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Agnieszka Pluciniska

PARTIAL DIFFERENTIAL EQUATIONS AND INFINITESIMAL PROPERTIES
OF NON-MARKOVIAN STOCHASTIC PROCESSES

Let Y, (t > 0) be a stochastic process with real values
from some interval I, Let F and H be fthe conditional pro-
bability distribubion functions of this process, defined as

F(toiyoﬂt!y) = P(Yt<y ’Yto=3’o) (1)

H(to,yo,w,z,t,y) = P(Yt<y|Yt°=yo, Yw=z), O<t < w<t. (2)
From (1) and (2) it follows that

F(ty 0T getsd) =JfP(Yt< y‘Yto—_- Tor Ty = z)dzP(YW<z|Yt0=yo)=
(3)
=!H(to,yo,w,z,t,y)sz(to,yo,w,z).

Note that the functions H(to,yo,w,z,t,y) is undefined on
the set S: t0= W, yo;éz since by putting ty =W, Yo £z we
obtain contradicting conditions in (2). Thus, all subsequent
considerations will concern only the values outside &, where
the function H will be assumed well defined.

Let us assume that the derivations

'g—f,‘ = f(to,yo,t,y), (4)
dH h(t .
Iy =" ooyop”yz1t9y) (5)

exist and are continucdus with respect to all arguments.
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20 A.Plucifiska
Relations (3) ~ (5) imply that

f(t01y01t1y) =j[h(t0,yo,W,Z,t,y)f(to,yo,W,Z)dz. (6)

Equation (6) is a generalization of the Chapman-Koimogorov
equation to the case of densities of non-Markovian processes,
The fact that the first factor of the integrend depends on to
and Yo shows that the Markov property does not hold for the
process under consideration [1].

In paper (2] a partiai differential equation was derived
for non-Markovian process, this equation wasa generalization
of the Koxmogorov equation for Markovian processes. More pre-
cisely, it was proved that the following theorem holds.

Theorenm 1, If for any >0

. (1]
&33 j%»j~(y—z)h(to,yo,t,z,t-+At,y)dy::a1 (to,yo,t,z), (7)

1y~ ke
lim f( Yo n (s ,2,%+ 4t,7) (] % (
a0 AT Nt 01o?V1% + At,y)4y = a to,y v692), 8)
|y-z|<d
11m ——-]~(y z) h(to,y st,2,5 +A5,y)dy = O (9)

{y-zpp6
where the convergence in (7)-(9) is uniform in z,

h
lf(‘co,yo,’c,y), aa;liaq[] (to,yo,t,y)f(to,yo,t,y)

(&) 10)
Sy—z_lj (toyJo;t Y) f(tosyo: sY)]

exist and are continuous with respect to all arguments, then
the following partial differential equation holds

8 s |
€ T(b,s70t,7) * 35 24 (559950 63 )E(E 7, %,3) | =
(11)
2

(h]
= _21 g—yZ[ag (’Go,yootﬂ)f(to,yo,t,y)} .
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Partial differential equations 24

Equation (11) corresponds %o the prospective equation,
Besides, the following fact was proved in Eﬂ. Let P{?t =y ] 1.
Dencte by K the class of functions such that

1° elements of K are probability densities

2° elements of K are homogeneous functions of order - %
of arguments -y, (t-to)w where # 1is an arbitrary real
nunber different from zero

while
e ,e
(6s¥getsy) = SESZR (33 )%
(12)
[ h] 2-p
(toryov QY) = (y—yo) ’

then the only funetion £ in class X satisfying (11) is for
¥-y,> 0

!
p =y -y, V¥
£t ,5-7,) = 2 7 ° -I ex -%—————_ 01/,, (13)
FEE) (560" | (-t )J (t=t,)
Moreover, if
[n] 1-p
a, = % (2+a-p)|y-y,| sen(y-y,) (14)
] o 2-p
) =-5¢y-yo|
then the function satisfying (11) is
p-1-a o
2 -y -y
f(t=t_,7-7,) = pq , | °|1/ ex‘p[—% | °I1/— (15)
oo+ /] b b
2F(—p)(t—to) (t-t,) L \(=5,)

where o » 0 and p 1is natural.

In this paper we shall present

I the equation for non-Markovian processes which corres-
ponds to the retrospective equafion in case of Markov processes
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22 A,Plucifiska

II A generalization of equation (11) to the case of equa-
tions of order higher than two, containing infinitesimal mo-
ments of order higher than two

III The infinitesimal operator of functions h and £,

The properties of infinitesimal characteristics,bheir phi-
sical interpretation and application to stochastic processes
are discuss, for example, in [3], [24], [5].

I. We shall prove

Theoremn 2, If for any ¢ >0 uniformly in Yo

[£]
ay (65,5,)  (16)

A e [ (726,506, + At ,y)dy

RTAN:
[£)
11m At /‘(y =Y, ) f(to,yo,t + Ato,y)dy = a, (to,yo) (17)
|y'yol<d-
A 2
L o [ (3-34) £(55,7st, + Ab,,3)dy = O (18)
|9-Yoj2d
there exist continuous and bounded derivatives
, 2
ah(to,yo,w,z,’c,y) 0 h(to,yo,w,Z,t,y)
0z ! 322 !
(19)
ah(to’y°9wtz1t’y)
ow
then the following partial differenﬁial equation holds’
» On(t )T 9WyYyet,Y)
ow W=t -
7o
[f] ah(s 2T 9t _s2,% y.)
= 2a,  (t,,y,) —° o' + (20)
2=y
o)
[}f] azh(to,yo,to,z,t,y)
+ay  (5,7,) 5
_ dz e
o]
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Partial differential equations 23

In this equation the symbols

2
ah(tooyootocz’t’Y) l a h(toyyoytorzyt’Y)l
0z k:yo’ aéz !z:yo

denote the limits

ah(tosyovtovzst,:)’) - 1im Fdh(to— At,yo,to,z,t,y)’
0z 2=y, At—0 iz 'z:yq
2 .2 ]
a h(toryostoszyt,y) 9 h(to- Atyyoytosz9t’§’)
= lim
aZ2 Af=~0 022 .
z=y z=yoj

The above explanation is connected with the fact,that the
function H, hence also h, is undefined on the set 8.
Proof. Note that

H(t,sY50b51750557) = P(Yp <y lYto= Yor Yto= o)
= P(Yy<y IYto= v,)
Therefore
h(E T 0b59T0b07) = £(5,,7,0t,7). (21)

Expanding h into Taylor’s formula, we can write equation
(6) in the form

fy(to”dt,yo’t,Y) =ff(to-At,yo,to,z)h(to-At,yo,to,z,t,y)dz =
b

= [ £06,m6,340b492) Bl5=86,75b,574,5,7) +
J
(22)
+ (2-7,) 2= n(E ~05,7,5,,2,b,7)

Z:yo
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24 A,Plucifiska

(z-y,)° 52
g (6 =06,7 56,92yt ) +
z
Z:yo
(22)
o(z—y ) 82
+—g———az o~At, 7, to,z,t,y) dz,
Z:yo
It follows from (21) and (22) that
/]
—F[h(to—At,yo,to—At,yo,t,y) - h(’co—At,yo,to,yo,t,y)] =
(23)
= ’BOE h(t =a%,7 9,929 t,7) — f (2=, )E(6 =ab,5 4% 2)dz+
—.'Yo |z <6
192
+ 5 Tz h(to-At,yo,to,z,t,y) At (z= y) f(t -4%,3,,%,,2)dz+
z
2= |7Ylcd
62
+ % a—zzh(to-At,yo,to,z,t,y) At o(z-y ) £ (646,39 b,02)dz+
: 2=y, [2-4ol<6
+ o(at),

Next note that

2
£Ff o(z-yo) f(to—At,yo,’co,z)dz
|2-yo<d

(24)

2
= Z,]t— f O(Z-yo)(z"yo) f(to"At’yooto,Z)dZ <
|z-yo|<d'

<6—— f (z— -3, ) f(t —At,yo,to,z)dz————-———u 0.
when §-+0
|z yi<d

Passing to the limit with At —=O in (23) and using (16),
(17), (21) and (24) we obtain (20), g.e.d.
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Partial differential equations 25

II. We shall prove
Theoren 3, If for any 6 > 0O

. 1 2k~ [h]
g\'e'];'-% —A—t-f (y-2) h(to,yo,t,z,t+At,y)dy=a2k_,|(to,yo,t,z),(25)
ly-z|1<&

g 2k [
g-tl_-g'A_Ef(Y-Z) h(togyoytvz9t+At’Y)dy=32k(to,yoftvz)’ (26)
ly-z|<&
2k
1im —& f (y-2) h(to,yo,t,z,t+At,y)dy=O (27)

at—-o A6
ly-2zl>6

k=1,2,..., the convergence in (25) - (27) is uniform in 1z,
fthe order of convergence is, for r<k, given by formulas

2r-1 r [h] Kk
(y-z) h(t _,¥ . ,5,2,t+At,y)dy = At (t 47 ,5,2)+0(at)
N o' o1ty ’ S R AN M L ’

ly-z|< 6

2r (h] r K
f (y~z) h(to,yo,t,z,t+At,y)d:y=a2r(to,yo,t,z)at +0{4%) ,
ly-2]<d

2r k
(3-2) h(t,,5,4%,2,5+0%,5)dy = o(a%)
l9-21>6
. : N 2 X
there exist continuous derivatives a—tk— f(to,lyo,t,y),

52k [[n] _ _
PP [azk(to'yov"ﬂ)f(to,yo.t,y) (28)

3 2k-1 [h]
'a—yz‘E_—/‘" ey (toyyoytpy)f(tooy(,,t’y)

then for any natural k we have

k
a f(tooyoftfy) + (29)
otk

A
k!
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26 A,Plucifiska

9 2k=1 [ [h] J

+ k=) ay k-1 |22k 1(to’yo’t’y)f(to’yo’ »7)
(29)

. a2k [
= )T 5,2k 20y (B9 ¥ s 597 )E (5,579 5y7) |

Proof. We shall proceed by induction, For k=1 the theorem
reduces to theorem 1, Let us assume that the theorem holds for
r<k, We shall show that it holds for r =k.

Let a and b be arbitrary real numbers such that (a,b)cI.
Let R(y) denote and arbitrary non-negative function from
class C k) and let

R(y) =0 for y<a and y>b,

Then
(x) (=)
R (a) = R (b) = O fOI‘ r = 1,2,..-’1{-
Let us expand f and R 1into Taylor series
t af(to;yo,t,Y)

(b9 T b+at,y) = £(5,,7,,%,7) + - + ...
(30)
-1
g1 ¥ E(t,9Y,9597) k o%r (% 'Y, ,t,y) Xk
At 0o’ ! At 1)
=N atE=T * R atk + o(At),
_z )K= (k—ﬂ)

R(z) = R(y) +-Z%E-R(y) +oee. + L%EélyT- v+ 51)

k Ay
+ Qi;—'z—)— R(k)y + o(y-—z)k.

Using (6), (30), changing the order of 4integration, and
changing the notations of variables of integration, we obtain

ff(to,yo,t+ﬂt,y) R(y) =
a

b
‘[[ J A rad ] f(toiyoit9y)
Lr=o atT

(32)

+ o(At)k} R(y)dy =
a
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Partial differential equations 27

b
[ a9 [ 206003,0802)0(60,7,,5,2, 5+ 46,7)R(y )z
a

= [az [ £(60s741,2)n(50,3,,5,2,b +46,7)R(G)ay = (32)
7

k
=fdyff(to,yo,t,y)h(to,yo,t,y,t+At,z)R(z)dz+o(At) .
I yes

It follows from (25), (26), 31 and (32) that

b
f[k atT O E(60T 0%,7)
w5 T! 36T

+ o(At)k}R‘(y)dy =
a

(33)
ff(to,yo,t,y)dyf By, 95y, b+45,2) [Z (y'z) R )
1y-z|<S :

+ o(y-z) k]dz + o(at) =
. [n] .
=ff(co,yo,t,y){R(y)+R’(y) At a, (to,yo,t,y) + o(A6)" + ...
b/

(n] k
Bt an, 4(5,s,s5,7) + 0(4) +

1 (2k=1) k
*ent B0

4 _(2K) x (@] Kk
+ > R (y)[At aye (5,557505,7) + o(at) +

2k k
+ f o(y~z) h(to,yo,t,y,t+At,z)dz}dy + o(At) .
Jy-z|<d

Integrating by parts and using properties of function R
we obtain

d [h] (2k=1)
ff(tosyo,t’Y)azk_q(toyyo,t,Y)R (ylay = (34)
a
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28 A Plucinska

b 2k-1
[
= "a R(y) 5;21{—_1— I:a2k-’l(to’yo’t’y)f(to’yo’t’y)]dy’ (34)

[n] (2k)
ff(to,yo,t,y)agk (5539505, 7)R (3)dy =
a

(35)

b 52k [ [n]
fR(Y) Tk [azk(tooyoltvy)f(tooyos aJ):,dy
ay
a

Grouping in (33) terms with equal powers of At and using
(34) and (35) we obtain

T ' 2 [ [n]
f[A'b[at f(to!yoytf}') +T< [e) ) —%—g—-—z(& f>]+"'+
a J (36)

1 +
T2(x-1)-1]1

k-1[yk-1, 32(k=1)-1/ [n]
AV RRT el t a2 (E=1) =1 <a2(k-’l) 1%
32 (k=1) ([h] a q ‘
2(k—1) R2(x-1)Y &= I | *

+
dy

k k 2k~=1
. A [alf{_él_'+a ([h]
0t ¢

1
52k~ 81 f) k=11 *

[h] A
aop Tyt [(R(V)Ay + W =0

k [ ! u
W =ff(to,yo,t,y) { o(at) I}i(ﬁ’—l + 32-9"—)} + e
a (37)
(2k-1) (2k)
+ o(a%) [R(2k—’l)gy) * R(2k)§y> v +

!
|
<~J

where
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Partial differential equations 29

k (2k)
ff(to.so,t,y)dny(y—Z) R (3)n(t,47,0t,7,40 + A%, 2)dz +

[y-2|<d
k k
+ o(at) = I,+ 1, +o(at) .

By the inductive assumption, the terms in the first k-1
brackets are equal O, We shall show that

1im lk— = 0. (38)
Iﬂ

We shall first evaluate the integral —x From proper-
At

ties of function R it follows that there exist a constant M
such that

|
2 (3)| < M for = = 1,2,...,2x.

Next using the fact that

fe=]

2 zr=¢

r=0

I
we obtain the follow1ng estimate for 1
at%
. b
—A_;E[I,]I = Aékff(to,yo,t,y){o(z}t) [ﬂl) _Z_L)]+ ee. 4
a
(39)
[ (2k=1) (2x) 1) :
o{At) M e ———— 0.
* °(At) (2= §l)‘ “(é—ﬂ‘}dy < T ;E - When At—0

Estimating the integral Zg% in a maner similar to that
used for (24) and using (39) we obtain (38),

Relqtion'(36), (38) and inductive assumption lead directly
to the assertion of the theorem, that is to formula (29) g.e.d.

The reasoning which was used in proving theorem 3 is si-
milar to that used in proving the corresponding theorem for
Markov processes in [6].
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30 A,Plucifiska

In the case of Markov processes Yt’ the basic problem
connected with Koiméforov equation 1is that oi: determining
function f given the functions a,'l:f] and s L . On  the
other hand, given function £, the functions a,][ﬂ and a2[f]
can be determined directly from formulas (16) and (17).

In the case of non-Markovian Yt one could volve analogous
problem, that is, determine the function f from equation (11)
given the function a[h] Lh] defined by (7) and (8).
There exist, however, a convex-se problem, namely +that of de-
termining functions a,,[h] , a2[h] from (29) given the function
f, that is, the probJ.em of determining some quantities cha-
racterizing function h, given the function £, As anexample,
consider the case when Y, 1s homogeneous in time and space,

that is

f(topyo1t7Y) f(t-toyy-yo)

h(t,47,05,2,% + 4%,5) = h(b-~t,2-y ,At,y-2)

(]
a:Eh] (toayortyy) = a, (t"toiy"'yo)9 r = 1,2,

Suppose, in addition, that f is given by (15),and denote

..t—to =8, Y-y, =X ' (40)
[h]

under these assumptions, we shall determine functions aj™ and

a2h from equation (11).
Substitubing function (15) into (’l’l) and usipng (40) we

obAta:.n

[b]
oc+p
o+ 1 x| , _dx® 93q (5,%)
p  Taxirp + <L+1+ 75 a+T 0x -
s P ps P s ®
' (#1)
o ~1 a+p-1 ]
alx X L
4! _}‘L_*_L - L““ a, (s,x)sgn x =
- s P
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31
_1Ixﬂ.BQ%M(%X)+de-1_lxdﬂ%qaﬁm(sx)SHX*_
- ? o+/ 6x2 o+l +;+B [[F3 &

s P s P 5
- o +p~2 a+2p=2
11a®1 1222 (204p-1)ix] , x| [b] (s.%)
o a+! - o+ 1+ p osizp |22 187
L s ? s P s P

By assumption (15) concerning the form of f it follows
that a,lh] and a2h must satisfy equation_ (41), This equation
does not determine uniquely functions a

and azh and we
must add some conditions., Let us assume that i
all(s,0) = all),  alt(s,m) = o[ o)

(42)
i.e. we assume independence of s, It follows from (42) that
the coefficients at s with equal powers in (41) mnust be
equal, thus, comparing the coefficients of
o+ [+2p a+l+p -2
s P, s P ; S P
we obtain the relations
~2  [h]
1 P
3 Hxl &, (x) = (43)
o +1 p+1 da,l[h]x
—Tlxl - x| sgn X a, (x) +ix]| sgn X —gpz— +
(44)
p_[h]
+ (2ct+p-’1)|x| 2 (x) = 0
e 2l
p's T—+alxlsgnxa (x)-—e—x —= ¢
_ (45)
[n]
da, (x) [n]
- olx|sgn x —§z— - ?—ot(r.zt-’l)a.;2 () = 0.
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32 A, Pluciviska

From (43) - (45) it follows that

(k]

1~
a, (x) = P

%—(2+d-p)lxl sgn x (46)

2-p

agh](x) =-%4le (47)

Thus, if we assume a specific form of f, and make addi-
tional assumption (42) we obtain explicitely functions aADﬂ
and a%h]. Note that formulas (46), (47) are identical Qith
formulas (12), Thus, the result cbtained can be treated as a
theorem converse to the result in [2], expressed by the pair
of formulas (14), (15)., In a similar way we can show that if
f 1is given by (12) and a}h], aéh satisfy (42), then these
functions are given by (12).

III. Let .g(z) be a continuous function defined in I,
Under fairly general assumptions, the infinitesimal operator

for homogeneous Markov proces is

(48)

) S B(t,2,5+ at,ay)8(y) ~&(z)
bele) = gan, b

This operation is connected with the transition function
P(t,z,t +At,dy).

Without assuming Markov property, let us define the
following-operators

{£] JE(t,2,5+ 4,7)g(y)ay - s(2)

A glz) = 1in . Y33 (49)
[h] 3fh(to’yo’t’z’t"'Atvy)g(y)dY'g(z)

A elz)=jin A% (50)

We shall show that if g(z)s;C2 ‘and the relations (16) -
(18) nhold then
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Partial differential equations 33

£
A[ ]g(z) =g'(Z)a1[f] (ty2) + —;- 8’ (z)ae[f] (ty2), (51)

and if g(z)e 02 and relations (7) - (9) hold, then

(] [h] (]

A" g(z) =g (2)ay " (6,07, %,2) + 2 & (z)ay (559759852 (52)

To prove (51), let us expand g(z) into Taylor series
=2 (y=2)° 2
g(y) = g(z) + 5= g'(z) + 57— g"(z) + o(y-2)".  (53)

Using succesively (49), (53) and then (7) - (9),we obtain

[]g(Z) Jio —[ff(t z,b+ A,3)a(y)dy - g(Z)}

= 1lim A———[f f(t,z,t+4t,7)g(y)dy +f f(t,z,t+4t,5)g(y)dy +
At—0 2 1§26 19-21>6

- &(z)

———
I

1
T At

LB

—1.—“ f(t,2 t+A‘G,7)[e;(Z)+(J-Z)g (z2) + » (y-Z) g (z) +
1g-zi<d

+

2
o(y-2z) ]dy +f f£(6,z,t+4t,y)eg(y)dy - g(Z)} =
ly-z136 i

= lim %[g’(z)f (y-2)f(t,3,t+45,y)dy +
ly-zI< &

2
% g (z) f (y~2) £(t,z,t+46,y)dy + o(a®) } =
|y-Z]< 6 !

<+

g(2)as (8,2) + 1 & (22D (5,2).

This proves relation (51). In a similar way we can prove

(52).
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34 A Plucifiska

Examples. 1° Let f be given by (15) for p = 2. Then

(£] [£]
a,] =

= O, a2 = +1
(54)
i
2Ty = 1 @ener (o).
Putting a =0 in (54) we obtain the result of example 2,16
from paper [4].
2°, Let f De given by (15) and p = 1. Then

a[f] [J
a

(t42) =a+1, (ty2) =

(£]

A " g(z) = (@+1) g'(z).

Besides infinitesimal operator and infinitesimal moments
we can also introduce other infinitesimal characteristics for
instance the infinitesimal characteristic function., Let

w(u,to,yo,t,z) =1+ iuAtaqth] (to,yo,t,z) + %—‘!1—) Ataz[ ! (t b z)+
(55)
(;1'1) t°a [n ](‘GO,Y y6,2) +oF (1u) AtZaLE ](t yo,t,z)+...

provided the series on the right hand side converges.PFunction
defined by (55) has the following properties

W(0yt,s7,0642) = 1y y(-uyt ,7,,5,2) = w(ut,,y,,t,2)

2k
d W(Ovto’yost,z) 2k k (h]
= At &
2k 2k ?
du
2k-1
d ‘l)(ovto,yo,tyz) 21{..’] k [n]
2k~-1 = agk 19
u
WUy s T st92) = @(Uyb T 0ty2,0 + At)
lim =0
At—-0 At
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Partial differential equations 35

and ¢ is a characteristic function corresponding to h, that
is

. . iuy
¢y, sty2, t+aE) =fe n(t,sY,9t,2,t+45,5)dy.
3
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