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PARTIAL DIFFERENTIAL EQUATIONS AND INFINITESIMAL PROPERTIES 
OF NON-MARKOVIAN STOCHASTIC PROCESSES 

Let ( t > 0 ) be a s tochas t i c process with r e a l values 
from some in terva l I . Let F and H be the .conditional pro-
b a b i l i t y d i s t r i b u t i o n funct ions of t h i s process , defined as 

F ( t ,y i t . y ) = P ( Y t < y I Y t = y ) (1) 
' o 

H(t fy , w , z , t , y ) = P ( T t < y | Y t = y , Y =z)t 0 < t Q < w < t . (2) 
< o 

Prom (1) and (2) i t fo l lows that 

F ( t 0 , y 0 , t , y ) = / p ( T < y | T t = y f T = 8 ) d B P ( Y < a | T t = y 0 ) = J I o I o 
(3) 

0 » y 0 » w , z , t , y ) d z P ( t 0 , y 0 , w , z ) . 

Note that the funct ions H(t t y Q , w , z , t , y ) i s undefined on 
the s e t S : tQ = w, y Q 4 z s ince by putt ing tQ = w, yQ 4 .z we 
obtain contradict ing conditions in (2 ) . Thus, a l l subsequent 
considerat ions w i l l concern only the values outs ide S , where 
the funct ion H w i l l be assumed well def ined. 

Let U6 assume that the derivations ' 

-gf = f ( t Q , y o , t , y ) , (4) 

I f = h ( t 0 , y 0 , w , z , t , y ) (5) 

e x i s t and are continuous with respect to a l l arguments. 

= J H(t 
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20 A.Plucinska 

Relations (3) - (5) imply that 

f(t0,yQ,t,y) =Jh(t0,y0,w,z,t,y)f(t0,y0,w,z)dz. (6) 

Equation (6) is a generalization of the Chapman-Kolmogorov 
equation to the case of densities of non-Markovian processes. 
The fact that the first factor of the integrend depends on tQ 
and yQ shows that the Markov property does not hold for the 
process under consideration [1], 

In paper [2] a partial differential equation was derived 
for non-Markovian process, this equation was a generalization 
of the Kolmogorov equation for Markovian processes. More pre-
cisely, it was proved that the following theorem holds. 

T h e o r e m 1. If for any 6 > 0 

1 r frl 
At" J ( y - z ) h ( t

0 ' y o ' t ' z ' t + *tfy)dy = a i ( t 0 , y 0 , t , z ) f (7) 

|<,-z|<5-

ct. [h] 
aliio à" / (y~z) h(t0,y0,t,z,t +Z\t,y)dy = ag (tQ,y0,t,z), (8) 

\y-z\<J 

At 
ill's At f li(t0,y0,tfzft+ 4t,y)dy •= 0 (9) 

¿f(t0,y0,t,y), 

where the convergence in (7)-(9) is uniform in z, 

M , (t0,y0,t,y)f(t0,y0,t,y) 

H (t0,y0,t,y) f(t0,y0,t,y) 
(10) 

exist and are continuous with respect to all arguments, then 
the following partial differential equation holds 

9t + ? y 

,2 

" Lh] a 1 (t0»y0,t,y)f(tolyott,y) 
(11) 

1 9 
- 2 ay' 

• Lh] 

f2 (t0,y0,t,y)f(t0,y0,t,y) 
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Partial differential equations 21 

= 1. 

Equation (11) corresponds to the prospective equation. 
Besides, the following fact was proved in [2j . Let P 
Denote by K the class of functions such that 

1° elements of K are probability densities 
2° elements of K are homogeneous functions of order - x 

of arguments y-y , (t-t )'/p where ae is an arbitrary real 
number different from zero 
while 

M VP 

I 
4. 1 2 / ,2-p 

a2 (to'yo't'y} = "p ( y _ yo } ' 

(12) 

then the only function f in class K satisfying (11) is for 
y-y0> o 

f(t-t0,y-y0) = 
p - l - a 

p 

HP 

y-y. 

(t-to) 
i/p 

exp 
y-yr 

pl(t-to)« 
(13) 

Moreover, if 
Lh] 1 1-P 

A = - (2 + a-p)jy-yo| sgn(y-yQ) 

W 2 . ,2-P 

(14) 

-2 =p|y-y0i 

then the function satisfying (11) is 

p-1-CL 

f(t-to,y-yo) = 
'/p 

riy-yoi n CL 

I u i exp 
C t V l 

1 / ly~yol Vl 
p\(t-t0r 

(15) 

where ot > 0 and p is natural. 
In this paper we shall present 
I the equation for non-Markovian processes which corres-

ponds to the retrospective equation in case of Markov processes 
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22 A.Pluciiiska 

I I A g e n e r a l i z a t i o n of e q u a t i o n (11) t o t h e c a s e of e q u a -
t i o n s of o r d e r h i g h e r t h a n two, c o n t a i n i n g i n f i n i t e s i m a l mo-
ments of o r d e r h i g h e r t h a n two 

I I I The i n f i n i t e s i m a l ' o p e r a t o r of f u n c t i o n s h and f . 
The p r o p e r t i e s of i n f i n i t e s i m a l c h a r a c t e r i s t i c s , t h e i r p h i -

s i c a l i n t e r p r e t a t i o n and a p p l i c a t i o n t o s t o c h a s t i c p r o c e s s e s 
a r e d i s c u s s , f o r example , i n [ 3 ] , [ 4 ] , [ 5 ] . 

I . We s h a l l p r o v e 
T h e o r e m 2 . I f f o r any cf > 0 u n i f o r m l y i n y Q 

-1 r M 
À^oit J ^ o ) f ( t o ' y o ' t o + * V y ) d y = a l < V * o > 

fy-i/oK 

. r 2 [f] 

i t i m
0 Â t J ( y " y o ) f ( t o » y o ' t o + 4 t o ' y ) d y = a 2 ( t o ' y o ) 

I y-y,]«? 
At 

i & l i ï f ( y " y o ) t^o'lo^o + = 0 

p-y&f 

t h e r e e x i s t c o n t i n u o u s and bounded d e r i v a t i v e s 

(16) 

(17) 

(18 ) 

a h ( t 0 , y 0 , w , Z , t , y ) d h ( t 0 > y 0 , w , z , t , y ) 
dz dzc 

ah(t 0 , y 0 , w , z,t , y ) 
9w 

t h e n t h e f o l l o w i n g p a r t i a l d i f f e r e n t i a l e q u a t i o n h o l d s 

'0» 9 k ( t 0 , y 0 , w , y n , t , y ) 
3 w w=t . 

(19) 

^ r+ v i — ^ o ' - o ' - o 
= 2 a i o® 0 

9 h ( t n , y o , t r i , z , t , y ) 
~5~z z=y r 

(20) 

^ > a 2 h ( t 0 , y 0 , t , z t t , y ) 
+ ( t 0 , y 0 ) 

a z ' z=7r 
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Partial differential equations 23 

In this equation the symbols 

az 
5 h ( t 0 ' y 0 ' t 0 ' z ' t ' y ) 

z=y. dz' 

denote the l imi t s 

d h ( t o , y o , t o , z , t , y ) 
Tz = lim 

z=yQ 

dh( t o - A t , y 0 , t 0 , z , t , y ) 
dz z=yr 

9 h ( t 0 , y 0 , t 0 , z , t , y ) 
d z z=y. 

= lim at—o 
a^h(t0- A t , y 0 , t o , z , t , y ) 

z=7r 

The above explanation i s connected with the fac t , tha t the 
function H, hence also h, i s undefined on the set S. 

Proof. Note that 

H ( t 0 , y 0 , t 0 , y 0 , t , y ) = P(Y t<y IT = y , T = y ) 
I o o 

= P(Y t<y |Tt = y 0 ) 
i o 

Therefore 

h ( t o ' 7 o ' t o ' ; 7 o * 1 ; ' y ) = f ( t 0 ' y o ' t ' y ) - ( 2 1 ) 

Expanding h into Taylor's formula, we can write equation 
(6) in the form 

f ( t 0 ^ t , y 0 , t , y ) = J f ( t 0 - A t , y 0 , t 0 , z ) h ( t 0 - 4 t , y 0 , t 0 , z , t , y ) d z = 
J 

= / f ( t o - 4 t ' y o ' t o » z ) h ( V 4 t ' y o ' t o ' y o ' t ' y ) + 

+ ( z " y 0 ) h ( t o - 4 t ' y o ' t o ' z ' t ' y ) 
(22) 

z=yr 
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24- A.Plucióska 

5 2 , 
+ — 2 V 2 h ( V A t ' y o ' t o ' z ' t ' y ) 

a z 

o ( z - y o r a 2 
h ( t , t n , z , t , y ) -g ^ 

z=yr 

z=y, 

(22) 

dz. 

I t follows from (21) and (22) that 

¿ [ h ( t 0 - A t , y c , t 0 - A t , y o , t , y ) - h( V ^ o ' W ' ^ ] = 

= -ïïz h ( t 0 - ^ t , y 0 , t 0 , z , t , y ) 

(23) 

/ ( z - y 0 ) f ( t 0 - 4 t , y 0 f t 0 , z ) d z + 

2 = 7 O I Z-i/oK 

oz 
À / ( z - y / f ( t 0 -^t ,y o , t 0 , z )dz + 

z=y0 |2-(/„|«r 

+ ^ ^ h ( t - A t , y 0 , t 0 , z , t , y ) 
ô z 

+ o ( 4 t ) . 

Next note that 

^ J 0 (z -y 0 ) 2 f ( t 0 -4 t ;y 0 , t 0 , z )dz+ 

z=yf 

¿ t / 0 ( z - y 0 ) 2 f ( t 0 - 4 t , y 0 , t 0 , z ) d z 
Z-i/oK 

-1 /• 2 

¿f j °(z-y0)(z-yo) fiv^^o^o»2^2 
K-ifei«̂  

<s~k i ( z - y 0 ) 2 f ( V A t ' V V z ) d z 

|z-y|<cf 

< 

0 . 
when tf—O 

(24) 

Passing to the l imi t with Zit —"-0 in ( 2 J ) and using (16), 
(17) , (21) and (24) we obtain ( 2 0 ) , g . e . d . 
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Partial differential equations 25 

II. W e s h a l l p r o v e 

T h e o r e m 3. If f o r any & > 0 

2k-1 M ,, r> ¿JS-l LXJJ 
l i m -^¡r J (y-z) h ( t 0 , y 0 , t , z , t + 4 t , y ) d y =a 2 k_ 1(t 0,y 0,t,z),(25) 

. r 2 k [h] 
¿ ^ Z t J h ( t 0 , y 0 , t , z , t + A t , y ) d y = a 2 k ^

t o » y o » t ' z ) ' 

i r 2k 
¿ i S j A b J ( y - z ) h ( t 0 , y 0 . t f z , t + A t , y ) d y = 0 (27) 

\y-z\><r 
k = 1 , 2 f . . . t the c o n v e r g e n c e i n (25) - (27) is u n i f o r m i n z, 

t h e order of c o n v e r g e n c e is, f o r r < k , g i v e n b y f o r m u l a s 

r 2r-1 p [h] , 
I (y-z) h(t o,y o,t,z,t+/4t,y)dy = 4 t a 2 r_ / 1(t 0,y 0,t,z)+0Gat) , 

f 2 r [h] r k 
J (y-z.) h ( t 0 , y 0 , t , z , t + 4 t , y ) d y = a 2 r ( t o , y o , t , z ) 4 t +o(4t) , 

l-M«1" 

f 2 r k 
J (y-z) h ( t 0 , y 0 , t , z , t + A t , y ) d y = o(At) 

\y-z\>6 
t h e r e exist c o n t i n u o u s d e r i v a t i v e s — s - f ( t -y -t.y), 

at 0 0 

,2k 

a y 
2 k 

•[h] 
(28) 

, 2k-1 

a y 
Z E ^ T 

- [H] , 
a 2 k - 1 ( t o ' y o ' t ' y ) f ( t o ' y o ' t ' y ) 

t h e n f o r any natural k w e h a v e 

_ 1 5 f ( t o , y o , t > y ) 

k ! 9 t k 
(29) 
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26 A.Plucinska 

+ (2k-1 ) ! a 2k-1 
" [h] 
a 2 k - 1 ( t o ' y o ' t » y ) f ( t o ' y o ' t ' y ) 

(29) 

,2k 
T2kl! , y 2 k 

"[h] 
a 2 k ( t o ' y o * t » y ) f ( t o ' y o ' t ' y ) 

Proof. We shal l proceed "by induction. For k= 1 the theorem 
reduces to theorem 1. Let us assume that the theorem holds for 
r < k . We shal l show that i t holds for r =k . 

Let a and b be arbi trary rea l numbers such that (a,b)ci . 
Let R(y) denote and arbitrary non-negative function from 

and l e t c lass C ^ 

Then 

R(y) = 0 for y < a and y > b . 

f r \ (r ) 
R (a) = R (b) = 0 for r = 1 , 2 , . . . , k . 

Let us expand f and R into Taylor ser ies 

¿ t ^ ( ^ 0 ' y o ' t ' y ) 

f ( t 0,y 0 , t +4 t,y) = f ( t 0 , y 0 , t , y ) + f f 

,k-1 ~ /, „ . N ,, ak 

at + ... 
(30) 

d f ( t 0 , y 0 , t , y ) 4 t k a - f ( t 0 , y 0 , t , y ) k 
• + O(AV) , + ( k - 1 ) ! at-k-1 + TE1 dt r 

H(z) = R(y) + ^ R(y) + . . . + R ( k " l ) y + 
(51) 

Using (6 ) , (30) , changing the order of integrat ion, and 
changing the notations of variables of integrat ion, we obtain 

/ f ( t 0 , y 0 , t + A t , y ) R(y) = 

{ Lr=0 r ! dt J 

(32) 
E(y)dy = 
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Partial differential equations 27 

D 

= J dyjf(t o,y o,t,z)h(t o,y o,t,z,t+ ¿t,y)R(y)dz = 
a 3 

b 

= f(t0ly0,tfz)h(t0,y0,t,z,t+/Jt,y)H(y)dy = (32) 
o J 

= / d y / i C t o i y o , t f y ) h ( t o i y o , t ( y f ^ t f B ) H ( z ) d Z + o(At)k, 
J iy-z|«r 

It follows from (25), (26), 31 and (32) that 

" r * .r arf(tQ,y0,t,y) 

3tJ 
+ o(Afe) R(y)dy = 

(33) 

2k p / 

=Jf(t0,y0,t,y)dy J h(t0,y0,t,y,t+zit,z) ^ J Z IZ=|I R p ; ( y ) + 
\y-z\«r 

+ o(y-z) 
2k 

dz + o(4t) = 

=/f(c0,y0,t,y)|R(y)+R'(y) 
' Lh] k At a^ (tQ,y0,t,y) + o(At) + ... 

1 (2k-1) 
+ (2k-1)! R ( y ) 

k W k 
A t a2k-1^ to» yo' t' 7^ + + 

, (2k) 
+ i H (7) 

• k [W • k 
At a ^ (t0,y0,t,y) + o(Afc) + 

2k 
+ J o(y-z) h(t0,y0,t,y,t+At,z)dz 
\y-z\«f 

dy + o(4t) . 

Integrating by parts and using properties of function R 
we obtain 

J f^ t
0' 7o» t' 7 ) a2k-1 ( to' 7o' t' y ) R ( y ) d y = (34) 
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28 A.PlUcinska 

b 2k-1 
d 

ay' 

[h] , 
a 2 k - 1 ( t o ' y o ' t ' y ) f ( t o » y o ' t ' y ) dy. (34) 

/ [h] (2k) 
J f ( t 0 . y 0 , t , y ) a 2 k ( t 0 , y 0 , t , y ) R (y)dy = 

(35) 

- / R ( y ) 
,2k 

3y 2k 
' [h] 
a 2 k ( t o ' y o ' t ' y ) f ( t o ' y o ' t ' y ) dy. 

Grouping in (33) terms with equal powers of At and using 
(34) and (35) we obtain 

\A t » -^ffV 3t ^ " o ^ o ' + . . . + 

(36) 

k-1 
+ At 

d k - 1 f , g 2 ( k - 1 ) - 1 / [h] \ 1 

k-1 ( k - 1 ) ! + 8 y 2 ( k - 1 ) - 1 ^ ( k - I J - l 1 , / [ 2 ( k - 1 ) - 1 j ! + 3t 

a 2 ( k - 1 ) / [h] \ _ j _ _ 
+ a y 2 ( k - l ) l®2(k-1)7 [2(k-1)] ! _ 

+ dt 
a t k k ! + a y 2 k - 1 ^ k - 1 r j ( 2k-1 ) ! + 

2k / [h] a; 
ay v 
~2k la2k f)l2kTT R(y)dy + W = 0 

where 

= j f ( t 0 , y 0 , t , y ) 

+ o (dt ) 

o u t ) - + 

(2k-1 ) ! + (210 ! a y + 

(37) 
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Partial differential equations 29 

2k (2k) 
f ( t Q , y o , t , y ) d y J o(y-z) R ( y ) h ( t 0 , y 0 , t , y , 4 t + A t , z ) d z + 

I y-z|<d" 
k k 

+ o(At) = I/, + I2 + o(At) . 

By the inductive assumption, the terms in the f i r s t k-1 
brackets are equal 0 . We shal l show that 

lim W 
At~o ¿ t k 

= 0 . (38) 

We sha l l f i r s t evaluate the integral — £ . Prom proper-
¿ t K 

t i e s of function R i t follows that there exis t a constant M 
such that 

¡ R ( r ) ( y ) | < M f o r r = 1 , 2 , . . . , 2 k . 

Next using the f a c t that 

00 „ 

r-0 
we obtain the following estimate f o r — 

AtK 

At 

+ o(At) 

At 
»y 0 »t f y) o U t ) R'(y) . R ' (y) 

1 • + 2 ! 

(2k—1) (2k) 
R (y) . R (y) 

(2k-1 + (2k 1 dy o(At) M e 
When At—0 

. + 

(39) 

•0. 

Estimating the integra l — ^ in a maner s imilar to that 
At 

used for (24) and using (39) we obtain (38) . 
Relation (36)» (38) and inductive assumption lead direc t ly 

to the assert ion of the theorem, that i s to formula (29) g.e.d. 
The reasoning which was used in proving theorem 3> i s s i -

milar to that used in proving tlie corresponding theorem for 
Markov processes in [6] , 
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30 A.Pluciriska 

In the case of Markov processes Y^, the basic problem 
connected with Kolmoforov equation is that of determining 

M „ [fO function f given the functions aj and 
[f] 

On the [f] 
other hand, given function f , the functions a^ and a^ 
can be determined direct ly from formulas (16) and (17). 

In the case of non-Markovian Y^ one could volve analogous 
problem, that i s , determine the function f from equation (11) 
given the function a ^ and aJfi defined by (7) and (8) . 
There exist , however, a converse problem, namely that of de-
termining functions aj-^ , aj"^ from (29) given the function 
f , that i s , the problem of determining some quantities cha-
racterizing function h, given the function f . As an example, 
consider the case when Ŷ . is homogeneous in time and space, 
that i s 

f ( t 0 , y Q , t , y ) = f ( t - t o , y - y Q ) 

h ( t o , y o , t , Z , t + 4 t ,y ) = h ( t - t c , z - y o , A t , y - z ) 

( W * ' 3 0 = a r M ( * - t 0 fy-y 0), * = 1.2. 

Suppose, in addition, that f is given by (15), and denote 

t - t = s, y-yn = x (40) 

under these assumptions, we shall determine functions a ^ and 
aJ^ from equation (11). 

Substituting function (15) into (11) and using (40) we 
obtain 

M 
a+ 1 I x | :Ct 

CL+ 1 1-p 
S P 

CC ~1 

OC+P 
Ixl 

oC + 1+ 2 p 
ps P 

a+p-1 

Ixl - da1 (s ,x ) 
SLtl p dx 

(41) 

a |x| 
0L+ 1 cc + I + p 

P 

[ h ] r > a^ (s,x)sgn x = 
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Partial differential equations 31 

« 2a[h] 
1 j x f d a 2 

Of/ ' 
= p 

(s,x) 
d x 

oc-1 
a x| Ixl 

ot+p-1 
aW CL* 1 + p 

P 

ô4 h ] (s,x) 
" W sgn x + 

(a-1). ,a-2 otv ,J |x| 
ou/ 

„ P 

(2cc+p-1 ) | x | 
at* 1+ p 

P 

a+p-2 a+2p-2' 
çj 

a+t+2p 
, P 

M ag (s,x), 

By assumption (15) concerning the form of f it follows 
that a ^ and a ^ must satisfy equation (41). This equation 
does not determine uniquely functions a ^ and a ^ and we 
must add some conditions. Let us assume that 

a„[h] (s,x) - (x), a|h](sfx) = a|h](x) (42) 

i.e. we assume independence of s. It follows from (42') that 
the coefficients at s with equal powers in (41) must be 
equal, thus, comparing the coefficients of 

cc+ t*2p a+ Up a* t 

we obtain the relations 
P-2 [h] 

(x) = 0 (43) 

ct+1 p+1 M p+1 daj^x f^ ' L̂ J irr ' —•/! |x| - |x| sgn x a1 (x) +|x| sgn x — + 

+ (2oc+p-1) |x|Pâ h-' (x) = 0 

2 da,[h] (x) [h] . p d 2J h ] (x) 
x — ^ + a |x| sgn x a,, (x) --jx — g + 

dap (x) . [h] 
- <x|x|sgn x — ^-<x(a-1)a2 (x) = 0. 

(44) 

(45) 
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32 A.Pluciàska 

From (45) - (45) i t fol lows that 

M 1 i -p 
a^ (x ) = ± (2+ot-p)|x| sgn x (46) 

a 2 [ h l (x ) = f | x | 2 " P (47) 

Thus, i f we assume a speci f ic form of f , and make addi-
tional assumption (42) we obtain expl ic i te ly functions a^*1! 
and a£ J . Note that formulas (46), (4?) are identical with 
formulas (12). Thus, the result obtained can be treated as a 
theorem converse to the result in [2], expressed by the pair 
of formulas (14), (15). In a similar way we can show that i f 
f i s given by (12) and a ^ , a ^ sat is fy (42), then these 
functions are given by (12). 

I I I . Let . g ( z ) be a continuous function defined in I . 
Under f a i r l y general assumptions, the inf initesimal operator 
f o r homogeneous Markov proces is 

/ P ( t , z 
,t+ 4 t ,dy )g (y ) ~ g ( z ) 

A g ( z ) = ¿fcn, .J ^ (48) 

This operation is connected with the transition function 
P ( t , z , t + At ,dy ) . 

Without assuming Markov property, l e t us define the 
fol lowing operators 

£f] / f ( t , z , t + 2>t,y)g(y)dy- g ( z ) 
A g ( z ) = lim -rx (49) 

At—a ¿»^ 

|-h] / * i ( t 0 , y 0 , t , z , t +4 t , y ) g ( y ) dy - g ( z ) 
A g ( z ) = lim (50) 

2 
We shall show that i f g ( z ) < C and the relations (16) -

(18) hold then 
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Partial differential equations 33 

A C f ] g ( z ) rg'tzjaj^tt.z) + { g " ( z ) a 2 ^ ( t , z ) , (51) 

p 

and if g(z)e C and relations (7) - (9) hold, then 

A [ h ] g ( z ) = g' (z)a 1
[ h ](t 0,y 0,t,z) + J g" (z)a|h] (t Q,y o,t,z). (52) 

To prove (51)» let us expand g(z) into Taylor series 

g(y) = g(z) + ^ S ' ( Z ) + i S ^ L g « ( z ) + o(y-z) 2. (53) 

Using succesively (49), (53) and then (7) - (9)»we obtain [f] 1 A g(z) = lim -TT df — o At J f(t,z,t + At,y)g(y)dy - g(z) 

= lim 1 y f(t,z,t+At,y)g(y)dy + J f(t,z,t+At,y)g(y)dy + 
0 liy-zKi ly-rlxT 

- g(z) \ = 

J* f(t,z,t+At,y)[g(z) + (y-z)g'(z) + \ (y-z) g" (z) + 

y-z\<g 

+ o(y-z) 2] 

dy + J f(t,z,t+At,y)g(y)dy - g(z) = 

= lim g'(z) J (y-z)f (t,z,t+4t,y)dy + 

"1 = lim 

^ -, .r ly-zKi 

+ J g"(z) J (y-z)2f(t,z,t+4t,y)dy + o(Atï ) = 
|y-z|<<r 

= g(z)a/ff] (t,z) + J g " ( z ) a 2
M (t,z). 

This proves relation (51). In a similar way we can prove 
(52). 
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34 A.Plucinska 

Examples. 1° Let f be given by (15) for p = 2. Then 

a, [f] M 
= 0 , gig =ol+1 1 

(54)' 
[f] A g (z) = J (a+1)g"(z). 

Putting a =0 in (54) we obtain the result of example 2.16 
from paper [4] . 

2°. Let f be given by (13) and p = 1. Then 

[f] ffl 
a^ (112) =a+1, ag (t,z) = 0 

[f] 
A g(z) = (a+1) g'(z). 

Besides infinitesimal operator and infinitesimal moments 
we can also introduce other infinitesimal characteristics for 
instance the infinitesimal characteristic function. Let 

2 
^ u> to' yo' t' z) = 1 + (t0,yQ,t,z) + A t a 2 h (to'yo,t'z)+ 

(55) 

+ LtoL) 3
A t2 aM (t0,y0>t,z) + (t0,y0,t,z)+... 

provided the series on the right hand side converges.Function 
defined by (55) has the following properties 

Y(0,to,yo,t,z) = 1, y (-u»t0»y0»t;,z) = ifj (u,t0,y0,t,z) 

2k 
d v(o,t0,y0,t,z) >2k k M 

2k = i At a 2 k , 
3u 

2k-1 
d <<>(0.to>yo,t,z) 2k-1 k LhJ 

2k^1 = 1 A t ®21E-1 ' 
9u 
fy ,t,z) - cp(u,t0,y0,t,z,t + At) 

lim -z-c = 0 ¿t—o At 
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and <f is a characteristic function corresponding to h, that 
is 

/
iuy 

e h( t
0»y 0,t,z,t+4t,y)dy. J 
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