on the column $q(Q)$. Since the elements of the matrix $M^0(P, Q)$ satisfy the conditions (13), (14) and (17), the assumptions of the theorem 1 of [3] are fulfilled. Thus, the moduli of continuity $\omega_i(r, f_i)$ of the elements $f_i(P)$ of column

$$f(P) = \frac{1}{4\pi} \int_S M(P, Q) [q(Q) - q(P)] dS_Q \quad (23)$$

and the moduli of continuity $\omega_i(r; q_i)$ of the elements of column $q(Q)$ satisfy the following system of inequalities

$$\omega_i(r; f_i) \leq C_2 \sum_{j=1}^4 \left[\omega_j(r; q_j) + \int_0^r \frac{\omega_j(\tau; q_j)}{\tau} d\tau + r \int_r^{\infty} \frac{\omega_j(\tau; q_j)}{\tau^2} d\tau \right] \quad (24)$$

$$(i = 1, 2, 3, 4),$$

where C_2 and η are constants independent of the column $q(Q)$. Since the elements of the column $q(Q)$ satisfy the Hölder condition (20), then $\omega_i(\tau; q_i) \leq K \cdot \tau^h$ and, therefore, in view of (24), we have

$$\omega_i(r; f_i) \leq C_3 \cdot K \cdot r^h,$$

$$(i = 1, 2, 3, 4),$$

where the constant C_3 does not depend on the column $q(Q)$. Hence it follows that the elements of the column (23) satisfy on the surface S the Hölder condition with constant $C_3 \cdot K$ and with exponent h . Since the column (23) is the second component on the right-hand side of the equality (7), then the elements of the column (21) satisfy on the surface S the Hölder condition with the constant $C_4 \cdot K$, where $C_4 = \frac{1}{2} + C_3$, and with the exponent h , i.e.

$$|F_i(P_1) - F_i(P_2)| \leq C_4 \cdot K \cdot \varphi^h(P_1, P_2), \text{ for } i=1, 2, 3, 4. \quad (25)$$

From the inequalities (22) and (25) it follows that $F(P) \in H(C \cdot K; h)$, where $C = \max(C_1, C_4)$, and this completes our proof.

Conclusion 1. If $q(Q) \in H(K; 1)$, then the column $F(P)$ defined by the equality (21) belongs to the class $H(C_0 \cdot K; 1 - \varepsilon)$, where ε is an arbitrary positive number, and the constant C_0 does not depend on the column $q(Q)$.

This conclusion follows immediately from the inclusion

$$H(K; 1) \subset H(C^* \cdot K; 1 - \varepsilon),$$

where

$$C^* = \sup \varphi^\varepsilon(P_1, P_2).$$

Conclusion 2. If $q(Q) \in H(K; h)$, $0 < h < 1$, then the boundary values $p^+(P)$ and $p^-(P)$ of the column (5) belong to the class $H(\tilde{C} \cdot K; h)$, where $\tilde{C} = 1 + C$.

This conclusion follows from the equality (8) and from our Theorem.

It is known ([1], p.178) that if the column $\varphi(P)$ satisfies on the surface S the Hölder condition, then the integral equation

$$\frac{1}{2\pi} \int_S M(P, Q) \phi(Q) ds_Q = \varphi(P) \quad (26)$$

has in the class of columns $\phi(P)$, satisfying on the surface S the Hölder condition, exactly one solution, namely

$$\phi(P) = \frac{1}{2\pi} \int_S M(P, Q) \varphi(Q) ds_Q. \quad (27)$$

Let us assume that $\varphi(P) \in H(K; h)$ where $0 < h < 1$. In view of our Theorem and the equality (27) we obtain

$$\phi(P) \in H(2C \cdot K; h)$$

and then, making use of the equality (26) we find

$$\varphi(P) \in H(4C^2 \cdot K; h). \quad (28)$$

Conclusion 3. The constant C mentioned in our Theorem is not less than $\frac{1}{2}$.

Indeed, the column $f(P)$ with constant elements equal to unity belongs to the set $H(1; h)$ and, on account of (28), also to the set $H(4C^2; h)$, hence $4C^2 > 1$, i.e.

$$C \geq \frac{1}{2} \quad (29)$$

Since on the basis of the equality (7) we have

$$\frac{1}{4\pi} \int_S M(P, Q) \cdot \begin{vmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{vmatrix} ds_Q = \frac{1}{2} \begin{vmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{vmatrix}$$

then the estimate (29) cannot be improved.

Conclusion 4. If the column $q(Q)$ satisfies on the surface S the Hölder condition and if the column $F(P)$,

defined by the formula (21), belongs to the set $H(K;h)$, where $0 < h < 1$, then $q(P) \in H(4C \cdot K;h)$.

Indeed, on account of the equalities (26) and (27) we have

$$q(P) = \frac{1}{\pi} \int_S M(P, Q) F(Q) ds_Q, \quad (30)$$

therefore $q(P) \in H(4C \cdot K;h)$.

Hence it follows that besides the implication

$$q(Q) \in H(K;h) \implies \frac{1}{4\pi} \int_S M(P, Q) q(Q) ds_Q \in H(C \cdot K;h)$$

mentioned in our Theorem, also the implication

$$\frac{1}{4\pi} \int_S M(P, Q) q(Q) ds_Q \in H(K;h) \implies q(Q) \in H(4C \cdot K;h)$$

is true with respect to Hölder columns $q(Q)$.

From the equalities (26) and (27) we can then easily conclude that if there exists a column $q(P)$ satisfying on the surface S the Lipschitz condition and such that the column $F(P)$ corresponding to it in transformation (21) does not satisfy the Lipschitz condition (comp. Conclusion 1), then there exists also a column $q^*(P)$ satisfying on the surface S the Hölder condition, but not satisfying the Lipschitz condition, such that the column $F^*(P)$ corresponding to it in transformation (21) satisfies the Lipschitz condition.

Obviously, there exist columns $q(P)$, satisfying on the surface S the Lipschitz condition, whose images $F(P)$ in the transformation (21) also satisfy the Lipschitz condition. Such is, for example, the column formed of ones alone.

Our Theorem constitutes a basis for investigation, by the fixed point method, of non-linear boundary problems for holomorphic functions in the space E_3 , and of singular integral equations connected with them.

These problems shall be dealt with in our further papers.

BIBLIOGRAPHY

- [1] А.В. Бицадзе; Краевые задачи для эллиптических уравнений второго порядка, Москва, 1966.
- [2] Н.И. Мусхелишвили: Сингулярные интегральные уравнения, Москва, 1962.
- [3] Т.Г. Гечеля: Оз одном обобщении теоремы Г. Жиро, Сообщ. А.Н.Груз. ССР. т. XVI, № 9, 1955, стр. 657-663.

Received, June 26th, 1968.

Adress of author: prof.dr Wojciech Źakowski,

Warszawa, ul.Brazylijska 5a m 38

